Does Fallowing Cultivated Land Threaten Food Security? Empirical Evidence from Chinese Pilot Provinces
Abstract
:1. Introduction
2. Method
2.1. Research Area and Data Sources
2.2. Model Used to Calculate the Cultivated Land Pressure
2.3. Settings for Grain Consumption and Cropping Index
3. Results
3.1. Changes in Cultivated Land Pressure During the Period of 2000–2016
3.1.1. Temporal Change
3.1.2. Spatial Change at the Province Scale
3.1.3. Spatial Change at the Prefecture Scale
3.2. Prediction of Cultivated Land Pressure and Scenario Simulation
3.2.1. Scenario Settings
3.2.2. National Change
3.2.3. Changes in the Pilot Provinces
4. Discussion
4.1. Cultivated Land Pressure Index Provides a Reliable Approach to Measure Food Security and Shows a Decreasing Trend Nationwide During the Period of 2000–2020
4.2. Spatial Patterns of Cultivated Land Pressure between a Provincial and Prefectural Scale Show a Similar Overview, with Some Nuanced Disparities
4.3. Amplitudes of Variation in Cultivated Land Pressure Under the Fallow Policy Vary for Different Pilot Provinces
4.4. Decreasing Cultivated Land for Tilling Under Current Land Fallowing Policy Does not Pose a Threat to Food Security
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.B. Cultivated land and food supply in China. Land Use Policy 2000, 17, 73–88. [Google Scholar] [CrossRef]
- Li, Y.Y.; Li, X.B.; Tan, M.H.; Wang, X.; Xin, L.J. The impact of cultivated land spatial shift on food crop production in China, 1990–2010. Land Degrad. Dev. 2018, 29, 1652–1659. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Wen, Q.K.; Liu, F.; Zhao, X.L.; Liu, B.; Xu, J.Y.; Yi, L.; Hu, S.G.; Wang, X.; Zuo, L.J.; et al. Urban expansion in China and its effect on cultivated land before and after initiating “Reform and Open Policy”. Sci. China-Earth Sci. 2016, 59, 1930–1945. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.J.; Gong, J.Z.; Wang, L.; Hu, Y.M. Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy. Land Use Policy 2019, 81, 256–266. [Google Scholar] [CrossRef]
- Jin, X.B.; Zhang, Z.H.; Wu, X.W.; Xiang, X.M.; Sun, W.; Bai, Q.; Zhou, Y.K. Co-ordination of land exploitation, exploitable farmland reserves and national planning in China. Land Use Policy 2016, 57, 682–693. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Li, W.B.; Wang, D.Y.; Wang, Q.; Liu, S.H.; Zhu, Y.L.; Wu, W.J. Impacts from Land Use Pattern on Spatial Distribution of Cultivated Soil Heavy Metal Pollution in Typical Rural-Urban Fringe of Northeast China. Int. J. Environ. Res. Public Health 2017, 14, 336. [Google Scholar] [CrossRef]
- Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.C.; Aitkenhead-Peterson, J. Assessment and Monitoring of Soil Degradation during Land Use Change Using Multivariate Analysis. Land Degrad. Dev. 2017, 28, 128–141. [Google Scholar] [CrossRef]
