Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Image Pre-Processing and Classification
2.4. Accuracy Assessment
2.5. Spatio-Temporal Integrated Methodology—Tupu
2.6. Ecosystem Services Value Assessment
3. Results
3.1. Classification Accuracy Assessment
3.2. LC Statistics of the Basin
3.3. LC Change from 2000 to 2017
3.4. District-Wise LC Statistics
3.5. Analysis by Spatio-Temporal Integrated Methodology—Tupu
3.6. Ecosystem Services Value of the Basin
ESV Estimation from Tupu Methodology
4. Discussion
4.1. Mapping of LUCC and Its Dynamics in the KRB
4.2. Global, National, and Regional Dataset Perspectives
4.3. Comparison of LUCC Dynamics with the Other Two Major Basins in Nepal
4.4. Status of ESV
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Jordan, M.; Meyer, W.B.; Kates, R.W.; Clark, W.C.; Richards, J.F.; Turner, B.L.; Mathews, J.T. The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years; CUP Archive: Cambridge, UK, 1990. [Google Scholar]
- Vitousek, P.M. Beyond global warming—Ecology and global change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Lambin, E.; Baulies, X.; Bockstael, N.; Fischer, G.; Krug, T.; Leemans, R.; Moran, E.; Rindfuss, R.; Sato, Y.; Skole, D. Land Use and Cover Change Implementation Strategy; IGBP Report No. 48; IGBP: Stockholm, Sweden, 1999. [Google Scholar]
- Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual: Lccs; Food & Agriculture Org.: Rome, Italy, 2005; Volume 8. [Google Scholar]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Xu, C.Y.; Pu, L.J.; Zhu, M.; Li, J.G.; Chen, X.J.; Wang, X.H.; Xie, X.F. Ecological security and ecosystem services in response to land use change in the coastal area of Jiangsu, China. Sustainability 2016, 8, 816. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S., III; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Nemani, R.R.; Running, S.W. Simulated impacts of historical land cover changes on global climate in Northern Winter. Clim. Dyn. 2000, 16, 93–105. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L.; Lawrence, K.T. The US carbon budget: Contributions from land-use change. Science 1999, 285, 574–578. [Google Scholar] [CrossRef]
- Yan, M.; Liu, J.; Wang, Z.Y. Global climate responses to land use and land cover changes over the past two millennia. Atmosphere 2017, 8, 64. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Kasperson, J.X.; Kasperson, R.E.; Turner, B.L. Regions at Risk; United Nations University Press: Tokyo, Japan, 1995. [Google Scholar]
- Sharma, E.; Chettri, N.; Tse-Ring, K.; Shrestha, A.; Jing, F.; Mool, P.; Eriksson, M. Climate Change Impacts and Vulnerability in the Eastern Himalayas; ICIMOD: Patan, Nepal, 2009. [Google Scholar]
- Bajracharya, B.; Uddin, K.; Chettri, N.; Shrestha, B.; Siddiqui, S.A. Understanding land cover change using a harmonized classification system in the Himalaya a case study from Sagarmatha National Park, Nepal. Mt. Res. Dev. 2010, 30, 143–156. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- World Resources Institute. Ecosystem and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Daily, G.C. Nature’s Services; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Yongmin, Z.; Shidong, Z.; Rongchao, G. Recent advances and challenges in ecosystem service research. J. Resour. Ecol. 2014, 5, 82–90. