Integrating Protein Quality and Quantity with Environmental Impacts in Life Cycle Assessment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Blumenfeld, J. Plant-Based Product Sales Increase an Incredible 20 Percent. Supermarket News. 2018. Available online: https://www.supermarketnews.com/consumer-trends/plant-based-product-sales-increase-incredible-20-percent (accessed on 3 January 2019).
- The Nielsen Company. Plant-Based Proteins are Gaining Dollar Share among North Americans. Nielsen. 2017. Available online: https://www.nielsen.com/us/en/insights/news/2017/plant-based-proteins-are-gaining-dollar-share-among-north-americans.html (accessed on 3 January 2019).
- Hellweg, S.; Canals, L.M.I. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Cowell, S.J.; Clift, R. Impact assessment for LCAs involving agricultural production. Int. J. Life Cycle Assess. 1997, 2, 99–103. [Google Scholar] [CrossRef]
- Heller, M.C.; Keoleian, G.A.; Willett, W.C. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: A critical review. Environ. Sci. Technol. 2013, 47, 12632–12647. [Google Scholar] [CrossRef] [PubMed]
- Baroni, L.; Cenci, L.; Tettamanti, M.; Berati, M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 2007, 61, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Risku-Norja, H.; Kurppa, S.; Helenius, J. Impact of Consumers’ Diet Choices on Green-house Gas Emissions. Available online: http://orgprints.org/16406/1/consumer2.pdf (accessed on 22 April 2019).
- Sanfilippo, S.; Raimondi, A.; Ruggeri, B.; Fino, D. Dietary vs. transport: An analysis of environmental burdens pertaining to a typical workday. Int. J. Consum. Stud. 2012, 36, 133–140. [Google Scholar] [CrossRef]
- Meier, T.; Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 2013, 47, 877–888. [Google Scholar] [CrossRef]
- Donati, M.; Menozzi, D.; Zighetti, C.; Rosi, A.; Zinetti, A.; Scazzina, F. Towards a sustainable diet combining economic, environmental and nutritional objectives. Appetite 2016, 106, 48–57. [Google Scholar] [CrossRef]
- Weidema, B.; Wenzel, H. The product, functional unit and reference flows in LCA. Dan. Environ. 2004, 70, 1–46. [Google Scholar]
- FAO Expert Consultation. Dietary Protein Quality Evaluation in Human Nutrition; FAO Expert Consultation: Rome, Italy, 2011. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Wolfe, R.R.; Baum, J.I.; Starck, C.; Moughan, P.J. Factors contributing to the selection of dietary protein food sources. Clin. Nutr. 2018, 37, 130–138. [Google Scholar] [CrossRef]
- H.R.3562—Nutrition Labeling and Education Act of 1990. Available online: https://www.congress.gov/bill/101st-congress/house-bill/3562/all-info (accessed on 22 April 2019).
- 21 U.S.C. 9—Federal Food, Drug, and Cosmetic Act. Available online: https://www.loc.gov/item/uscode1940-005021009/ (accessed on 22 April 2019).
- Food and Drug Administration. CFR—Code of Federal Regulations Title 21. 2018. Available online: https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs (accessed on 22 April 2019).
- Food and Drug Administration. Food Labeling: Serving Sizes of Foods That Can Reasonably Be Consumed At One Eating Occasion; Dual-Column Labeling; Updating, Modifying, and Establishing Certain Reference Amounts Customarily Consumed; Serving Size for Breath Mints; and Technical Amendmen. 2016. Available online: https://www.federalregister.gov/documents/2016/05/27/2016-11865/food-labeling-serving-sizes-of-foods-that-can-reasonably-be-consumed-at-one-eating-occasion (accessed on 3 January 2019).
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Hallstrom, E.; Carlsson-Kanyama, A.; Borjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, B.; Cederberg, C.; Blix, L. Agricultural land use in life cycle assessment (LCA): Case studies of three vegetable oil crops. J. Clean. Prod. 2000, 8, 283–292. [Google Scholar] [CrossRef]
- Koehler, A. Water use in LCA: Managing the planet’s freshwater resources. Int. J. Life Cycle Assess. 2008, 13, 451–455. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poult. Sci. 2012, 91, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Bentley, J.; Kantor, L. Food Availability (Per Capita) Data System. In United States Department of Agriculture Economic Research Service; 2015. Available online: https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/ (accessed on 22 April 2019).
