Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework
Abstract
:1. Introduction
2. Methodology
2.1. Database Search
servic*” OR “ecosystem functio*” OR (provisioning AND ecosyste*) OR
(regulating AND ecosyste*) OR (cultural AND ecosyste*) OR (supporting AND
ecosyste*) OR (habitat AND ecosyste*))))
- (1)
- Did the study demonstrate its contribution using a case study?
- (2)
- Did the case study assess social or ecological metabolic stocks and flows that belong to the ES concept?
2.2. Key Investigation Themes
3. Results
3.1. UM Suitability for Integration of ES
3.2. Temporal Detail
3.3. Spatial Detail
3.4. Multi-Level
3.5. Cross-Scale Integration
3.6. Model Complexity
4. Discussion
4.1. Modelling Complex Information
4.2. Methodological Bases
4.3. Linking Elements of the Urban System
4.4. Pathways Towards UM-UES Assessments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BRIDGE | sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism [57] |
CHANS | coupled human and natural systems |
ENA | ecological network analysis |
ES | ecosystem services |
IO | input-output |
LEAM | Land use Evolution and impact Assessment Model [98] |
LCA | life cycle assessment |
MEFA | material-energy flow analysis |
MIMES | Multiscale Integrated Models of Ecosystem Services [123] |
MuSIASEM | Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism [14] |
SD | system dynamics |
seJ | solar emergy Joules |
UES | urban ecosystem services |
UM | urban metabolism |
References
- UN. 2017 Revision of World Population Prospects; UN: New York, NY, USA, 2017. [Google Scholar]
- UN. World Urbanization Prospects: The 2018 Revision; UN: New York, NY, USA, 2018. [Google Scholar]
- Haines-Young, R.; Potschin-Young, M.B. Revision of the Common International Classification for Ecosystem Services (CICES V5.1): A Policy Brief. One Ecosyst. 2018, 3, e27108. [Google Scholar] [CrossRef]
- Schröter, M.; Koellner, T.; Alkemade, R.; Arnhold, S.; Bagstad, K.J.; Erb, K.-H.; Frank, K.; Kastner, T.; Kissinger, M.; Liu, J.; et al. Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosyst. Serv. 2018, 31, 231–241. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.-L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015; pp. 1–41. [Google Scholar]
- Turner, D.A.; Williams, I.D.; Kemp, S. Combined material flow analysis and life cycle assessment as a support tool for solid waste management decision making. J. Clean. Prod. 2016, 129, 234–248. [Google Scholar] [CrossRef]
- Kaye, J.P.; Groffman, P.M.; Grimm, N.B.; Baker, L.A.; Pouyat, R.V. A distinct urban biogeochemistry? Trends Ecol. Evol. 2006, 21, 192–199. [Google Scholar] [CrossRef]
- Brown, M.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Hanley, N.; Barbier, E.B.; Barbier, E. Pricing Nature: Cost-Benefit Analysis and Environmental Policy; Edward Elgar Publishing: Cheltenham, UK, 2009. [Google Scholar]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Niza, S.; Rosado, L.; Ferrão, P. Urban Metabolism. J. Ind. Ecol. 2009, 13, 384–405. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K. Multiple-Scale Integrated Assessments of Societal Metabolism: Integrating Biophysical and Economic Representations Across Scales. Popul. Environ. 2000, 22, 155–210. [Google Scholar] [CrossRef]
- Wachsmuth, D. Three Ecologies: Urban Metabolism and the Society-Nature Opposition. Sociol. Q. 2012, 53, 506–523. [Google Scholar] [CrossRef]
- Wolman, A. The Metabolism of Cities. Sci. Am. 1965, 213, 179–190. [Google Scholar] [CrossRef]
- Pincetl, S. Nature, urban development and sustainability—What new elements are needed for a more comprehensive understanding? Cities 2012, 29, S32–S37. [Google Scholar] [CrossRef]
- Broto, V.C.; Allen, A.; Rapoport, E. Interdisciplinary Perspectives on Urban Metabolism. J. Ind. Ecol. 2012, 16, 851–861. [Google Scholar] [CrossRef]
- Ferrão, P.; Fernández, J.E. Sustainable URBAN Metabolism; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Newell, J.P.; Cousins, J.J. The boundaries of urban metabolism: Towards a political–industrial ecology. Prog. Hum. Geogr. 2014, 39, 702–728. [Google Scholar] [CrossRef]