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.L.; Yao, G.R.; Liu, G.Y. Spatial evaluation of the ecological importance based on Gis for environmental management: A case study in Xingguo County of China. Ecol. Indic. 2015, 51, 3–12. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.Y.; Yang, J.X.; Li, S.C.; Tang, W.W. Land use and land cover change in the Qinghai Lake Region of the Tibetan Plateau and its impact on ecosystem services. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef]
- Dendoncker, N.; Keune, H.; Jacobs, S.; Gómez-Baggethun, E. Inclusive ecosystem services valuation. In Ecosystem Services; Jacobs, S., Dendoncker, N., Keune, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–12. [Google Scholar]
- Xie, G.-D.; Lu, C.-X.; Leng, Y.-F.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Zhilong, Z.; Xue, W.; Yili, Z.; Jungang, G. Assessment of changes in the value of ecosystem services in the Koshi River Basin, Central High Himalayas based on land cover changes and the Ca-Markov model. J. Resour. Ecol. 2017, 8, 67–76. [Google Scholar] [CrossRef]
- Rai, R.; Zhang, Y.L.; Paudel, B.; Acharya, B.K.; Basnet, L. Land use and land cover dynamics and assessing the ecosystem service values in the trans-boundary Gandaki River Basin, Central Himalayas. Sustainability 2018, 10, 3052. [Google Scholar] [CrossRef]
- Immerzeel, W.; Stoorvogel, J.; Antle, J. Can payments for ecosystem services secure the water tower of Tibet? Agric. Syst. 2008, 96, 52–63. [Google Scholar] [CrossRef]
- Qiang, W.; Xi, C.; Degang, Y.; Changjian, W. Paying for Tibet’s environmental-ecosystem services. Environ. Sci. Technol. 2012, 46, 5264. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhang, Y.; Zeng, R.; Zhang, X.; Wang, J. Ecological and Environmental Issues Faced by a Developing Tibet; ACS Publications: Washington, DC, USA, 2012. [Google Scholar]
- Zhu, J.; Zhou, Y.; Wang, S.; Wang, L.; Wang, F.; Liu, W.; Guo, B. Multicriteria decision analysis for monitoring ecosystem service function of the three-river headwaters region of the Qinghai-Tibet Plateau, China. Environ. Monit. Assess. 2015, 187, 355. [Google Scholar] [CrossRef] [PubMed]
- Paudel, B.; Zhang, Y.L.; Li, S.C.; Liu, L.S.; Wu, X.; Khanal, N.R. Review of studies on land use and land cover change in Nepal. J. Mt. Sci. 2016, 13, 643–660. [Google Scholar] [CrossRef]
- Ye, Q.; Tian, G.; Li, X.; Chen, S. Tupu methods of spatio-temporal analysis on land use/land cover change—A case study in the Yellow River Delta. In Proceedings of the IEEE 2004 Geoscience and Remote Sensing Symposium (IGARSS’04), Anchorage, AK, USA, 20–24 September 2004; pp. 749–752. [Google Scholar]
- Uddin, K.; Shrestha, H.L.; Murthy, M.S.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B. Development of 2010 national land cover database for the Nepal. J. Environ. Manag. 2015, 148, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663. [Google Scholar] [CrossRef]
- Khatiwada, K.R.; Panthi, J.; Shrestha, M.L.; Nepal, S. Hydro-climatic variability in the Karnali River Basin of Nepal Himalaya. Climate 2016, 4, 17. [Google Scholar] [CrossRef]
