A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China
Abstract
:1. Introduction
2. Methods
2.1. Goal and Scope
2.2. Life Cycle Impact Analysis
2.3. Life Cycle Impact Interpretation
3. Results
3.1. Magnitudes of Corn, Soybean and Wheat’s Life Cycle Impacts
3.2. Stage Contributions of Corn, Soybean and Wheat’s Life Cycle Impacts
3.3. Comparing Life Cycle Impacts of Groundwater and Reclaimed Water as Irrigation Sources
3.4. Sensitivity of Life Cycle Global Warming and Eutrophication Impacts
4. Discussion
4.1. Comparison with the Existing Agricultural LCA Studies Using Experimental Datasets
4.2. Models and Datasets for Representing Northern China’s Crop Systems
4.3. Policy Implications for Using Reclaimed Water as an Irrigation Source
5. Conclusions
Funding
Conflicts of Interest
References
- Eshel, G.; Martin, P.A. Diet, energy, and global warming. Earth Interact. 2006, 10, 1–17. [Google Scholar] [CrossRef]
- Hamilton, A.J.; Stagnitii, F.; Xiong, X.; Kreidl, S.L.; Benke, K.K.; Maher, P. Wastewater Irrigation: The State of Play. Vadose Zone J. 2007, 6, 823–840. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation Management under Water Scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Haynes, R.J. Longterm irrigation with dairy factory wastewater influences soil quality. World Acad. Sci. Eng. Technol. 2010, 4, 524. [Google Scholar]
- Chen, S.F.; Wu, W.L.; Hu, K.L.; Li, W. The effects of land use change and irrigation water resource on nitrate contamination in shallow groundwater at county scale. Ecol. Complex. 2010, 7, 131–138. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2009, 30, 401–422. [Google Scholar] [CrossRef]
- Mañas, P.; Castro, E.; de las Heras, J. Irrigation with treated wastewater: Effects on soil, lettuce (Lactuca sativa L.) crop and dynamics of microorganisms. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2009, 44, 1261–1273. [Google Scholar] [CrossRef]
- Cifuentes, E. The epidemoiology of enteric infections in agricultural communities exposed to wastewater irrigation: Perspectivies for risk control. Int. J. Environ. Health Res. 1998, 8, 203–213. [Google Scholar] [CrossRef]
- Gross, A.; Azulai, N.; Oron, G.; Ronen, Z.; Arnold, M.; Nejidat, A. Environmental impact and health risks associated with greywater irrigation: A case study. Water Sci. Technol. 2005, 52, 161–169. [Google Scholar] [CrossRef]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Steele, M.; Odumeru, J. Irrigation water as source of foodborne pathogens on fruit and vegetables. J. Food Prot. 2004, 67, 2839–2849. [Google Scholar] [CrossRef]
- Asano, T.; Cotruvo, J.A. Groundwater recharge with reclaimed municipal wastewater: Health and regulatory considerations. Water Res. 2004, 38, 1941–1951. [Google Scholar] [CrossRef]
- Hutchins, S.R.; Tomson, M.B.; Bedient, P.S.; Ward, C.H.; Wilson, J.T. Fate of trace organics during land application of municipal wastewater. Crit. Rev. Environ. Control 2009, 15, 355–416. [Google Scholar] [CrossRef]
- Rusan, M.J.M.; Hinnawi, S.; Rousan, L. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Moretti, M.; van Passel, S.; Camposeo, S.; Pedrerod, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. Modelling environmental impacts of treated municipalwastewater reuse for tree crops irrigation in the Mediterranean coastal region. Sci. Total Environ. 2016, 660, 1513–1521. [Google Scholar] [CrossRef]
- Miller-Robbie, L.; Ramaswami, A.; Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 2017, 12, 075005. [Google Scholar] [CrossRef] [Green Version]
- Munoz, I.; Gomez, M.; Fernandez-Alba, A.R. Life cycle assessment of biomass production in a Miditerranean greenhouse using different water sources: Groundwater, treated wastewter and desalinated seawater. Agric. Syst. 2010, 103, 1–9. [Google Scholar] [CrossRef]
- Ghasemp, A.; Ahmadi, E. Assessment of environment impacts of egg production chain using life cycle assessment. J. Environ. Manag. 2016, 183, 980–987. [Google Scholar] [CrossRef]
