Renewable Power Output Forecasting Using Least-Squares Support Vector Regression and Google Data
Abstract
:1. Introduction
2. LSSVR with Google
The regression function. | |
The feature of the inputs. | |
ω | Coefficients of LSSVR-G. |
β | Coefficients of LSSVR-G. |
αi | Lagrangian multiplier vector due to the i input pattern. |
εi | Error due to the i input pattern. |
k(·) | The kernel function. |
3. Numerical Examples, Experimental Results, and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, J.; Ding, Z.; Lee, W.-J.; Yang, Y.; Liu, Y.; Zhang, M. Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features. IEEE Trans. Smart Grid 2014, 5, 521–526. [Google Scholar] [CrossRef]
- Xu, Q.; He, D.; Zhang, N.; Kang, C.; Xia, Q.; Bai, J.; Huang, J. A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Trans. Sustain. Energy 2015, 6, 1283–1291. [Google Scholar] [CrossRef]
- Zhang, Y.; Beaudin, M.; Taheri, R.; Zareipour, H.; Wood, D. Day-Ahead Power Output Forecasting for Small-Scale Solar Photovoltaic Electricity Generators. IEEE Trans. Smart Grid 2015, 6, 2253–2262. [Google Scholar] [CrossRef]
- Yang, L.; He, M.; Zhang, J.; Vittal, V. Support-Vector-Machine-Enhanced Markov Model for Short-Term Wind Power Forecast. IEEE Trans. Sustain. Energy 2015, 6, 791–799. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Su, Y.; Shu, L. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines. Appl. Energy 2016, 180, 392–401. [Google Scholar] [CrossRef]
- Hossain, M.; Mekhilef, S.; Danesh, M.; Olatomiwa, L.; Shamshirband, S. Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems. J. Clean. Prod. 2017, 167, 395–405. [Google Scholar] [CrossRef]
- Yang, X.; Xu, M.; Xu, S.; Han, X. Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining. Appl. Energy 2017, 206, 683–696. [Google Scholar] [CrossRef]
- Paulescu, M.; Brabec, M.; Boata, R.; Badescu, V. Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants. Energy 2017, 121, 792–802. [Google Scholar] [CrossRef]
- Zjavka, L.; Mišák, S. Direct Wind Power Forecasting Using a Polynomial Decomposition of the General Differential Equation. IEEE Trans. Sustain. Energy 2018, 9, 1529–1539. [Google Scholar] [CrossRef]
- Seyedmahmoudian, M.; Jamei, E.; Thirunavukkarasu, G.S.; Soon, T.K.; Mortimer, M.; Horan, B.; Stojcevski, A.; Mekhilef, S. Short-Term Forecasting of the Output Power of a Building-Integrated Photovoltaic System Using a Metaheuristic Approach. Energies 2018, 11, 1260. [Google Scholar] [CrossRef]
- Rosiek, S.; Alonso-Montesinos, J.; Batlles, F.J. Online 3-h forecasting of the power output from a BIPV system using satellite observations and ANN. Electr. Power Energy Syst. 2018, 99, 261–272. [Google Scholar] [CrossRef]
- Dadkhah, M.; Rezaee, M.J.; Chavoshi, A.Z. Short-term power output forecasting of hourly operation in power plant based on climate factors and effects of wind direction and wind speed. Energy 2018, 148, 775–788. [Google Scholar] [CrossRef]
- Hao, Y.; Tian, C. A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting. Appl. Energy 2019, 238, 368–383. [Google Scholar] [CrossRef]
