A Transit Route Network Design Problem Considering Equity
Abstract
:1. Introduction
2. Literature Review
2.1. Equity in Public Transportation
2.2. Indexes for Public Transportation
3. Model Specifications
3.1. Model Framework
3.2. Application of Equity Indexes
3.3. Route Network Decision-Making Process
3.4. Frequency Setting by Bi-Level Modeling
4. Numerical Example
4.1. Basic Unit Input
4.2. Transit Route Network Decision-Making
4.3. Frequency Setting
5. Discussion
6. Conclusions and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Johnston, R.A. Indicators for Sustainable Transportation Planning. Transp. Res. Rec. J. Transp. Res. Board 2008, 2067, 146–154. [Google Scholar] [CrossRef] [Green Version]
- López, E.; Monzón, A. Integration of Sustainability Issues in Strategic Transportation Planning: A Multi-criteria Model for the Assessment of Transport Infrastructure Plans. Comput. Civ. Infrastruct. Eng. 2010, 25, 440–451. [Google Scholar] [CrossRef]
- Manaugh, K.; Badami, M.G.; El-Geneidy, A.M. Integrating social equity into urban transportation planning: A critical evaluation of equity objectives and measures in transportation plans in North America. Transp. Policy 2015, 37, 167–176. [Google Scholar] [CrossRef]
- Hahn, J.-S.; Kho, S.-Y.; Choi, K.; Kim, D.-K. Sustainability Evaluation of Rapid Routes for Buses with a Network DEA Model. Int. J. Sustain. Transp. 2017, 5, 659–669. [Google Scholar] [CrossRef]
- Litman, T.; Burwell, D. Issues in sustainable transportation. Int. J. Glob. Environ. Issues 2006, 6, 331. [Google Scholar] [CrossRef]
- Mandl, C.E. Evaluation and optimization of urban public transportation networks. Eur. J. Oper. Res. 1980, 5, 396–404. [Google Scholar] [CrossRef]
- Kain, J.F.; Meyer, J.R. Transportation and Poverty. Public Interest 1970, 18, 75–87. [Google Scholar]
- Hodge, D.C. Fiscal Equity in Urban Mass Transit Systems: A Geographic Analysis. Ann. Assoc. Am. Geogr. 1988, 78, 288–306. [Google Scholar] [CrossRef]
- Viegas, J.M. Making urban road pricing acceptable and effective: searching for quality and equity in urban mobility. Transp. Policy 2001, 8, 289–294. [Google Scholar] [CrossRef]
- Levinson, D. Equity Effects of Road Pricing: A Review. Transp. Rev. 2010, 30, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Golub, A.; Martens, K. Using principles of justice to assess the modal equity of regional transportation plans. J. Transp. Geogr. 2014, 41, 10–20. [Google Scholar] [CrossRef]
- Weinstein, A.; Sciara, G.-C. Unraveling Equity in Hot Lane Planning a View from Practice. J. Plan. Educ. Res. 2006, 26, 174–184. [Google Scholar] [CrossRef]
- Mollanejad, M.; Zhang, L. Incorporating spatial equity into interurban road network design. J. Transp. Geogr. 2014, 39, 156–164. [Google Scholar] [CrossRef]
- Antunes, A.; Seco, Á.; Pinto, N. An Accessibility-Maximization Approach to Road Network Planning. Comput. Civ. Infrastruct. Eng. 2003, 18, 224–240. [Google Scholar] [CrossRef]
- Chen, A.; Yang, C. Stochastic Transportation Network Design Problem with Spatial Equity Constraint. Transp. Res. Rec. J. Transp. Res. Board 2004, 1882, 97–104. [Google Scholar] [CrossRef]
- Duthie, J.; Waller, S. Incorporating Environmental Justice Measures into Equilibrium-Based Network Design. Transp. Res. Rec. 2008, 2089, 58–65. [Google Scholar] [CrossRef]
- Feng, C.; Wu, J. Using Multi-Objective Fuzzy De Novo Programming and GIS in Highway Network Investment Planning. J. East. Asia Soc. Transp. Stud. 1999, 3, 81–90. [Google Scholar]
- Feng, C.-M.; Wu, J.Y.-J. Highway Investment Planning Model for Equity Issues. J. Urban Plan. Dev. 2003, 129, 161–176. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, H. Benefit distribution and equity in road network design. Transp. Res. Part B: Methodol. 2002, 36, 19–35. [Google Scholar] [CrossRef]
- Santos, B.F.; Antunes, A.; Miller, E.J. Integrating Equity Objectives in a Road Network Design Model. Transp. Res. Rec. J. Transp. Res. Board 2008, 2089, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Bell, M.G.H. Models and Algorithms for Road Network Design: A Review and Some New Developments. Transp. Rev. 1998, 18, 257–278. [Google Scholar] [CrossRef]
- Caggiani, L.; Camporeale, R.; Ottomanelli, M. Facing equity in transportation Network Design Problem: A flexible constraints based model. Transp. Policy 2017, 55, 9–17. [Google Scholar] [CrossRef]
- Caggiani, L.; Camporeale, R.; Binetti, M.; Ottomanelli, M. A road network design model considering horizontal and vertical equity: Evidences from an empirical study. Case Stud. Transp. Policy 2017, 5, 392–399. [Google Scholar] [CrossRef]
- Camporeale, R.; Caggiani, L.; Ottomanelli, M. Modeling horizontal and vertical equity in the public transport design problem: A case study. Transp. Res. Part A Policy Pract. 2018. (In Press) [Google Scholar] [CrossRef]
- Camporeale, R.; Caggiani, L.; Fonzone, A.; Ottomanelli, M. Quantifying the Impacts of Horizontal and Vertical Equity in Transit Route Planning. Transp. Plan. Technol. 2017, 40, 28–44. [Google Scholar] [CrossRef]