- Li, N.; Yan, C.Z.; Xie, J.L.; Ma, J.X. Cultivated-land change in Mu Us Sandy Land of China before and after the first-stage grain-for-green policy. Sci. Cold Arid Reg. 2018, 10, 347–353. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H.L.; Lv, T.G.; Yao, G.R. Determinants of cultivated land recuperation in ecologically damaged areas in China. Land Use Policy 2019, 81, 160–166. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Xin, G.X.; Jiang, J.L.; CHEN, Z.T. The comparison and implications of crop rotation and fallow in the western countries and east asian. China Land Sci. 2017, 31, 71–79. (In Chinese) [Google Scholar]
- Baumhardt, R.L.; Schwartz, R.C.; MacDonald, J.C.; Tolk, J.A. Tillage and Cattle Grazing Effects on Soil Properties and Grain Yields in a Dryland Wheat-Sorghum-Fallow Rotation. Agron. J. 2011, 103, 914–922. [Google Scholar] [CrossRef]
- Kovacs-Hostyanszki, A.; Baldi, A. Set-aside fields in agri-environment schemes can replace the market-driven abolishment of fallows. Biol. Conserv. 2012, 152, 196–203. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Lyon, D.J.; Miceli-Garcia, J.J. Replacing fallow with forage triticale in a dryland wheat-corn-fallow rotation may increase profitability. Field Crop. Res. 2017, 203, 227–237. [Google Scholar] [CrossRef]
- Wittman, H.K.; Johnson, M.S. Fallow management practices in Guatemala’s Western Highlands: Social drivers and biophysical impacts. Land Degrad. Dev. 2008, 19, 178–189. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Schwartz, R.C.; Greene, L.W.; MacDonald, J.C. Cattle Gain and Crop Yield for a Dryland Wheat-Sorghum-Fallow Rotation. Agron. J. 2009, 101, 150–158. [Google Scholar] [CrossRef]
- Chen, C.W.; Hsu, N.S.; Wu, C.S. Optimal fallow area and location for multifunctional benefits of a paddy field during drought periods. Paddy Water Environ. 2014, 12, 319–333. [Google Scholar] [CrossRef]
- Steinberg, M.K. Political ecology and cultural change: Impacts on swidden-fallow agroforestry practices among the Mopan Maya in southern Belize. Prof. Geogr. 1998, 50, 407–417. [Google Scholar] [CrossRef]
- Harris, F. Nutrient management strategies of small-holder farmers in a short-fallow farming system in north-east Nigeria. Geogr. J. 1999, 165, 275–285. [Google Scholar] [CrossRef]
- Carswell, G. Farmers and fallowing: Agricultural change in Kigezi District, Uganda. Geogr. J. 2002, 168, 130–140. [Google Scholar] [CrossRef]
- Thomsen, M.G.; Mangerud, K.; Riley, H.; Brandsaeter, L.O. Method, timing and duration of bare fallow for the control of Cirsium arvense and other creeping perennials. Crop Prot. 2015, 77, 31–37. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Young, D.L. Best Management Practices for Summer Fallow in the World’s Driest Rainfed Wheat Region. Soil Sci. Soc. Am. J. 2014, 78, 1707–1715. [Google Scholar] [CrossRef]
- Yu, J.L.; Boyd, N.S.; Guan, Z.F. Relay-cropping and Fallow Programs for Strawberry-based Production System: Effects on Crop Productivity and Weed Control. Hortscience 2018, 53, 445–450. [Google Scholar] [CrossRef]