- Xue, X.; Landis, A.E. Eutrophication potential of food consumption patterns. Environ. Sci. Technol. 2010, 44, 6450–6456. [Google Scholar] [CrossRef]
- Schoen, M.E.; Xue, X.; Hawkins, T.R.; Ashbolt, N.J. Comparative human health risk analysis of coastal community water and waste service options. Environ. Sci. Technol. 2014, 44, 6450–6456. [Google Scholar] [CrossRef]
- Grant, T.; Beer, T. Life Cycle Assessment of Greenhouse Gas Emissions from Irrigated Maize and Their Significant in the Value Chain. Aust. J. Exp. Agric. 2006, 48, 375–381. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, J.; Nanoti, S.M.; Garq, M.O. A comprehensive life cycle assessment of jatropha biodiesel production in India. Bioresour. Technol. 2012, 110, 723–729. [Google Scholar] [CrossRef]
- Xua, H.; Tian, Z.; He, X.; Wang, J.; Sun, L.; Fischerd, G.; Fan, D.; Zhong, H.; Wu, W.; Pope, E.; et al. Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China. Agric. Water Manag. 2019, 213, 594–604. [Google Scholar] [CrossRef]
- Harwood, R.R.; Cassman, K. The nature of agriculture systems:food security and environmental balance. Food Policy 1995, 20, 439–454. [Google Scholar]
- Hu, X.; Shi, L.; Zeng, J.; Yang, J.; Zha, Y.; Yao, Y.; Cao, G. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China. J. Hydrol. 2016, 543, 433–449. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in China: Opportunities and challenges. J. Environ. Sci. 2016, 39, 86–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 14044:2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006; Available online: https://www.iso.org/standard/38498.html (accessed on 13 May 2019).
- Bo, L.; Yao, H.; Yang, J. Present condition of sewage disposal Tongliao and Feasibility of wastewater irrigation. Environ. Sci. Manag. 2011, 3, 1–5. (In Chinese) [Google Scholar]
- Yu, X.; Zhao, J.; Yao, H.; Yuan, X.; Yao, X. Vertical Migration of Heavy Metals in Soil Under Sweage Irrigation. In Proceedings of the International Conference on Electric Technology and Civil Engineering, Lushan, China, 22–24 April 2011; pp. 7075–7078. [Google Scholar]
- Yao, H.; Xue, X.; Zhang, S.; Yuan, X.; Li, T.; Kelin, H. Evaluation of spatial and vertical variability of nitrogen and phosphorus in sewage-irrigated soil in Tongliao, China. Trans. Tianjin Univ. 2013, 19, 241–247. [Google Scholar] [CrossRef]
- Mourad, A.L.; Coltro, L.; Oliveira, P.A.P.L.V.; Kletecke, R.M.; Baddini, J.P.O.A. A simple methodology for elaborating the life cycle inventory of agricultural products. Int. J. Life Cycle Assess. 2007, 12, 408–413. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Argonne National Laboratory. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model; Argonne National Laboratory: Argonne, IL, USA, 2006.
- Xue, X.; Pany, Y.; Landis, A.E. Evaluating agricultural managment practices to improve the environmental footprint of corn-derived ethanol. Renew. Energy 2014, 66, 454–460. [Google Scholar]
- Dijkman, T.J.; Birkved, M.; Hauschild, M.Z. PestLCI 2.0: A second generation model for estimating emissions of pesticides from arable land in LCA. Int. J. Life Cycle Assess. 2012, 17, 973–986. [Google Scholar] [CrossRef]
- Toxnet Toxicology Data Network. Available online: http://toxnet.nlm.nih.gov/ (accessed on 13 May 2019).
- China Meteorological Data Service Center Meteorological data. Available online: https://data.cma.cn/en (accessed on 13 May 2019).
- US Environmental Protection Agency NONROAD Model (Nonroad Engines, Equipment, and Vehicles). Available online: https://www.epa.gov/moves/nonroad-model-nonroad-engines-equipment-and-vehicles (accessed on 5 May 2018).
- Pre Consultants SimaPro LCA software. Available online: http://www.pre.nl/simapro/ (accessed on 15 June 2018).
- Ecoinvent Center Ecoinvent Database Website. Available online: http://www.ecoinvent.ch/ (accessed on 13 May 2019).
- Energy Information Administration Country Analysis Briefs. Available online: http://www.eia.gov/cabs/china/Full.html (accessed on 5 May 2018).