- Van Leeuwen, C.J.; Frijns, J.; van Wezel, A.; van de Ven, F.H.M. City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle. Water Resour. Manag. 2012, 26, 2177–2197. [Google Scholar] [CrossRef]
- Inostroza, L. Measuring urban ecosystem functions through ‘Technomass’—A novel indicator to assess urban metabolism. Ecol. Indic. 2014, 42, 10–19. [Google Scholar] [CrossRef]
- Garcia-Montiel, D.C.; Verdejo-Ortiz, J.C.; Santiago-Bartolomei, R.; Vila-Ruiz, C.P.; Santiago, L.; Melendez-Ackerman, E. Food sources and accessibility and waste disposal patterns across an urban tropical watershed: Implications for the flow of materials and energy. Ecol. Soc. 2014, 19, 37. [Google Scholar] [CrossRef]
- Viglia, S.; Civitillo, D.F.; Cacciapuoti, G.; Ulgiati, S. Indicators of environmental loading and sustainability of urban systems. An emergy-based environmental footprint. Ecol. Indic. 2018, 94, 82–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Fath, B.D.; Li, S. Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities. Ecol. Model. 2010, 221, 1865–1879. [Google Scholar] [CrossRef]
- Boerema, A.; Rebelo, A.J.; Bodi, M.B.; Esler, K.J.; Meire, P.; Rohr, J. Are ecosystem services adequately quantified? J. Appl. Ecol. 2017, 54, 358–370. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yang, Z.; Liu, H.; Zhang, J. Ecological relationship analysis of the urban metabolic system of Beijing, China. Environ. Pollut. 2012, 170, 169–176. [Google Scholar] [CrossRef]
- Su, M.; Chen, B.; Xu, L.; Zhao, Y.; Liu, G.; Zhang, Y.; Yang, Z. An emergy-based analysis of urban ecosystem health characteristics for Beijing city. Int. J. Exergy 2011, 9, 192–209. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, F.; Chu, X.; Liu, W.; Zhang, Y. Ecosystem services assessment based on emergy accounting in Chongming Island, Eastern China. Ecol. Indic. 2018. [Google Scholar] [CrossRef]
- Golubiewski, N. Is there a metabolism of an urban ecosystem? An ecological critique. Ambio 2012, 41, 751–764. [Google Scholar] [CrossRef]
- Pincetl, S.; Bunje, P.; Holmes, T. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plann. 2012, 107, 193–202. [Google Scholar] [CrossRef]
- Beloin-Saint-Pierre, D.; Rugani, B.; Lasvaux, S.; Mailhac, A.; Popovici, E.; Sibiude, G.; Benetto, E.; Schiopu, N. A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation. J. Clean. Prod. 2017, 163, S223–S240. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Llorach-Massana, P.; Sanjuan-Delmás, D.; Sierra-Pérez, J.; Vinyes, E.; Gabarrell, X.; Rieradevall, J.; Sanyé-Mengual, E. Application of life cycle thinking towards sustainable cities: A review. J. Clean. Prod. 2017, 166, 939–951. [Google Scholar] [CrossRef]
- Zhang, Y. Urban metabolism: A review of research methodologies. Environ. Pollut. 2013, 178, 463–473. [Google Scholar] [CrossRef]
- Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Env. Pollut 2011, 159, 1965–1973. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gómez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef]
- Burkhard, B.; Maes, J. Mapping Ecosystem Services; Pensoft Publishers: Sofia, Bulgaria, 2017; p. 374. [Google Scholar]
- Aghaei Chadegani, A.; Salehi, H.; Yunus, M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Yu, X. Urban Metabolism: A Review of Current Knowledge and Directions for Future Study. Environ. Sci. Technol. 2015, 49, 11247–11263. [Google Scholar] [CrossRef]
- Rodríguez, J.; Beard, T.D., Jr.; Bennett, E.; Cumming, G.; Cork, S.; Agard, J.; Dobson, A.; Peterson, G. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
- Hein, L.; van Koppen, K.; de Groot, R.S.; van Ierland, E.C. Spatial scales, stakeholders and the valuation of ecosystem services. Ecol. Econ. 2006, 57, 209–228. [Google Scholar] [CrossRef]
- Lindborg, R.; Gordon, L.J.; Malinga, R.; Bengtsson, J.; Peterson, G.; Bommarco, R.; Deutsch, L.; Gren, Å.; Rundlöf, M.; Smith, H.G. How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere 2017, 8, e01741. [Google Scholar] [CrossRef]
- Alberti, M. Cities that Think Like Planets: Complexity, Resilience, and Innovation in Hybrid Ecosystems; University of Washington Press: Washington, DC, USA, 2016. [Google Scholar]