- Shi, K.F.; Yang, Q.Y.; Li, Y.Q.; Sun, X.F. Mapping and evaluating cultivated land fallow in Southwest China using multisource data. Sci. Total Environ. 2019, 654, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.R.; Llewelyn, R.V.; Pendell, D.L.; Schlegel, A.; Dumler, T. A Risk Analysis of Converting Conservation Reserve Program Acres to a Wheat-Sorghum-Fallow Rotation. Agron. J. 2010, 102, 612–622. [Google Scholar] [CrossRef]
- Gilley, J.E.; Doran, J.W.; Eghball, B. Tillage and fallow effects on selected soil quality characteristics of former conservation reserve program sites. J. Soil Water Conserv. 2001, 56, 126–132. [Google Scholar]
- Etheredge, L.M.; Griffin, J.L.; Salassi, M.E. Efficacy and Economics of Summer Fallow Conventional and Reduced-Tillage Programs for Sugarcane. Weed Technol. 2009, 23, 274–279. [Google Scholar] [CrossRef]
- Xie, H.L.; Cheng, L.J.; Lv, T.G. Factors Influencing Farmer Willingness to Fallow Winter Wheat and Ecological Compensation Standards in a Groundwater Funnel Area in Hengshui, Hebei Province, China. Sustainability 2017, 9, 839. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Chen, Z.T.; Xin, G.X.; Zeng, L. the historical evolution of chinese cultivation system and some thoughts on the current land fallow and crop rotation policy. West Forum 2018, 28, 1–8. (In Chinese) [Google Scholar]
- Chen, Z.T.; Yang, Q.Y. Fundamental framework of China’s fallow system. China Popul. Resour. Environ. 2017, 27, 126–136. (In Chinese) [Google Scholar]
- Wang, C.; Siriwardana, M.; Meng, S. Effects of the Chinese arable land fallow system and land-use change on agricultural production and on the economy. Econ. Model. 2019, 79, 186–197. [Google Scholar] [CrossRef]
- Zhang, S.L.; Yang, X.Y.; Lovdahl, L. Soil Management Practice Effect on Water Balance of a Dryland Soil during Fallow Period on the Loess Plateau of China. Soil Water Res. 2016, 11, 64–73. [Google Scholar] [CrossRef]
- Zhao, W.F.; Gao, Z.Q.; Sun, M.; Deng, L.F. Effects of tillage during fallow period on soil water and wheat yield of dryland. J. Food Agric. Environ. 2013, 11, 609–613. [Google Scholar]
- National Bureau of statistics of the People’s Republic of China. 2017 China Statistical Yearbook; China Statistical Press: Beijing, China, 2017.
- Wang, Y.S. The Challenges and Strategies of Food Security under Rapid Urbanization in China. Sustainability 2019, 11, 542. [Google Scholar] [CrossRef]
- Leroy, J.L.; Ruel, M.; Frongillo, E.A.; Harris, J.; Ballard, T.J. Measuring the Food Access Dimension of Food Security: A Critical Review and Mapping of Indicators. Food Nutr. Bull. 2015, 36, 167–195. [Google Scholar] [CrossRef]
- Candel, J.J.L. Food security governance: A systematic literature review. Food Secur. 2014, 6, 585–601. [Google Scholar] [CrossRef]
- Janin, P.; Dury, S. The new frontiers of food security. A prospective review. Cah. Agric. 2012, 21, 285–292. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Food Security. Available online: http://www.fao.org/forestry/13128-0e6f36f27e0091055bec28ebe830f46b3.pdf (accessed on 27 February 2019).