- Abuella, M.; Chowdhury, B. Forecasting of solar power ramp events: A post-processing approach. Renew. Energy 2019, 133, 1380–1392. [Google Scholar] [CrossRef]
- Kasperowicz, R.; Pinczyński, M.; Khabdullin, A. Modeling the power of renewable energy sources in the context of classical electricity system transformation. J. Int. Stud. 2017, 10, 264–272. [Google Scholar] [CrossRef]
- Shayesteh, E.; Yu, J.; Hilber, P. Maintenance optimization of power systems with renewable energy sources integrated. Energy 2018, 149, 577–586. [Google Scholar] [CrossRef]
- Hung, K.-C.; Lin, K.-P. Long-term business cycle forecasting through a potential intuitionistic fuzzy least-squares support vector regression approach. Inf. Sci. 2013, 224, 37–48. [Google Scholar] [CrossRef]
- Zhao, Y.-P.; Zhao, J.; Zhao, M. Twin least squares support vector regression. Neurocomputing 2013, 118, 225–236. [Google Scholar] [CrossRef]
- Chen, C.; Yan, C.; Li, Y. A robust weighted least squares support vector regression based on least trimmed squares. Neurocomputing 2015, 168, 941–946. [Google Scholar] [CrossRef]
- Lin, K.-P.; Pai, P.-F. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. J. Clean. Prod. 2016, 134, 456–462. [Google Scholar] [CrossRef]
- Ye, Y.-F.; Shao, Y.-H.; Deng, N.-Y.; Li, C.-N.; Hua, X.-Y. Robust Lp-norm least squares support vector regression with feature selection. Appl. Math. Comput. 2017, 305, 32–52. [Google Scholar] [CrossRef]
- Zhang, Z.; He, J.; Gao, G.; Tian, Y. Bi-sparse optimization-based least squares regression. Appl. Soft Comput. J. 2019, 77, 300–315. [Google Scholar] [CrossRef]
- Holland, H. Adaptation in Natural and Artificial System; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Lin, K.-P.; Pai, P.-F.; Yang, S.-L. Forecasting concentrations of air pollutants by support vector regression models with data preprocessing procedures and immune algorithms. Appl. Math. Comput. 2011, 217, 5318–5327. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Box, G.; Jenkins, G. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1976. [Google Scholar]
Search Volume via Google | Crude Oil Price | Natural Gas Price | Coal Price | Uranium Price | |||
---|---|---|---|---|---|---|---|
Renewable Power Generation | Thermal Power Generation | Nuclear Power Generation | Thermal Power Generation | Nuclear Power Generation | |||
Pearson Correlation | 0.805 | 0.612 | 0.079 | 0.780 | 0.530 | 0.665 | 0.585 |
p-value | 0.000 * | 0.000* | 0.677 | 0.000 * | 0.005 * | 0.000 * | 0.001 * |
Actual Value (GW/Year) | LSSVR-G | LSSVR-P | LSSVR-GP | BPNN-SP | GRNN | ARIMA | |
---|---|---|---|---|---|---|---|
2007 | 389.61 | 369.94 | 397.88 | 374.06 | 348.46 | 383.25 | 388.26 |
2008 | 392.60 | 370.32 | 385.35 | 372.62 | 354.08 | 383.19 | 391.71 |
2009 | 399.81 | 371.66 | 379.09 | 372.96 | 369.07 | 383.17 | 395.61 |
2010 | 400.29 | 373.96 | 378.84 | 375.04 | 369.96 | 383.17 | 399.38 |
2011 | 405.22 | 378.92 | 382.51 | 380.16 | 340.94 | 383.17 | 403.19 |
2012 | 388.87 | 375.79 | 379.89 | 376.89 | 380.09 | 383.17 | 406.99 |
2013 | 400.79 | 379.26 | 376.20 | 379.56 | 373.71 | 383.17 | 410.79 |