- Boumans, R.; Costanza, R.; Farley, J.; Wilson, M.A.; Portela, R.; Rotmans, J.; Villa, F.; Grasso, M. Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecol. Econ. 2002, 41, 529–560. [Google Scholar] [CrossRef]
- Scholes, R.J.; Reyers, B.; Biggs, R.; Spierenburg, M.J.; Duriappah, A. Multi-scale and cross-scale assessments of social–ecological systems and their ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513. [Google Scholar] [CrossRef]
- Metzger, A.E.; McHale, M.R.; Hess, G.R.; Steelman, T.A. Same time, same place: Analyzing temporal and spatial trends in urban metabolism using proximate counties in the North Carolina Triangle. Urban Ecosyst. 2016, 19, 1–18. [Google Scholar] [CrossRef]
- Huang, Q.; Zheng, X.; Hu, Y. Analysis of land-use emergy indicators based on urban metabolism: A case study for Beijing. Sustainability 2015, 7, 7473–7491. [Google Scholar] [CrossRef]
- Conke, L.S.; Ferreira, T.L. Urban metabolism: Measuring the city’s contribution to sustainable development. Environ. Pollut. 2015, 202, 146–152. [Google Scholar] [CrossRef]
- Cui, S.; Xu, S.; Huang, W.; Bai, X.; Huang, Y.; Li, G. Changing urban phosphorus metabolism: Evidence from Longyan City, China. Sci. Total Environ. 2015, 536, 924–932. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Chen, B.; Zheng, H.; Li, Y. Analysis of urban metabolic processes based on input-output method: Model development and a case study for Beijing. Front. Earth Sci. 2014, 8, 190–201. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, H.; Fath, B.D.; Zheng, H. Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China. Ecol. Model. 2016, 337, 29–38. [Google Scholar] [CrossRef]
- Lin, T.; Wang, J.; Bai, X.; Zhang, G.; Li, X.; Ge, R.; Ye, H. Quantifying and managing food-sourced nutrient metabolism in Chinese cities. Environ. Int. 2016, 94, 388–395. [Google Scholar] [CrossRef]
- Forkes, J. Nitrogen balance for the urban food metabolism of Toronto, Canada. Resour. Conserv. Recycl. 2007, 52, 74–94. [Google Scholar] [CrossRef]
- Liu, W.; Chang, A.C.; Chen, W.; Zhou, W.; Feng, Q. A framework for the urban eco-metabolism model—Linking metabolic processes to spatial patterns. J. Clean. Prod. 2017, 165, 168–176. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Lopes, M.; San José, R.; Grimmond, C.S.B.; Jones, M.B.; Magliulo, V.; Klostermann, J.E.M.; Synnefa, A.; Mitraka, Z.; Castro, E.A.; et al. Sustainable urban metabolism as a link between bio-physical sciences and urban planning: The BRIDGE project. Landsc. Urban Plann. 2013, 112, 100–117. [Google Scholar] [CrossRef]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plann. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Villarroel Walker, R.; Beck, M.B. Understanding the metabolism of urban-rural ecosystems: A multi-sectoral systems analysis. Urban Ecosyst. 2012, 15, 809–848. [Google Scholar] [CrossRef]
- Dal Bo Zanon, B.; Roeffen, B.; Czapiewska, K.M.; de Graaf-Van Dinther, R.E.; Mooij, P.R. Potential of floating production for delta and coastal cities. J. Clean. Prod. 2017, 151, 10–20. [Google Scholar] [CrossRef]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Firmansyah, I.; Spiller, M.; de Ruijter, F.J.; Carsjens, G.J.; Zeeman, G. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability. Sci. Total Environ. 2017, 574, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Kao, W.T.M.; Zhang, G.; Zhang, N. Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis. Ecol. Model. 2014, 272, 40–48. [Google Scholar] [CrossRef]
- Fragkou, M.C.; Vicent, T.; Gabarrell, X. An ecosystemic approach for assessing the urban water self-sufficiency potential: Lessons from the Mediterranean. Urban Water J. 2016, 13, 663–675. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, W.; Wing-Yan Tam, V.; Feng, Y. From urban metabolism to industrial ecosystem metabolism: A study of construction in Shanghai from 2004 to 2014. J. Clean. Prod. 2018, 202, 428–438. [Google Scholar] [CrossRef]
- Leduc, W.R.W.A.; Van Kann, F.M.G. Spatial planning based on urban energy harvesting toward productive urban regions. J. Clean. Prod. 2013, 39, 180–190. [Google Scholar] [CrossRef]