- World Bank. Surface Arzea. Available online: https://data.worldbank.org/indicator/AG.SRF.TOTL.K2?year_high_desc=true (accessed on 29 April 2019).
- Yang, R.H.; Yang, Q.Y.; Chen, Y.D.; Zeng, L. Cultivated area-food-population system in land fallow area and analysis of spatio-temporal evolution and prediction of cultivated land index. Agric. Res. Arid Areas 2018, 36, 270–278. (In Chinese) [Google Scholar]
- Qiu, G.Y.; Zhang, X.N.; Yu, X.H.; Zou, Z.D. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agric. Water Manag. 2018, 203, 138–150. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, X.F.; Dong, S.K.; Cai, H.; Zhao, T.R.; Yang, W.J.; Jiang, R.; Shi, Y.D.; Shao, J.L. Local perceptions of rangeland degradation and climate change in the pastoral society of Qinghai-Tibetan Plateau. Rangel. J. 2015, 37, 11–19. [Google Scholar] [CrossRef]
- Xie, H.L.; Wang, W.; Zhang, X.M. Evolutionary game and simulation of management strategies of fallow cultivated land: A case study in Hunan province, China. Land Use Policy 2018, 71, 86–97. [Google Scholar] [CrossRef]
- Cai, Y.L.; Fu, Z.Q.; Dai, E.F. The minimum area per capita of cultivated land and its implication for the optimization of land resource allocation. Acta Geogr. Sin. 2002, 2, 127–134. (In Chinese) [Google Scholar]
- Zhu, H.B.; Zhang, A.L. Analyzing Temporal and Spatial Distribution Characteristics of Pressure Index of Cultivated Land in China. Resour. Sci. 2007, 2, 104–108. (In Chinese) [Google Scholar]
- Cai, Y.L.; Wang, Y.; Li, Y.P. Study on changing relationship of demand and supply of cultivated land in China. China Land Sci. 2009, 23, 11–18. (In Chinese) [Google Scholar]
- Zhang, Y.J.; Yan, X.S.; Zhang, F.; Xiao, Z.C. Analysis on temporal-spatial difference of cultivated land pressure at multiple scales in China from 1978 to 2015. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–7. (In Chinese) [Google Scholar]
- Luo, X.; Zeng, J.X.; Zhu, Y.Y.; Zhang, L. Who will feed China: The role and explanation of China’s farmland pressure in food security. Geogr. Res. 2016, 35, 2216–2226. (In Chinese) [Google Scholar]
- Tan, S.K.; Zhang, L.; Qi, R. Research on regional pressure index of cultivated land based on system dynamics—A case study of Hubei province. J. Nat. Resour. 2012, 5, 757–764. (In Chinese) [Google Scholar]
- Zhu, H.B.; Sun, H.N. Cultivated land pressure index model based on grain economy acquisition ability. Guangdong Land Sci. 2015, 5, 15–18. (In Chinese) [Google Scholar]
- Xin, L.J.; Wang, J.Y.; Wang, L.X. Prospect of per capita grain demand driven by dietary structure change in China. Resour. Sci. 2015, 37, 1347–1356. (In Chinese) [Google Scholar]
- Ding, M.J.; Chen, Q.; Xin, L.J.; Li, L.H.; Li, X.B. Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999–2013. Acta Geogr. Sin 2015, 70, 1080–1090. (In Chinese) [Google Scholar] [CrossRef]