- Khadka, N.; Zhang, G.; Thakuri, S. Glacial lakes in the Nepal Himalaya: Inventory and decadal dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 2. [Google Scholar] [CrossRef]
- Civco, D.L.; Hurd, J.D.; Wilson, E.H.; Song, M.; Zhang, Z. A Comparison of Land Use and Land Cover Change Detection Methods. In Proceedings of the ASPRS-ACSM Annual Conference, Washington, DC, USA, 19–26 April 2002. [Google Scholar]
- Yoon, G.; Cho, S.; Chae, G.; Park, J. Automatic land-cover classification of landsat images using feature database in a network. In Proceedings of the IGARSS 2005 symposium, Seoul, Korea, 25–29 July 2005. [Google Scholar]
- Harken, J.; Sugumaran, R. Classification of Iowa Wetlands using an airborne hyperspectral image: A comparison of the spectral angle mapper classifier and an object-oriented approach. Can. J. Remote Sens. 2005, 31, 167–174. [Google Scholar] [CrossRef]
- Gao, Y.; Mas, J.; Niemeyer, I.; Marpu, P.; Palacio, J. Object based image analysis for forest area land cover mapping. In Proceedings of the International Symposium for Spatial Data Quality (ISSDQ), Enschede, The Netherlands, 13–15 June 2007; pp. 13–15. [Google Scholar]
- Blaschke, T.; Lang, S.; Lorup, E.; Strobl, J.; Zeil, P. Object-oriented image processing in an integrated gis/remote sensing Environment and perspectives for environmental applications. Environ. Inf. Plan. Politics Public 2000, 2, 555–570. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information. ISPRS J. Photogramm. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Hay, G.J.; Blaschke, T.; Marceau, D.J.; Bouchard, A. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS J. Photogramm. 2003, 57, 327–345. [Google Scholar] [CrossRef]
- Hay, G.J.; Castilla, G. Geographic object-based image analysis (Geobia): A new name for a new discipline. In Object-Based Image Analysis; Springer: Berlin, Germany, 2008; pp. 75–89. [Google Scholar]
- Uddin, K.; Matin, M.A.; Maharjan, S. Assessment of land cover change and its impact on changes in soil erosion risk in Nepal. Sustainability 2018, 10, 4715. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m resolution: A pok-based operational approach. ISPRS J. Photogramm. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J. Accuracy assessment of land use/land cover classification using remote Sensing and gis. Int. J. Geosci. 2017, 8, 611. [Google Scholar] [CrossRef]
- Tilahun, A.; Teferie, B. Accuracy assessment of land use land cover classification using Google Earth. Am. J. Environ. Prot. 2015, 4, 193–198. [Google Scholar] [CrossRef]
- Xue, W.; Jungang, G.; Yili, Z.; Linshan, L.; Zhilong, Z.; Paudel, B. Land cover status in the Koshi River Basin, Central Himalayas. J. Resour. Ecol. 2017, 8, 10–19. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; & Song, Q. Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef]
- Paudyal, K.; Baral, H.; Putzel, L.; Bhandari, S.; Keenan, R. Change in land use and ecosystem services delivery from community-based forest landscape restoration in the Phewa Lake Watershed, Nepal. Int. For. Rev. 2017, 19, 88–101. [Google Scholar] [CrossRef]