- Pasiakos, S.M.; Agarwal, S.; Lieberman, H.R.; Fulgoni, V.L. Sources and amounts of animal, dairy, and plant protein intake of US adults in 2007–2010. Nutrients 2015, 7, 7058–7069. [Google Scholar] [CrossRef]
- Halloran, A.; Roos, N.; Eilenberg, J.; Cerutti, A.; Bruun, S. Life cycle assessment of edible insects for food protein: A review. Agron. Sustain. Dev. 2016, 36, 1–13. [Google Scholar] [CrossRef]
- Ruini, L.F.; Ciati, R.; Pratesi, C.A.; Marino, M.; Principato, L.; Vannuzzi, E. Working toward healthy and sustainable diets: The ‘ Double Pyramid Model ’ developed by the Barilla Center for Food and Nutrition to raise awareness about the environmental and nutritional impact of foods. Front. Nutr. 2015, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bentley, J. Per Capita Availability of Chicken Higher than that of Beef. In USDA ERS; 2017. Available online: https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58312 (accessed on 22 April 2019).
- Pimentel, M. Sustainability of meat-based and plant based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660–663. [Google Scholar] [CrossRef]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Heijungs, R.; Dao, H.M.; Phan, L.T.; de Snoo, G.R.; Guinée, J.B. Product carbon footprints and their uncertainties in comparative decision contexts. PLoS ONE 2015, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ribal, J.; Estruch, V.; Clemente, G.; Fenollosa, M.L.; Sanjuán, N. Assessing variability in carbon footprint throughout the food supply chain: A case study of Valencian oranges. Int. J. Life Cycle Assess. 2019, 1–18. [Google Scholar] [CrossRef]
- Elhami, B.; Akram, A.; Khanali, M. Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. Inf. Process. Agric. 2016, 3, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Elhami, B.; Khanali, M.; Akram, A. Combined Application of Artificial Neural Networks and life cycle Assessment in Lentil Farming in Iran. Inf. Process. Agric. 2017, 4, 18–32. [Google Scholar] [CrossRef]
- Halloran, A.; Hanboonsong, Y.; Roos, N.; Bruun, S. Life cycle assessment of cricket farming in north-eastern Thailand. J. Clean. Prod. 2017, 156, 83–94. [Google Scholar] [CrossRef]
- ANikkhah; Khojastehpour, M.; Emadi, B.; Taheri-Rad, A.; Khorramdel, S. Environmental impacts of peanut production system using life cycle assessment methodology. J. Clean. Prod. 2015, 92, 84–90. [Google Scholar] [CrossRef]
- Reijnders, L.; Soret, S. Quantification of the environmental impact of different dietary protein choices. Am. J. Clin. Nutr. 2003, 78, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.; Travis, R.C.; Bradbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Chang. 2014, 125, 179–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonesson, U.; Davis, J.; Flysjö, A.; Gustavsson, J.; Witthöft, C. Protein quality as functional unit—A methodological framework for inclusion in life cycle assessment of food. J. Clean. Prod. 2017, 140, 470–478. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berardy, A.; Johnston, C.S.; Plukis, A.; Vizcaino, M.; Wharton, C. Integrating Protein Quality and Quantity with Environmental Impacts in Life Cycle Assessment. Sustainability 2019, 11, 2747. https://doi.org/10.3390/su11102747
Berardy A, Johnston CS, Plukis A, Vizcaino M, Wharton C. Integrating Protein Quality and Quantity with Environmental Impacts in Life Cycle Assessment. Sustainability. 2019; 11(10):2747. https://doi.org/10.3390/su11102747
Chicago/Turabian StyleBerardy, Andrew, Carol S. Johnston, Alexandra Plukis, Maricarmen Vizcaino, and Christopher Wharton. 2019. "Integrating Protein Quality and Quantity with Environmental Impacts in Life Cycle Assessment" Sustainability 11, no. 10: 2747. https://doi.org/10.3390/su11102747
APA StyleBerardy, A., Johnston, C. S., Plukis, A., Vizcaino, M., & Wharton, C. (2019). Integrating Protein Quality and Quantity with Environmental Impacts in Life Cycle Assessment. Sustainability, 11(10), 2747. https://doi.org/10.3390/su11102747