- Department of Plantation Management, Ministry of Agriculture, China. Notice on Printing Exploration the Pilot Program for Implementing the Crop-Rotation and Fallow System. Available online: http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201606/t20160629_5190955.htm (accessed on 27 February 2019).
- Zhang, H.; Wang, Y. Spatial differentiation of cropland pressure and its socio-economic factors in China based on panel data of 342 prefectural-level units. Geogr. Res. 2017, 36, 731–742. (In Chinese) [Google Scholar]
- Cheng, l.S.; Shi, W.Y. Effects of land conversion projects on the land pressure—Taking wulong county as a case. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 201–206. (In Chinese) [Google Scholar]
- van Noordwijk, M. Scale effects in crop-fallow rotations. Agrofor. Syst. 1999, 47, 239–251. [Google Scholar] [CrossRef]
- Cotta, J.N. Revisiting Bora fallow agroforestry in the Peruvian Amazon: Enriching ethnobotanical appraisals of non-timber products through household income quantification. Agrofor. Syst. 2017, 91, 17–36. [Google Scholar] [CrossRef]
- Partey, S.T.; Zougmore, R.B.; Ouedraogo, M.; Thevathasan, N.V. Why Promote Improved Fallows as a Climate-Smart Agroforestry Technology in Sub-Saharan Africa? Sustainability 2017, 9, 1887. [Google Scholar] [CrossRef]
- Hauser, S.; Bengono, B.; Bitomo, O.E. Short- and long-term maize yield response to Mucuna pruriens and Pueraria phaseoloides relay fallow and biomass burning versus mulching in the forest zone of southern Cameroon. Biol. Agric. Hortic. 2008, 26, 1–17. [Google Scholar] [CrossRef]
- Krupnik, T.J.; Ahmed, Z.U.; Timsina, J.; Shahjahan, M.; Kurishi, A.; Miah, A.A.; Rahman, B.M.S.; Gathala, M.K.; McDonald, A.J. Forgoing the fallow in Bangladesh’s stress-prone coastal deltaic environments: Effect of sowing date, nitrogen, and genotype on wheat yield in farmers’ fields. Field Crop. Res. 2015, 170, 7–20. [Google Scholar] [CrossRef]
Year | Number of Provincial Regions (K < 1.00) | Name of Provincial Regions (K < 1.00) |
---|---|---|
2001 | 16 | Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Chongqing, Sichuan, and Xinjiang |
2005 | 16 | Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Chongqing, and Sichuan |
2009 | 15 | Jiangsu, Shandong, Jilin, Hubei, Inner Mongolia, Henan, Hunan, Heilongjiang, Anhui, Jiangxi, Sichuan, Xinjiang, Chongqing, Hebei, and Liaoning |
2013 | 15 | Hebei, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, Chongqing, Sichuan, and Xinjiang |
2016 | 12 | Inner Mongolia, Jilin, Heilongjiang, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, Chongqing, and Xinjiang |
Type | Meaning |
---|---|
Scenario I | Scalet+1 = Scalet, Scalet+2 = Scalet+1 … Scalet+n = Scalet+n−1 |
Scenario II | Scalet+1 = 2 × Scalet, Scalet+2 = 2 × Scalet+1 … Scalet+n = 2 × Scalet+n−1 |
Scenario III | Scalet+1 = Scalet, Scalet+2 = 2 × Scalet+1 … Scalet+n−1 = Scalet+n−2, Scalet+n = 2 × Scalet+n−1 |
Year | Hebei | Yunnan | Guizhou | Gansu | Hunan | |||||
---|---|---|---|---|---|---|---|---|---|---|
K | K’ | K | K’ | K | K’ | K | K’ | K | K’ | |