- Regmi, R.; Saha, S.; Balla, M. Geospatial analysis of land use land cover change modeling at Phewa Lake Watershed of Nepal by using cellular automata Markov model. Int. J. Curr. Eng. Technol. 2014, 4, 2617–2627. [Google Scholar]
- Rijal, S.; Rimal, B.; Sloan, S. Flood hazard mapping of a rapidly urbanizing city in the Foothills (Birendranagar, Surkhet) of Nepal. Land 2018, 7, 60. [Google Scholar] [CrossRef]
- Su, W.; Liang, D.; Tang, G.; Xiao, Z.; Li, J.; Wan, Z.; Li, P. Landsat-based long–term lucc mapping in Xinlicheng Reservoir Basin using object-based classification. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 64, p. 012024. [Google Scholar] [CrossRef]
- Paudel, B.; Gao, J.G.; Zhang, Y.L.; Wu, X.; Li, S.C.; Yan, J.Z. Changes in cropland status and their driving factors in the Koshi River Basin of the Central Himalayas, Nepal. Sustainability 2016, 8, 933. [Google Scholar] [CrossRef]
- Ye, Q.H.; Liu, G.H.; Tian, G.L.; Chen, S.L.; Huang, C.; Chen, S.P.; Liu, Q.S.; Chang, J.; Shi, Y. Geospatial-temporal analysis of land-use changes in the Yellow River delta during the Last 40 Years. Sci. China Ser. D 2004, 47, 1008–1024. [Google Scholar] [CrossRef]
- Hu, H.-B.; Liu, H.-Y.; Hao, J.-F.; An, J. Analysis of land use change characteristics based on remote sensing and gis in the Jiuxiang River Watershed. Int. J. Smart Sens. Intell. Syst. 2012, 5. [Google Scholar] [CrossRef]
- Lucas, I.; Janssen, F.; van der Wel, F.J. Accuracy assessment ofsatellite derived landcover data: A review. Photogramm. Eng. Remote Sens. 1994, 60, 426–479. [Google Scholar]
- Gilani, H.; Shrestha, H.L.; Murthy, M.S.; Phuntso, P.; Pradhan, S.; Bajracharya, B.; Shrestha, B. Decadal land cover change dynamics in Bhutan. J. Enviorn. Manag. 2015, 148, 91–100. [Google Scholar] [CrossRef]
- Song, X.; Yang, G.X.; Yan, C.Z.; Duan, H.C.; Liu, G.Y.; Zhu, Y.L. Driving forces behind land use and cover change in the Qinghai-Tibetan Plateau: A case study of the source region of the Yellow River, Qinghai Province, China. Environ. Earth Sci. 2009, 59, 793–801. [Google Scholar] [CrossRef]
- Uddin, K.; Chaudhary, S.; Chettri, N.; Kotru, R.; Murthy, M.; Chaudhary, R.P.; Ning, W.; Shrestha, S.M.; Gautam, S.K. The changing land cover and fragmenting forest on the roof of the world: A case study in Nepal’s Kailash sacred landscape. Landsc. Urban Plan. 2015, 141, 1–10. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Bajracharya, O.R.; Baidya, S. Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat Data; International Centre for Integrated Mountain Development: Patan, Nepal, 2014. [Google Scholar]
- Tsarouchi, G.M.; Mijic, A.; Moulds, S.; Buytaert, W. Historical and future land-cover changes in the upper Ganges Basin of India. Int. J. Remote Sens. 2014, 35, 3150–3176. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, D.; Shen, Y. Land use change and its driving forces on the Tibetan Plateau during 1990–2000. Catena 2008, 72, 56–66. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Cui, X.F.; Graf, H.F. Recent land cover changes on the Tibetan Plateau: A Review. Clim. Chang. 2009, 94, 47–61. [Google Scholar] [CrossRef]
- Rimal, B. Urbanization and the decline of agricultural land in Pokhara sub-metropolitan city, Nepal. J. Agric. Sci. 2012, 5, 54. [Google Scholar] [CrossRef]