- Lei, K.; Liu, L.; Hu, D.; Lou, I. Mass, energy, and emergy analysis of the metabolism of Macao. J. Clean. Prod. 2016, 114, 160–170. [Google Scholar] [CrossRef]
- Mörtberg, U.; Haas, J.; Zetterberg, A.; Franklin, J.P.; Jonsson, D.; Deal, B. Urban ecosystems and sustainable urban development-analysing and assessing interacting systems in the Stockholm region. Urban Ecosyst. 2013, 16, 763–782. [Google Scholar] [CrossRef]
- Lookingbill, T.R.; Kaushal, S.S.; Elmore, A.J.; Gardner, R.; Eshleman, K.N.; Hilderbrand, R.H.; Morgan, R.P.; Boynton, W.R.; Palmer, M.A.; Dennison, W.C. Altered ecological flows blur boundaries in urbanizing watersheds. Ecol. Soc. 2009, 14, 1. [Google Scholar] [CrossRef]
- Lin, T.; Gibson, V.; Cui, S.; Yu, C.P.; Chen, S.; Ye, Z.; Zhu, Y.G. Managing urban nutrient biogeochemistry for sustainable urbanization. Environ. Pollut. 2014, 192, 244–250. [Google Scholar] [CrossRef]
- VandeWeghe, J.R.; Kennedy, C. A Spatial Analysis of Residential Greenhouse Gas Emissions in the Toronto Census Metropolitan Area. J. Ind. Ecol. 2007, 11, 133–144. [Google Scholar] [CrossRef]
- Thomson, G.; Newman, P. Urban fabrics and urban metabolism—From sustainable to regenerative cities. Resour. Conserv. Recycl. 2018, 132, 218–229. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, G.; Qin, Y. Multi-scale integrated assessment of urban energy use and CO2 emissions. J. Geogr. Sci. 2014, 24, 651–668. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B. Network environ perspective for urban metabolism and carbon emissions: A case study of Vienna, Austria. Environ. Sci. Technol. 2012, 46, 4498–4506. [Google Scholar] [CrossRef]
- Wen, Z.; Bai, W.; Zhang, W.; Chen, C.; Fei, F.; Chen, B.; Huang, Y. Environmental impact analysis of nitrogen cross-media metabolism: A case study of municipal solid waste treatment system in China. Sci. Total Environ. 2018, 618, 810–818. [Google Scholar] [CrossRef]
- Huang, S.L.; Chen, C.W. Theory of urban energetics and mechanisms of urban development. Ecol. Model. 2005, 189, 49–71. [Google Scholar] [CrossRef]
- Lu, Y.; Geng, Y.; Qian, Y.; Han, W.; McDowall, W.; Bleischwitz, R. Changes of human time and land use pattern in one mega city’s urban metabolism: A multi-scale integrated analysis of Shanghai. J. Clean. Prod. 2016, 133, 391–401. [Google Scholar] [CrossRef]
- Tan, L.M.; Arbabi, H.; Li, Q.; Sheng, Y.; Densley Tingley, D.; Mayfield, M.; Coca, D. Ecological network analysis on intra-city metabolism of functional urban areas in England and Wales. Resour. Conserv. Recycl. 2018, 138, 172–182. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Li, S. Urban metabolism of three cities in Jing-Jin-Ji urban agglomeration, China: Using the MuSIASEM approach. Sustainability 2017, 9, 1481. [Google Scholar] [CrossRef]
- Sun, L.; Dong, H.; Geng, Y.; Li, Z.; Liu, Z.; Fujita, T.; Ohnishi, S.; Fujii, M. Uncovering driving forces on urban metabolism—A case of Shenyang. J. Clean. Prod. 2016, 114, 171–179. [Google Scholar] [CrossRef]
- Han, W.; Geng, Y.; Lu, Y.; Wilson, J.; Sun, L.; Satoshi, O.; Geldron, A.; Qian, Y. Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways. Energy 2018, 155, 887–898. [Google Scholar] [CrossRef]
- Wu, Y.; Que, W.; Liu, Y.G.; Li, J.; Cao, L.; Liu, S.B.; Zeng, G.M.; Zhang, J. Efficiency estimation of urban metabolism via Emergy, DEA of time-series. Ecol. Indic. 2018, 85, 276–284. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Fath, B.D.; Liu, H.; Yang, Z.; Liu, G.; Su, M. Ecological network analysis of an urban metabolic system based on input-output tables: Model development and case study for Beijing. Sci. Total Environ. 2014, 468–469, 642–653. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Liu, G.; Yu, X. Emergy analysis of the urban metabolism of Beijing. Ecol. Model. 2011, 222, 2377–2384. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Yu, X. Measurement and evaluation of interactions in complex urban ecosystem. Ecol. Model. 2006, 196, 77–89. [Google Scholar] [CrossRef]
- Burgin, A.J.; Lazar, J.G.; Groffman, P.M.; Gold, A.J.; Kellogg, D.Q. Balancing nitrogen retention ecosystem services and greenhouse gas disservices at the landscape scale. Ecol. Eng. 2013, 56, 26–35. [Google Scholar] [CrossRef]