2000 | 1.030 | 1.030 | 1.156 | 1.156 | 1.294 | 1.294 | 1.433 | 1.433 | 0.954 | 0.954 |
2001 | 1.075 | 1.075 | 1.154 | 1.154 | 1.281 | 1.281 | 1.361 | 1.361 | 1.060 | 1.060 |
2002 | 1.106 | 1.106 | 1.217 | 1.217 | 1.484 | 1.484 | 1.294 | 1.294 | 1.091 | 1.091 |
2003 | 1.134 | 1.134 | 1.190 | 1.190 | 1.402 | 1.402 | 1.286 | 1.286 | 0.953 | 0.953 |
2004 | 1.098 | 1.098 | 1.170 | 1.170 | 1.358 | 1.358 | 1.261 | 1.261 | 0.886 | 0.886 |
2005 | 1.054 | 1.054 | 1.175 | 1.175 | 1.295 | 1.295 | 1.216 | 1.216 | 0.956 | 0.956 |
2006 | 0.992 | 0.992 | 1.230 | 1.230 | 1.422 | 1.422 | 1.261 | 1.261 | 0.874 | 0.874 |
2007 | 0.977 | 0.977 | 1.236 | 1.236 | 1.320 | 1.320 | 1.236 | 1.236 | 0.910 | 0.910 |
2008 | 0.962 | 0.962 | 1.197 | 1.197 | 1.242 | 1.242 | 1.148 | 1.148 | 0.883 | 0.883 |
2009 | 0.967 | 0.967 | 1.159 | 1.159 | 1.211 | 1.211 | 1.128 | 1.128 | 0.923 | 0.923 |
2010 | 0.967 | 0.967 | 1.116 | 1.116 | 1.251 | 1.251 | 1.069 | 1.069 | 0.898 | 0.898 |
2011 | 0.913 | 0.913 | 1.055 | 1.055 | 1.582 | 1.582 | 1.011 | 1.011 | 0.883 | 0.883 |
2012 | 0.898 | 0.898 | 1.020 | 1.020 | 1.291 | 1.291 | 0.929 | 0.929 | 0.915 | 0.915 |
2013 | 0.872 | 0.872 | 1.028 | 1.028 | 1.360 | 1.360 | 0.907 | 0.907 | 0.898 | 0.898 |
2014 | 0.879 | 0.879 | 1.013 | 1.013 | 1.232 | 1.232 | 0.894 | 0.894 | 0.904 | 0.904 |
2015 | 0.883 | 0.883 | 1.011 | 1.011 | 1.197 | 1.197 | 0.888 | 0.888 | 0.924 | 0.924 |
Scenario I | ||||||||||
2016 | 0.893 | 0.902 | 1.029 | 1.029 | 1.193 | 1.193 | 0.915 | 0.916 | 0.902 | 0.904 |
2017 | 0.886 | 0.895 | 1.017 | 1.019 | 1.167 | 1.169 | 0.922 | 0.924 | 0.871 | 0.872 |
2018 | 0.878 | 0.897 | 1.006 | 1.009 | 1.205 | 1.210 | 0.834 | 0.836 | 0.865 | 0.867 |
2019 | 0.871 | 0.890 | 0.994 | 0.997 | 1.194 | 1.199 | 0.810 | 0.812 | 0.858 | 0.861 |
2020 | 0.864 | 0.882 | 0.983 | 0.986 | 1.184 | 1.188 | 0.786 | 0.788 | 0.852 | 0.855 |
Scenario II | ||||||||||
2016 | 0.893 | 0.902 | 1.029 | 1.029 | 1.193 | 1.193 | 0.915 | 0.916 | 0.902 | 0.904 |
2017 | 0.886 | 0.895 | 1.017 | 1.019 | 1.167 | 1.169 | 0.922 | 0.924 | 0.871 | 0.872 |
2018 | 0.878 | 0.897 | 1.006 | 1.009 | 1.205 | 1.210 | 0.834 | 0.836 | 0.865 | 0.867 |
2019 | 0.871 | 0.909 | 0.994 | 1.001 | 1.194 | 1.204 | 0.810 | 0.812 | 0.858 | 0.864 |
2020 | 0.864 | 0.942 | 0.983 | 0.995 | 1.184 | 1.202 | 0.786 | 0.788 | 0.852 | 0.863 |
Scenario III | ||||||||||
2016 | 0.893 | 0.902 | 1.029 | 1.029 | 1.193 | 1.193 | 0.915 | 0.916 | 0.902 | 0.904 |
2017 | 0.886 | 0.895 | 1.017 | 1.019 | 1.167 | 1.169 | 0.922 | 0.924 | 0.871 | 0.872 |
2018 | 0.878 | 0.897 | 1.006 | 1.009 | 1.205 | 1.210 | 0.834 | 0.836 | 0.865 | 0.867 |
2019 | 0.871 | 0.890 | 0.994 | 0.997 | 1.194 | 1.199 | 0.810 | 0.812 | 0.858 | 0.861 |
2020 | 0.864 | 0.901 | 0.983 | 0.989 | 1.184 | 1.193 | 0.786 | 0.788 | 0.852 | 0.857 |
Year | Hebei | Yunnan | Guizhou | Gansu | Hunan | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | K’ | ΔK | K | K’ | ΔK | K | K’ | ΔK | K | K’ | ΔK | K | K’ | ΔK | |
Scenario I | |||||||||||||||