- Massey, D.S.; Axinn, W.G.; Ghimire, D.J. Environmental change and out-migration: Evidence from Nepal. Popul. Environ. 2010, 32, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Schmidt-Vogt, D.; Myrholt, O. “Humla Development Initiatives” for better livelihoods in the face of isolation and conflict. Mt. Res. Dev. 2009, 29, 211–219. [Google Scholar] [CrossRef]
- GoN. Nepal Human Development Report 2014; Nepal Planning Commission: Kathmandu, Nepal, 2014. [Google Scholar]
- Richard, C.; Basnet, K.; Sah, J.P.; Raut, Y. Grassland Ecology and Management in Protected Areas of Nepal; ICIMOD: Patan, Nepal, 2000; Volume 12000. [Google Scholar]
- Rounce, D.R.; Watson, C.S.; McKinney, D.C. Identification of hazard and risk for glacial lakes in the Nepal Himalaya using satellite imagery from 2000–2015. Remote Sens. 2017, 9, 654. [Google Scholar] [CrossRef]
- Chaudhary, R.P.; Uprety, Y.; Rimal, S.K. Deforestation in Nepal: Causes, consequences, and responses. In Biological and Environmental Hazards, Risks, and Disasters; Sivanpillai, R., Shroder, J.F., Eds.; Elsevier: Amsterdam, The Nethetrlands, 2016; pp. 335–372. [Google Scholar]
- Bajracharya, D. Deforestation in the food/fuel context: Historical and political perspectives from Nepal. Mt. Res. Dev. 1983, 3, 227–240. [Google Scholar] [CrossRef]
- Liu, J.; Gao, J.; Nie, Y. Measurement and dynamic changes of ecosystem services value for the Tibetan Plateau based on remote sensing techniques. Geogr. Geoinf. Sci. 2009, 3, 17–29. [Google Scholar]
- Liu, X.; Ren, Z.; Lin, Z. Dynamic assessment of the values of Co2 fixation and O2 release in Qinghai-Tibet Plateau ecosystem. Geogr. Res. 2013, 32, 663–670. [Google Scholar]
- Mou, X.; Zhao, X.; Rao, S. Changes of ecosystem structure in Qinghai-Tibet Plateau ecological barrier area during recent ten years. Acta Sci. Nat. Univ. Pekin. 2016, 52, 279–286. [Google Scholar]
- N.P. Commission. Nepal and the Millennium Development Goals Final Status Report 2000–2015; N.P. Commission: Kathmandu, Nepal, 2016. [Google Scholar]
- Schild, A. Icimod’s position on climate change and mountain systems: The case of the Hindu Kush–Himalayas. Mt. Res. Dev. 2008, 28, 328–331. [Google Scholar] [CrossRef]
- Oli, K.P.; Chaudhary, S.; Sharma, U.R. Are governance and management effective within protected areas of the Kanchenjunga landscape (Bhutan, India and Nepal). Parks 2013, 19, 25–36. [Google Scholar] [CrossRef]
Acquired Year | Number of Scenes | Sensor | Spatial Resolution (m) | Repeat Cycle (Days) | Number of Bands |
---|---|---|---|---|---|
2000 | 5 | Enhanced Thematic Mapper (ETM) | 30 | 16 | 6 |
2010 | 5 | Thematic Mapper (TM) | 30 | 16 | 6 |
2017 | 5 | Operational Land Imager (OLI) | 30 | 16 | 9 |
Land Cover Biome | ESV Coefficient ($ ha−1) | ||
---|---|---|---|
2003 | 2010 * | 2017 * | |
Forest | 2168.84 | 2587.1 | 3017.23 |
Shrub land | 1089.19 | 1299.24 | 1515.25 |
Grassland | 565.88 | 675.01 | 787.24 |
Cropland | 699.37 | 834.24 | 972.94 |
Barren area | 59.83 | 71.37 | 83.23 |
Water bodies | 6552.97 | 7816.72 | 9116.31 |
Snow/glacier | 59.83 | 71.37 | 83.23 |