2014 | 408.01 | 381.04 | 374.39 | 380.95 | 379.39 | 383.17 | 414.60 |
2015 | 351.43 | 387.21 | 375.55 | 386.81 | 384.04 | 383.17 | 418.40 |
2016 | 304.61 | 402.29 | 371.82 | 400.22 | 383.17 | 383.17 | 422.20 |
MAPE | 8.84 | 6.57 | 8.47 | 10.26 | 6.46 | 6.87 | |
MSE | 1524.26 | 844.03 | 1434.62 | 1803.84 | 932.38 | 1881.08 | |
Ranking | (4) | (1) | (3) | (5) | (2) | (6) |
Actual Value (GW/Year) | LSSVR-G | LSSVR-P | LSSVR-GP | BPNN-SP | GRNN | ARIMA | |
---|---|---|---|---|---|---|---|
2007 | 1518.27 | 1213.94 | 1235.88 | 1257.94 | 878.59 | 1317.19 | 1550.41 |
2008 | 1503.57 | 1223.05 | 1290.14 | 1317.98 | 969.73 | 1335.09 | 1609.63 |
2009 | 1434.94 | 1237.58 | 1223.18 | 1275.14 | 999.37 | 1351.08 | 1675.27 |
2010 | 1567.55 | 1254.98 | 1248.43 | 1489.93 | 1106.72 | 1365.25 | 1737.82 |
2011 | 1616.92 | 1275.35 | 1271.85 | 1375.16 | 1148.22 | 1377.73 | 1801.86 |
2012 | 1602.47 | 1277.79 | 1253.74 | 1349.59 | 1215.26 | 1388.67 | 1865.18 |
2013 | 1604.27 | 1329.04 | 1250.40 | 1392.58 | 1295.66 | 1398.25 | 1928.85 |
2014 | 1665.27 | 1360.82 | 1240.97 | 1443.23 | 1367.70 | 1406.63 | 1992.35 |
2015 | 1716.49 | 1459.49 | 1204.68 | 1463.51 | 1432.95 | 1413.97 | 2055.93 |
2016 | 1804.51 | 1675.53 | 1204.90 | 1668.29 | 1477.86 | 1420.40 | 2119.47 |
MAPE | 17.13 | 22.16 | 12.51 | 26.23 | 13.86 | 14.17 | |
MSE | 78,118.00 | 143,940.71 | 43,284.6 | 183,675.83 | 56,809.92 | 62,900.79 | |
Ranking | (4) | (5) | (1) | (6) | (2) | (3) |
Actual Value (GW/Year) | LSSVR-G | BPNN-S | GRNN | ARIMA | |
---|---|---|---|---|---|
2007 | 71.44 | 50.04 | 52.22 | 62.81 | 51.47 |
2008 | 71.65 | 51.46 | 61.78 | 64.88 | 60.37 |
2009 | 68.4 | 55.41 | 50.26 | 65.43 | 55.45 |
2010 | 75.54 | 90.09 | 45.41 | 65.57 | 58.82 |
2011 | 79.39 | 65.10 | 50.73 | 65.61 | 57.22 |
2012 | 96.49 | 63.62 | 27.62 | 65.62 | 58.59 |
2013 | 97.49 | 72.03 | 30.22 | 65.62 | 58.19 |
2014 | 87.87 | 82.90 | 31.99 | 65.62 | 58.85 |
2015 | 92.89 | 92.953 | 41.33 | 65.62 | 58.87 |
2016 | 115.97 | 130.19 | 65.62 | 65.62 | 59.27 |
MAPE | 19.25 | 44.61 | 21.92 | 31.08 | |
MSE | 340.46 | 2010.96 | 616.11 | 966.02 | |
Ranking | (1) | (4) | (2) | (3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-S.; Lin, K.-P.; Yan, J.-X.; Hsieh, W.-L. Renewable Power Output Forecasting Using Least-Squares Support Vector Regression and Google Data. Sustainability 2019, 11, 3009. https://doi.org/10.3390/su11113009
Chen K-S, Lin K-P, Yan J-X, Hsieh W-L. Renewable Power Output Forecasting Using Least-Squares Support Vector Regression and Google Data. Sustainability. 2019; 11(11):3009. https://doi.org/10.3390/su11113009
Chicago/Turabian StyleChen, Kuen-Suan, Kuo-Ping Lin, Jun-Xiang Yan, and Wan-Lin Hsieh. 2019. "Renewable Power Output Forecasting Using Least-Squares Support Vector Regression and Google Data" Sustainability 11, no. 11: 3009. https://doi.org/10.3390/su11113009
APA StyleChen, K. -S., Lin, K. -P., Yan, J. -X., & Hsieh, W. -L. (2019). Renewable Power Output Forecasting Using Least-Squares Support Vector Regression and Google Data. Sustainability, 11(11), 3009. https://doi.org/10.3390/su11113009