2016 | 0.893 | 0.902 | 0.943% | 1.029 | 1.029 | 0.017% | 1.193 | 1.193 | 0.027% | 0.915 | 0.916 | 0.026% | 0.902 | 0.904 | 0.156% |
2017 | 0.886 | 0.895 | 1.044% | 1.017 | 1.019 | 0.169% | 1.167 | 1.169 | 0.245% | 0.922 | 0.924 | 0.252% | 0.871 | 0.872 | 0.155% |
2018 | 0.878 | 0.897 | 2.111% | 1.006 | 1.009 | 0.329% | 1.205 | 1.210 | 0.449% | 0.834 | 0.836 | 0.243% | 0.865 | 0.867 | 0.308% |
2019 | 0.871 | 0.890 | 2.112% | 0.994 | 0.997 | 0.320% | 1.194 | 1.199 | 0.411% | 0.810 | 0.812 | 0.234% | 0.858 | 0.861 | 0.305% |
2020 | 0.864 | 0.882 | 2.114% | 0.983 | 0.986 | 0.312% | 1.184 | 1.188 | 0.376% | 0.786 | 0.788 | 0.226% | 0.852 | 0.855 | 0.302% |
Scenario II | |||||||||||||||
2016 | 0.893 | 0.902 | 0.943% | 1.029 | 1.029 | 0.017% | 1.193 | 1.193 | 0.027% | 0.915 | 0.916 | 0.026% | 0.902 | 0.904 | 0.156% |
2017 | 0.886 | 0.895 | 1.044% | 1.017 | 1.019 | 0.169% | 1.167 | 1.169 | 0.245% | 0.922 | 0.924 | 0.252% | 0.871 | 0.872 | 0.155% |
2018 | 0.878 | 0.897 | 2.111% | 1.006 | 1.009 | 0.329% | 1.205 | 1.210 | 0.449% | 0.834 | 0.836 | 0.243% | 0.865 | 0.867 | 0.308% |
2019 | 0.871 | 0.909 | 4.316% | 0.994 | 1.001 | 0.643% | 1.194 | 1.204 | 0.825% | 0.810 | 0.812 | 0.234% | 0.858 | 0.864 | 0.612% |
2020 | 0.864 | 0.942 | 9.027% | 0.983 | 0.995 | 1.258% | 1.184 | 1.202 | 1.520% | 0.786 | 0.788 | 0.226% | 0.852 | 0.863 | 1.221% |
Scenario III | |||||||||||||||
2016 | 0.893 | 0.902 | 0.943% | 1.029 | 1.029 | 0.017% | 1.193 | 1.193 | 0.027% | 0.915 | 0.916 | 0.026% | 0.902 | 0.904 | 0.156% |
2017 | 0.886 | 0.895 | 1.044% | 1.017 | 1.019 | 0.169% | 1.167 | 1.169 | 0.245% | 0.922 | 0.924 | 0.252% | 0.871 | 0.872 | 0.155% |
2018 | 0.878 | 0.897 | 2.111% | 1.006 | 1.009 | 0.329% | 1.205 | 1.210 | 0.449% | 0.834 | 0.836 | 0.243% | 0.865 | 0.867 | 0.308% |
2019 | 0.871 | 0.890 | 2.112% | 0.994 | 0.997 | 0.320% | 1.194 | 1.199 | 0.411% | 0.810 | 0.812 | 0.234% | 0.858 | 0.861 | 0.305% |
2020 | 0.864 | 0.901 | 4.319% | 0.983 | 0.989 | 0.625% | 1.184 | 1.193 | 0.754% | 0.786 | 0.788 | 0.226% | 0.852 | 0.857 | 0.607% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Yang, R.; Wang, Y.; Shi, K. Does Fallowing Cultivated Land Threaten Food Security? Empirical Evidence from Chinese Pilot Provinces. Sustainability 2019, 11, 2836. https://doi.org/10.3390/su11102836
Yang Q, Yang R, Wang Y, Shi K. Does Fallowing Cultivated Land Threaten Food Security? Empirical Evidence from Chinese Pilot Provinces. Sustainability. 2019; 11(10):2836. https://doi.org/10.3390/su11102836
Chicago/Turabian StyleYang, Qingyuan, Renhao Yang, Yahui Wang, and Kaifang Shi. 2019. "Does Fallowing Cultivated Land Threaten Food Security? Empirical Evidence from Chinese Pilot Provinces" Sustainability 11, no. 10: 2836. https://doi.org/10.3390/su11102836
APA StyleYang, Q., Yang, R., Wang, Y., & Shi, K. (2019). Does Fallowing Cultivated Land Threaten Food Security? Empirical Evidence from Chinese Pilot Provinces. Sustainability, 11(10), 2836. https://doi.org/10.3390/su11102836