- Yang, Y.H.; Fang, J.Y.; Guo, D.L.; Ji, C.J.; Ma, W.H. Vertical patterns of soil carbon, nitrogen can carbon: nitrogen stoichimetry in Tibetan grasslands. Biogeosci. Disscuss. 2010, 7, 1–24. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Goedkoop, M.; Guiee, J.; Heijungs, R.; Huijbregts, M.; Jolliet, O. Identifying best existing practice for characterizaton modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 2013, 18, 683–697. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.; Jolliet, O.; Ronnie, J. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: a harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Bare, J.C.; Norris, G.A.; Pennington, D.W.; Makone, T. TRACI-the tool for the reduction and assessment of chemical and other environmental impacts. J. Ind. Ecol. 2003, 6, 49–78. [Google Scholar] [CrossRef]
- Humbert, S.; Marshall, J.D.; Shaked, S.; Spadaro, J.; Nishioka, Y.; Preiss, P. Intake fraction for particulate matter: Recommendation for life cycle assessment. Environ. Sci. Technol. 2011, 45, 4808–4816. [Google Scholar] [CrossRef]
- Xue, X.; Hawkins, T.; Schoen, M.; Garland, J.; Ashbolt, N. Comparing the life cycle energy consumption, global warming and eutrophication potentials of several water and waste service options. Water 2016, 8, 154. [Google Scholar] [CrossRef]
- Huo, H.; Wang, M.; Bloyd, C.; Putsche, V. Life Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean-Derived Biodiesel and Renewable Fuels; Argonne National Laboratory, US Department of Energy: Argonne, IL, USA, 2008.
- Kim, S.; Dale, B.E. Regional variations in greenhouse gas emissions of biobased products in the United States—Corn-based ethanol and soybean oil. Int. J. Life Cycle Assess. 2009, 14, 540–546. [Google Scholar] [CrossRef]
- Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus; National Renewable Energy Laboratory, US Department of Energy: Golden, CO, USA, 1998.
- Landis, A.E.; Miller, S.A.; Theis, T.L. Life cycle of the corn-soybean agroecosystem for biobased production. Environ. Sci. Technol. 2007, 41, 4. [Google Scholar] [CrossRef]
- Liang, L.; Rattan, L.; Ridoutt, B.G.; Du, Z.; Wang, D.; Wng, L.; Wu, W.; Zhao, G. Life Cycle Assessment of China’s agroecosystems. Ecol. Indic. 2018, 88, 341–350. [Google Scholar] [CrossRef]
- National Development and Reform Commission The 13th Five-Year Plan For Economic And Social Development Of The People’s Republic Of China. Available online: http://en.ndrc.gov.cn/newsrelease/201612/P020161207645765233498.pdf (accessed on 13 May 2019).
Soil Layers cm | Soil Texture, % | pH | Total Nitrogen, g/kg | Total Phosphorus, mg/kg | Total Sulfur, mg/kg | Total Potassium, mg/kg | ||
---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||||
0–23 | 64 | 32 | 4 | 8.3 | 81 | 63.8 | 113 | 17.4 |
23–46 | 56 | 20 | 24 | 7.7 | 495 | 461.5 | 31 | 27.7 |
46–75 | 72 | 12 | 16 | 9.1 | 540 | 420 | 326 | 30 |
75–100 | 80 | 8 | 12 | 8.9 | 238 | 600 | 138 | 23.8 |
100–140 | 88 | 8 | 4 | 9.1 | 111 | 340 | 54 | 25.1 |
Water Quality Indicator | Ground Water | Reclaimed Water |
---|---|---|
pH | 7.2 | 7.4 |
Chlorides (mg/L) | 104.309 | 90.528 |
Volatile phenol (mg/L) | 0.002 | 0.002 |
Total Nitrogen (mg/L) | 1.037 | 30 |
Total Phosphorus (mg/L) | 0.074 | 7.243 |
Dissolved oxygen (mg/L) | 2.14 | 3.57 |
Dissolved solid (mg/L) | 305 | 420 |
Suspended solid (mg/L) | 8 | 10 |
CODMn (mg/L) | 1.07 | 2.82 |
Total Hg (mg/L) | 0.00001 | 0.00001 |
Total As (mg/L) | 0.0012 | 0.0026 |
Total Cu (mg/L) | 0.001 | 0.005 |
Total Zn (mg/L) | 0.05 | 0.05 |
Total Cr (mg/L) | 0.03 | 0.03 |
Total Pb (mg/L) | 0.01 | 0.03 |
Total Cd (mg/L) | 0.001 | 0.002 |
Fertilizer Application Rate | Corn | Soybean | Wheat |