LULC Type | Forest | Shrub/Grassland | Agriculture | Bare Area | Waterbody | Snow/Ice | Built-Up | Total | User’s Accuracy | Producer’s Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
Forest | 185 | 8 | 3 | 2 | 0 | 0 | 0 | 198 | 93.43 | 94.87 |
Shrub/grassland | 4 | 143 | 3 | 3 | 1 | 5 | 0 | 159 | 89.94 | 82.66 |
Agriculture | 2 | 4 | 138 | 2 | 2 | 0 | 1 | 149 | 92.62 | 92.62 |
Bare Area | 2 | 7 | 3 | 185 | 2 | 6 | 0 | 205 | 90.24 | 90.69 |
Waterbody | 1 | 2 | 0 | 3 | 44 | 4 | 0 | 54 | 81.48 | 84.62 |
Snow/Ice | 1 | 8 | 0 | 6 | 2 | 80 | 0 | 97 | 82.47 | 84.21 |
Built-up | 0 | 1 | 2 | 3 | 1 | 0 | 21 | 28 | 75 | 95.45 |
Total | 195 | 173 | 149 | 204 | 52 | 95 | 22 | 890 |
Land Cover Classes | Land Cover Area (km2) | Change from 2000–2017 (km2) | ||
---|---|---|---|---|
2000 | 2010 | 2017 | ||
Forest | 15,426.92 | 15,426.45 | 15,426.32 | −0.59 |
Shrub/grassland | 8445.37 | 8480.75 | 8527.58 | 82.21 |
Agriculture | 6047.97 | 6103.79 | 6049.40 | 1.44 |
Bare Area | 12,982.76 | 13,345.45 | 13,974.73 | 991.97 |
Waterbody | 142.72 | 140.23 | 136.58 | −6.14 |
Snow/Ice | 3064.61 | 2610.55 | 1992.54 | −1072.07 |
Built-up | 13.45 | 16.50 | 16.57 | 3.11 |
2000 | 2017 | ||||||
---|---|---|---|---|---|---|---|
Forest | Shrub/Grassland | Agriculture | Bare | Waterbody | Snow | Built-Up | |
Forest | 15,424.8 | 0.1 | 1.6 | 0.2 | 0.1 | 0 | 0 |
Shrub/grassland | 0.3 | 8441.8 | 0.3 | 0.1 | 2.4 | 0 | 0 |
Agriculture | 0.1 | 0.8 | 6043.7 | 0.3 | 0 | 0 | 2.9 |
Bare | 0.1 | 7.8 | 0.2 | 12,967.1 | 7.0 | 0.1 | 0.3 |
Waterbody | 0.3 | 6.0 | 3.2 | 8.6 | 123.2 | 0.9 | 0 |
Snow/ice | 0 | 70.7 | 0.0 | 997.6 | 3.9 | 1991.1 | 0 |
Built-up | 0 | 0 | 0.1 | 0 | 0 | 0 | 13.4 |
Year | District | Forest | Shrub/Grassland | Agriculture | Bare Area | Waterbody | Snow | Built-Up |
---|---|---|---|---|---|---|---|---|
2017 | Humla | 554.85 | 1502.41 | 231.68 | 3139.61 | 10.38 | 557.95 | 0 |
Bajhang | 1111.30 | 965.99 | 490.65 | 676.13 | 5.67 | 189.58 | 0.07 | |
Mugu | 744.70 | 583.43 | 268.33 | 1423.74 | 13.86 | 190.12 | 0 | |
Bajura | 1073.73 | 665.64 | 383.70 | 127.74 | 2.28 | 44.39 | 0 | |
Dolpa | 474.10 | 1553.26 | 117.54 | 5162.55 | 14.81 | 609.16 | 0.05 | |
Jumla | 946.63 | 809.83 | 258.77 | 489.79 | 2.16 | 45.51 | 0 | |
Kalikot | 1017.27 | 300.75 | 304.47 | 23.70 | 2.41 | 0.02 | 0 | |
Doti | 1520.05 | 57.27 | 433.85 | 6.90 | 6.94 | 0 | 0 | |
Achham | 1068.50 | 47.04 | 571.57 | 5.04 | 6.69 | 0 | 0 | |
Jajarkot | 1254.53 | 332.02 | 544.05 | 83.08 | 2.82 | 3.35 | 0 | |
Dailekh | 822.03 | 52.16 | 593.14 | 1.44 | 3.57 | 0.00 | 0 | |
Rukum | 1273.07 | 672.41 | 552.40 | 317.39 | 6.47 | 31.53 | 0 | |
Surkhet | 1725.61 | 103.76 | 600.81 | 13.45 | 20.97 | 0 | 13.26 | |
Burang * | - | 529.24 | 40.30 | 2242.65 | 11.64 | 138.70 | 3.14 | |
2010 | Humla | 554.47 | 1463.42 | 231.47 | 2181.66 | 4.34 | 1560.29 | 0 |
Bajhang | 1110.54 | 954.58 | 496.15 | 443.45 | 8.80 | 425.80 | 0.07 | |
Mugu | 744.50 | 557.39 | 268.14 | 849.36 | 11.88 | 792.90 | 0 | |
Bajura | 1073.00 | 662.65 | 383.85 | 103.11 | 2.78 | 72.09 | 0 | |
Dolpa | 476.95 | 1057.18 | 117.52 | 3813.37 | 16.23 | 2450.14 | 0.05 | |
Jumla | 946.32 | 790.80 | 258.00 | 290.02 | 0.00 | 267.54 | 0 | |
Kalikot | 1015.49 | 297.50 | 308.67 | 15.61 | 3.44 | 7.91 | 0 | |
Doti | 1519.37 | 46.73 | 434.57 | 15.47 | 8.86 | 0 | 0 | |