- Herzig, A.; Ausseil, A.-G.E.; Dymond, J.R. Spatial optimisation of ecosystem services. In Ecosystem Services in New Zealand—Conditions and Trends; Dymond, J.R., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013. [Google Scholar]
- Jones, L.; Provins, A.; Holland, M.; Mills, G.; Hayes, F.; Emmett, B.; Hall, J.; Sheppard, L.; Smith, R.; Sutton, M.; et al. A review and application of the evidence for nitrogen impacts on ecosystem services. Ecosyst. Serv. 2014, 7, 76–88. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. London. Ser. Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef]
- Dobbs, C.; Escobedo, F.J.; Zipperer, W.C. A framework for developing urban forest ecosystem services and goods indicators. Landsc. Urban Plann. 2011, 99, 196–206. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Calvet-Mir, L.; Gómez-Baggethun, E.; Reyes-García, V. Beyond food production: Ecosystem services provided by home gardens. A case study in Vall Fosca, Catalan Pyrenees, Northeastern Spain. Ecol. Econ. 2012, 74, 153–160. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Deal, B.; Schunk, D. Spatial dynamic modeling and urban land use transformation: A simulation approach to assessing the costs of urban sprawl. Ecol. Econ. 2004, 51, 79–95. [Google Scholar] [CrossRef]
- Borrett, S.R.; Sheble, L.; Moody, J.; Anway, E.C. Bibliometric review of ecological network analysis: 2010–2016. Ecol. Model. 2018, 382, 63–82. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Li, S.; Liu, H.; Zheng, H.; Zhang, J.; Su, M.; Liu, G. Characterizing urban metabolic systems with an ecological hierarchy method, Beijing, China. Landsc. Urban Plann. 2014, 121, 19–33. [Google Scholar] [CrossRef]
- Lo Piano, S.; Mayumi, K. Toward an integrated assessment of the performance of photovoltaic power stations for electricity generation. Appl. Energy 2017, 186, 167–174. [Google Scholar] [CrossRef]
- Smit, S.; Musango, J.K.; Kovacic, Z.; Brent, A.C. Conceptualising slum in an urban African context. Cities 2017, 62, 107–119. [Google Scholar] [CrossRef]
- Deal, B.; Pallathucheril, V. Sustainability and Urban Dynamics: Assessing Future Impacts on Ecosystem Services. Sustainability 2009, 1, 346–362. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands—Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Grove, J.M. Dimensions of ecosystem complexity: Heterogeneity, connectivity, and history. Ecol. Complex. 2006, 3, 1–12. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Front. Ecol. Environ. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed]
- Montero, E.; Van Wolvelaer, J.; Garzón, A. The European Urban Atlas. In Land Use and Land Cover Mapping in Europe: Practices & Trends; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 115–124. [Google Scholar]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Alberti, M.; Correa, C.; Marzluff, J.M.; Hendry, A.P.; Palkovacs, E.P.; Gotanda, K.M.; Hunt, V.M.; Apgar, T.M.; Zhou, Y. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. USA 2017, 114, 8951–8956. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.; Birkved, M.; Quitzau, M.-B.; Hauschild, M. Quantification of urban metabolism through coupling with the life cycle assessment framework: Concept development and case study. Environ. Res. Lett. 2013, 8, 035024. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Yang, H.; Duarte, R.; Tillotson, M.R.; Hubacek, K. Burden shifting of water quantity and quality stress from megacity Shanghai. Water Resour. Res. 2016, 52, 6916–6927. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input-Output Analysis; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Meadows, D.H.; Wright, D. Thinking in Systems: A Primer; Taylor & Francis: Abingdon, UK, 2009. [Google Scholar]
- Batty, M.; Torrens, P.M. Modelling and prediction in a complex world. Futures 2005, 37, 745–766. [Google Scholar] [CrossRef]
- Langemeyer, J.; Baró, F.; Roebeling, P.; Gómez-Baggethun, E. Contrasting values of cultural ecosystem services in urban areas: The case of park Montjuïc in Barcelona. Ecosyst. Serv. 2015, 12, 178–186. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy 2009, 34, 313–322. [Google Scholar] [CrossRef]