---|---|---|---|
Nitrogen application rate (kg/hectare) | 156 | 32 | 168 |
Phosphorus application rate (kg/hectare) | 67 | 52 | 57 |
Potassium application rate (kg/hectare) | 89 | 89 | 129 |
Irrigation Volume (m3/hectare) | 8896 | 15,320 | 6177 |
Parameters or Process | Data Sources | References |
---|---|---|
Corn, soybean, and wheat yields | Field experimentation data | [28,30,42] |
Nitrogen, Phosphorous and Potassium fertilizer application amounts | Field experimentation data | [28,30,42] |
Pesticide and herbicide application amounts | Field experimentation data | [28,30,42] |
Electricity usage for pumping water | Field experimentation data | [28,30,42] |
Fuel use for operating farming equipment | Field experimentation data | [28,30,42] |
On-field GHGs from soil | Calculated based on IPCC emission factor | [32] |
On-field NO3− and PO43− to water compartment | Calculated based on an emission factor based nutrient release model | [34] |
On-field heavy metal to soil compartment | Lab experimentation data | [28,30,42] |
On-field GHGs and criteria air pollutants generated from farming equipment operation | Calculated based on GREET model | [33] |
On-field GHGs and criteria air pollutants generated from farming equipment operation | Calculated based on NONROAD model | [38] |
On-field pesticides to air and water compartments | Calculated based on PestLCI model | [35] |
Agrochemical production | Ecoinvent v3.0 database modified with Chinese electricity mix | [40,41] |
Impact Category | Methodology | Unit | References |
---|---|---|---|
Acidification | ReCiPe | kg SO2-eq/kg | [45] |
Ecotoxicity | USEtox 2.0 | comparative toxic units (CTU) | [44] |
Eutrophication | ReCiPe | kg N-eq/kg | [45] |
Global warming | IPCC | kg CO2-eq/kg | [32] |
Human health criteria | Humber et al., 2011 | kg PM2.5-eq/kg | [47] |
Human health toxicity–cancer | USEtox 2.0 | CTU | [44] |
Human health toxicity–non-cancer | USEtox 2.0 | CTU | [44] |
Ozone depletion | WMO method | kg CFC11-eq | [46] |
Photochemical formation | ReCiPe | kg O3-eq/kg | [45] |
Impact Category | Unit | Corn | Soybean | Wheat | |||
---|---|---|---|---|---|---|---|
GW | RW | GW | RW | GW | RW | ||
Global warming | kg CO2-eq/kg | 0.44 | 0.37 | 0.39 | 0.37 | 0.64 | 0.56 |
Acidification | kg SO2-eq/kg | 0.0035 | 0.0029 | 0.0029 | 0.0028 | 0.0068 | 0.0066 |
Cancer | CTU/kg | 7.3 × 10−9 | 7.6 × 10−9 | 5.3 × 10−9 | 5.4 × 10−9 | 1.7 × 10−9 | 1.8 × 10−9 |
Non-cancer | CTU/kg | 2.3 × 10−8 | 2.3 × 10−8 | 1.7 × 10−8 | 1.6 × 10−8 | 1.2 × 10−7 | 1.1 × 10−7 |
Respiratory effects | Kg PM2.5-eq/kg | 2.1 × 10−4 | 1.9 × 10−4 | 1.7 × 10−4 | 1.6 × 10−4 | 4.5 × 10−4 | 3.7 × 10−4 |
Eutrophication | kg N-eq/kg | 0.0084 | 0.0083 | 0.013 | 0.012 | 0.013 | 0.013 |
Ozone depletion | kg CFC11-eq/kg | 4.3 × 10−8 | 4.4 × 10−8 | 1.7 × 10−8 | 1.8 × 10−8 | 5.2 × 10−8 | 5.2 × 10−8 |
Ecotoxicity | CTU/kg | 3.3 | 2.8 | 0.88 | 0.85 | 4.33 | 4.26 |
Photochemcial formation | kg O3-eq/kg | 0.026 | 0.025 | 0.022 | 0.021 | 0.053 | 0.051 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeiko, X.X. A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China. Sustainability 2019, 11, 2743. https://doi.org/10.3390/su11102743
Romeiko XX. A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China. Sustainability. 2019; 11(10):2743. https://doi.org/10.3390/su11102743
Chicago/Turabian StyleRomeiko, Xiaobo Xue. 2019. "A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China" Sustainability 11, no. 10: 2743. https://doi.org/10.3390/su11102743
APA StyleRomeiko, X. X. (2019). A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China. Sustainability, 11(10), 2743. https://doi.org/10.3390/su11102743