Achham | 1068.13 | 36.70 | 571.58 | 12.76 | 9.68 | 0 | 0 | |
Jajarkot | 1253.91 | 317.81 | 544.52 | 51.99 | 5.63 | 46.01 | 0 | |
Dailekh | 822.24 | 50.96 | 592.62 | 2.56 | 3.86 | 0.09 | 0 | |
Rukum | 1271.72 | 639.64 | 553.13 | 225.48 | 10.17 | 153.14 | 0 | |
Surkhet | 1724.32 | 93.40 | 601.21 | 16.16 | 29.54 | 0 | 13.22 | |
Burang * | - | 528.25 | 45.30 | 2226.90 | 12.11 | 150.35 | 3.10 | |
2000 | Humla | 554.85 | 1502.45 | 231.64 | 3061.11 | 10.45 | 636.29 | 0 |
Bajhang | 1111.22 | 965.94 | 490.64 | 621.93 | 5.50 | 243.77 | 0.07 | |
Mugu | 744.70 | 583.43 | 268.33 | 1363.23 | 13.86 | 250.62 | 0 | |
Bajura | 1073.73 | 665.58 | 383.70 | 105.83 | 2.21 | 66.42 | 0 | |
Dolpa | 474.10 | 1552.77 | 117.54 | 4690.94 | 10.10 | 1085.84 | 0.05 | |
Jumla | 946.29 | 789.54 | 258.77 | 387.18 | 0.92 | 169.98 | 0 | |
Kalikot | 1017.27 | 300.75 | 304.47 | 23.70 | 2.41 | 0.02 | 0 | |
Doti | 1519.99 | 57.27 | 433.82 | 6.79 | 7.05 | 0.00 | 0 | |
Achham | 1068.37 | 47.01 | 571.56 | 5.04 | 6.87 | 0.00 | 0 | |
Jajarkot | 1254.53 | 314.83 | 544.05 | 59.41 | 2.75 | 44.28 | 0 | |
Dailekh | 822.03 | 52.16 | 593.14 | 1.49 | 3.51 | 0 | 0 | |
Rukum | 1273.07 | 666.71 | 552.39 | 244.18 | 6.08 | 110.85 | 0 | |
Surkhet | 1726.82 | 103.67 | 601.09 | 14.09 | 21.24 | 0 | 10.90 | |
Burang * | - | 526.67 | 41.21 | 2205.03 | 12.38 | 177.80 | 2.39 |
Land Cover Types | ESV (108$) | Change in ESV (106$) | ||
---|---|---|---|---|
2000 | 2010 | 2017 | 2000–2017 | |
Forest | 33.459 | 33.458 (39.91) | 33.457 (46.545) | −0.1 (13.09) |
Shrub/grassland | 6.291 | 6.317(7.535) | 6.352 (8.837) | 6.12 (2.55) |
Agriculture | 4.230 | 4.269 (5.092) | 4.231 (5.886) | 0.1 (1.66) |
Bare Area | 0.777 | 0.798 (0.952) | 0.836 (1.163) | 5.90 (0.39) |
Waterbody | 0.935 | 0.919 (1.096) | 0.895 1.245) | −3.90 (0.31) |
Snow/Ice | 0.183 | 0.156 (0.186) | 0.119 (0.166) | −6.39 (−0.02) |
Total | 45.87 | 45.92 (54.77) | 45.89 (63.84) | 1.59 (17.97) |
Land Cover Categories | Arisen Tupu | Shrunken Tupu | ||
---|---|---|---|---|
Area (×10−2 km2) | Total ESV ($106) | Area (×10−2 km2) | Total ESV ($ 106) | |
Forest | 144 | 0.31 (0.43) | 205.38 | −0.45 (−0.62) |
Shrub/grassland | 8546.58 | 6.37 (8.86) | 312.93 | −0.23 (−0.32) |
Agriculture | 546.66 | 0.38 (0.53) | 412.65 | −0.29 (−0.40) |
Bare area | 100,677.51 | 6.02 (8.38) | 1551.51 | −0.09 (−0.13) |
Waterbody | 1332.18 | 8.73 (12.14) | 1956.06 | −12.82 (17.83) |
Snow/ice | 96.84 | 0.01 (0.01) | 107,216.55 | −6.41 (−6.41) |
Total | 21.82 (30.35) | −20.29 (−28.23) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, B.; Ye, Q.; Khadka, N. Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas. Sustainability 2019, 11, 3183. https://doi.org/10.3390/su11113183
Shrestha B, Ye Q, Khadka N. Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas. Sustainability. 2019; 11(11):3183. https://doi.org/10.3390/su11113183
Chicago/Turabian StyleShrestha, Bhaskar, Qinghua Ye, and Nitesh Khadka. 2019. "Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas" Sustainability 11, no. 11: 3183. https://doi.org/10.3390/su11113183
APA StyleShrestha, B., Ye, Q., & Khadka, N. (2019). Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas. Sustainability, 11(11), 3183. https://doi.org/10.3390/su11113183