- Deal, B.; Kim, J.H.; Hewings, G.J.D.; Kim, Y.W. Complex Urban Systems Integration: The LEAM Experiences in Coupling Economic, Land Use, and Transportation Models in Chicago, IL. In Employment Location in Cities and Regions: Models and Applications; Pagliara, F., de Bok, M., Simmonds, D., Wilson, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 107–131. [Google Scholar]
- Shen, T.-Y.; Wang, W.-D.; Hou, M.; Guo, Z.-C.; Xue, L.; Yang, K.-Z. Study on Spatio-Temporal System Dynamic Models of Urban Growth. Syst. Eng. Theory Pract. 2007, 27, 10–17. [Google Scholar] [CrossRef]
- Le, Q.B.; Park, S.J.; Vlek, P.L.G.; Cremers, A.B. Land-Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system. I. Structure and theoretical specification. Ecol. Inform. 2008, 3, 135–153. [Google Scholar] [CrossRef]
- Boumans, R.; Roman, J.; Altman, I.; Kaufman, L. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosyst. Serv. 2015, 12, 30–41. [Google Scholar] [CrossRef]
- An, L.; Zvoleff, A.; Liu, J.; Axinn, W. Agent-Based Modeling in Coupled Human and Natural Systems (CHANS): Lessons from a Comparative Analysis. Ann. Assoc. Am. Geogr. 2014, 104, 723–745. [Google Scholar] [CrossRef]
- Batty, M. Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and Urban Morphologies. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2009; pp. 1041–1071. [Google Scholar]
- Kubiszewski, I.; Costanza, R.; Anderson, S.; Sutton, P. The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. 2017, 26, 289–301. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Posner, S.; Verutes, G.; Koh, I.; Denu, D.; Ricketts, T. Global use of ecosystem service models. Ecosyst. Serv. 2016, 17, 131–141. [Google Scholar] [CrossRef]
- Brunner, S.H.; Huber, R.; Grêt-Regamey, A. A backcasting approach for matching regional ecosystem services supply and demand. Environ. Model. Softw. 2016, 75, 439–458. [Google Scholar] [CrossRef]
- Boumans, R.J.; Phillips, D.L.; Victery, W.; Fontaine, T.D. Developing a model for effects of climate change on human health and health–environment interactions: Heat stress in Austin, Texas. Urban Clim. 2014, 8, 78–99. [Google Scholar] [CrossRef]
- Videira, N.; van den Belt, M.; Antunes, R.; Santos, R.; Boumans, R. 12.05–Integrated Modeling of Coastal and Estuarine Ecosystem Services. In Treatise on Estuarine and Coastal Science; Academic Press: Waltham, UK, 2011; pp. 79–108. [Google Scholar]
- John, B.; Luederitz, C.; Lang, D.J.; von Wehrden, H. Toward Sustainable Urban Metabolisms. From System Understanding to System Transformation. Ecol. Econ. 2019, 157, 402–414. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Fath, B.D. Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China. Ecol. Model. 2014, 272, 188–197. [Google Scholar] [CrossRef]
- Comber, A.; Brunsdon, C.; Green, E. Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landsc. Urban Plann. 2008, 86, 103–114. [Google Scholar] [CrossRef]
- Borrett, S.R. Throughflow centrality is a global indicator of the functional importance of species in ecosystems. Ecol. Indic. 2013, 32, 182–196. [Google Scholar] [CrossRef]
- La Rosa, D.; Spyra, M.; Inostroza, L. Indicators of Cultural Ecosystem Services for urban planning: A review. Ecol. Indic. 2016, 61, 74–89. [Google Scholar] [CrossRef]
- Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.W.; Chan, K.M.; Costanza, R.; Elmqvist, T.; Flint, C.G.; Gobster, P.H.; et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [Google Scholar] [CrossRef]
- Camps-Calvet, M.; Langemeyer, J.; Calvet-Mir, L.; Gómez-Baggethun, E. Ecosystem services provided by urban gardens in Barcelona, Spain: Insights for policy and planning. Environ. Sci. Policy 2016, 62, 14–23. [Google Scholar] [CrossRef]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Angarita-Baéz, J.A.; Pérez-Miñana, E.; Beltrán Vargas, J.E.; Ruiz Agudelo, C.A.; Paez Ortiz, A.; Palacios, E.; Willcock, S. Assessing and mapping cultural ecosystem services at community level in the Colombian Amazon. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 280–296. [Google Scholar] [CrossRef]
- Onat, N.; Kucukvar, M.; Halog, A.; Cloutier, S. Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives. Sustainability 2017, 9, 706. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Egilmez, G. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: A case for electric vehicles. Int. J. Life Cycle Assess. 2016, 21, 1009–1034. [Google Scholar] [CrossRef]
Theme | Description |
---|---|
Suitability for ecosystem services (ES) assessment | Which ES were mapped, measured, or estimated? If they were not, were the metabolic flows relatable to any ES? |
Temporal detail | Did the model provide forecasts for future scenario analysis, and if so, is the model dynamic in the sense that system elements can evolve over the model run? |
Spatial detail | Was the urban system spatially specific, or was the system considered as a single spatial unit? |
Multi-level | How was the urban system boundary defined? Was the boundary defined by political jurisdiction, functional urban area, metropolitan area, community, or a combination of geographic levels? |
Cross-scale integration | Were social, ecological and economic scales considered (e.g., coupled human and natural systems; CHANS)? Where relationships between elements from different scales acknowledged? |
UM Literature Item Citation | Metabolic Flows Indicators Measured/Described | ES Suitability | Investigation Themes | Model Complexity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Provisioning | Regulating | Cultural | Temporal Detail | Spatial Detail | Multi-Level | Cross-Scale Integration | Network Analysis | Emergy Analysis | Life Cycle Thinking | Systems Thinking/System Dynamics | ||
Metzger, et al. [48] | Water, food, energy, wastes | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
Huang, et al. [49] | Emergy (seJ) | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ |
Conke and Ferreira [50] | Materials, energy, water | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Cui, et al. [51] | Phosphorous | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Zhang, et al. [52] | Consumption intensity | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ |
Zhang, et al. [53] | Nitrogen | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
Lin, et al. [54] | Carbon, nitrogen, phosphorous | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
Forkes [55] | Nitrogen | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Liu, et al. [56] | Water | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ |
Chrysoulakis, et al. [57] | Energy, water, carbon (especially), and socio-economic indicators | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Garcia-Montiel, et al. [23] | Water, food, waste, energy | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Pauleit and Duhme [58] | Energy, water, carbon dioxide | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Villarroel Walker and Beck [59] | Carbon, nitrogen, phosphorous, and water | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Dal Bo Zanon, et al. [60] | Nitrogen and phosphorous | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
Viglia, et al. [24] | Emergy (seJ) | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
Kennedy, et al. [61] | Water, SO2, NOx, volatile organic compounds, and particulate matter | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Firmansyah, et al. [62] | Nitrogen and phosphorous | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Yang, et al. [63] | Emergy (seJ) indices | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ |
Fragkou, et al. [64] | Water | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ |
Zhang, et al. [65] | Materials, energy, water, labour | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Leduc and Van Kann [66] | Energy | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Lei, et al. [67] | Mass, energy, emergy | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
Mörtberg, et al. [68] | Biodiversity/habitat fragmentation | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ |
Lookingbill, et al. [69] | Nitrogen and water | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ |
Lin, et al. [70] | Nitrogen and phosphorous | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ |
VandeWeghe and Kennedy [71] | Carbon dioxide | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Thomson and Newman [72] | Food, fuel, energy | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Zhang, et al. [73] | Energy and carbon dioxide | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ |
Chen and Chen [74] | Carbon dioxide | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ |
Wen, et al. [75] | Ammonia, ammonium, and NOx | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
Huang and Chen [76] | Emergy (seJ) | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ |
Lu, et al. [77] | Human time and Land Use | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Tan, et al. [78] | Relationship indicators | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
Wang, et al. [79] | Energy and labour | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ |
Sun, et al. [80] | Emergy (seJ) | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ |
Han, et al. [81] | Energy, economic labour productivity, human activity | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Wu, et al. [82] | Emergy (seJ) | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Zhang, et al. [83] | Ecological hierarchy index | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ |
Li, et al. [27] | Energy, materials, mutualism index | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
Zhang, et al. [84] | Emergy (seJ) | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
Zhang, et al. [85] | Socioeconomic and ecological indices | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Zhang, et al. [25] | Energy | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
Metabolic Stock/Flow | Related Ecosystem Services | Example Reference of This Metabolic Flow as an ES Indicator |
---|---|---|
Nitrogen | Nutrient cycling | Burgin, et al. [86], Herzig, et al. [87], Jones, et al. [88] |
Phosphorous | Nutrient cycling | de Groot, et al. [89] |
Carbon | Food/material provision, nutrient cycling, soil formation | Power [90], Maes, et al. [91] |
Carbon dioxide | Global climate regulation, air quality maintenance | de Groot, et al. [89], Dobbs, et al. [92] |
Water | Water provision, water regulation, climate regulation | Grizzetti, et al. [93], de Groot, et al. [89] |
Food | Food provision/cultivated crops | Orsini, et al. [94], Calvet-Mir, et al. [95] |
Biomass | Food/material/energy provision | Maes, et al. [91] |
Particulate matter | Local climate regulation/filtering dust particles | Dobbs, et al. [92] |
Land use/cover | Habitat regulation, genetic diversity regulation | Nelson, et al. [96], Foley, et al. [97] |
Investigation Themes | Provisioning ES | Regulating ES | Provisioning and Regulating ES |
---|---|---|---|
Temporal detail | 37% (11) | 37% (11) | 27% (8) |
Spatial detail | 27% (8) | 30% (9) | 17% (5) |
Multi-level | 13% (4) | 20% (6) | 7% (2) |
Cross-scale integration | 30% (9) | 27% (8) | 20% (6) |
Total | 73% (22) | 83% (25) | 53% (16) |
Modelling Approaches | Temporal Detail | Spatial Detail | Multi-Level | Cross-Scale Integration |
---|---|---|---|---|
Network analysis/ENA | 3 | 1 | 1 | 1 |
Emergy | 3 | 1 | 1 | 1 |
Life cycle thinking | 1 | 0 | 1 | 2 |
Systems thinking/system dynamics | 4 | 3 | 3 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elliot, T.; Babí Almenar, J.; Niza, S.; Proença, V.; Rugani, B. Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework. Sustainability 2019, 11, 2766. https://doi.org/10.3390/su11102766
Elliot T, Babí Almenar J, Niza S, Proença V, Rugani B. Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework. Sustainability. 2019; 11(10):2766. https://doi.org/10.3390/su11102766
Chicago/Turabian StyleElliot, Thomas, Javier Babí Almenar, Samuel Niza, Vânia Proença, and Benedetto Rugani. 2019. "Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework" Sustainability 11, no. 10: 2766. https://doi.org/10.3390/su11102766
APA StyleElliot, T., Babí Almenar, J., Niza, S., Proença, V., & Rugani, B. (2019). Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework. Sustainability, 11(10), 2766. https://doi.org/10.3390/su11102766