- Duthie, J.; CervenKa, K.; Waller, S. Environmental Justice Analysis: Challenges for Metropolitan Transportation Planning. Transp. Res. Rec. 2008, 2013, 8–12. [Google Scholar] [CrossRef]
- Lee, Y.-J. Comparative Measures for Transit Network Performance Analysis. J. Transp. Res. Forum 2008, 47, 149–170. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Choi, J.; Yu, J.; Choi, K. Geographical Applications of Performance Measures for Transit Network Directness. J. Public Transp. 2015, 18, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, E.M.; Duthie, J.; Unnikrishnan, A.; Waller, S.T. Incorporating equity into the transit frequency-setting problem. Transp. Res. Part A: Policy Pr. 2012, 46, 190–199. [Google Scholar] [CrossRef]
- Currie, G. Quantifying spatial gaps in public transport supply based on social needs. J. Transp. Geogr. 2010, 18, 31–41. [Google Scholar] [CrossRef]
- Delbosc, A.; Currie, G. Using Lorenz curves to assess public transport equity. J. Transp. Geogr. 2011, 19, 1252–1259. [Google Scholar] [CrossRef]
- Mishra, S.; Welch, T.F.; Jha, M.K. Performance indicators for public transit connectivity in multi-modal transportation networks. Transp. Res. Part A: Policy Pr. 2012, 46, 1066–1085. [Google Scholar] [CrossRef]
- Park, J.-S.; Gang, S.-C. A Model for Evaluating the Connectivity of Multimodal Transit Networks. J. Korean Soc. Transp. 2010, 28, 85–98. [Google Scholar]
- Ryus, P.; Connor, M.; Corbett, S.; Rodenstein, A.; Wargelin, L.; Ferreira, L.; Nakanishi, Y.; Blume, K. A Guidebook for Developing a Transit Performance-Measurement System, TCRP Report 88; Transportation Research Board: Washington, DC, USA, 2003. [Google Scholar]
- Welch, T.F. Equity in transport: The distribution of transit access and connectivity among affordable housing units. Transp. Policy 2013, 30, 283–293. [Google Scholar] [CrossRef]
- Welch, T.F.; Mishra, S. A measure of equity for public transit connectivity. J. Transp. Geogr. 2013, 33, 29–41. [Google Scholar] [CrossRef]
- Karner, A. Assessing public transit service equity using route-level accessibility measures and public data. J. Transp. Geogr. 2018, 67, 24–32. [Google Scholar] [CrossRef]
- Ben-Elia, E.; Benenson, I. A spatially-explicit method for analyzing the equity of transit commuters’ accessibility. Transp. Res. Part A: Policy Pr. 2019, 120, 31–42. [Google Scholar] [CrossRef]
- Wu, J.; Liu, M.; Sun, H.; Li, T.; Gao, Z.; Wang, D.Z.W. Equity-based timetable synchronization optimization in urban subway network. Transp. Res. Part C: Emerg. Technol. 2015, 51, 1–18. [Google Scholar] [CrossRef]
- Sheffi, Y. Urban Transportation Networks; Prentice-Hall, INC.: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Spiess, H.; Florian, M. Optimal strategies: A new assignment model for transit networks. Transp. Res. Part B: Methodol. 1989, 23, 83–102. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, S.B.; Mohan, S.; Tom, V.M. Urban Bus Transit Route Network Design Using Genetic Algorithm. J. Transp. Eng. 1998, 124, 368–375. [Google Scholar] [CrossRef]
- Bielli, M.; Caramia, M.; Carotenuto, P. Genetic algorithms in bus network optimization. Transp. Res. Part C: Emerg. Technol. 2002, 10, 19–34. [Google Scholar] [CrossRef]
- Tom, V.M.; Mohan, S. Transit Route Network Design Using Frequency Coded Genetic Algorithm. J. Transp. Eng. 2003, 129, 186–195. [Google Scholar] [CrossRef]
- Ngamchai, S.; Lovell, D.J. Optimal Time Transfer in Bus Transit Route Network Design Using a Genetic Algorithm. J. Transp. Eng. 2003, 129, 510–521. [Google Scholar] [CrossRef]
- Szeto, W.; Wu, Y. A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong. Eur. J. Oper. Res. 2011, 209, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Arbex, R.O.; Da Cunha, C.B. Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm. Transp. Res. Part B: Methodol. 2015, 81, 355–376. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, D.-K.; Kho, S.-Y.; Lee, Y.-G. Integrated Decision Model of Mode, Line, and Frequency for a New Transit Line to Improve the Performance of the Transportation Network. KSCE J. Civ. Eng. 2016, 20, 393–400. [Google Scholar] [CrossRef]
- Kim, G.S.; Woo, J.W.; Lee, S.H.; Kim, J.Y.; Yang, I.S.; Yu, J.K.; Kim, S.H.; Kim, K.M.; Baek, S.H. Feasibility Manual of Korea; Korea Development Institute: Seoul, Korea, 2008. [Google Scholar]
- INRO. EMME Prompt Manual Release 3.3; INRO Consultants INC.: Montreal, QC, Canada, 2010. [Google Scholar]
Procedure | Considerations |
---|---|
Assessment of existing network and target line selection (1) | Target line selection by (A railroad line cannot be selected) |
Target node selection (2) | Target node selection by |
Alternative line determination (3) | Alternative lines via target node Min. and max. line length Circuity Redundancy with the existing line Alternative line selection by |
Frequency setting (4) | Min. and max frequency of lines |
Iteration | No. of Lines | Target Node | ||
---|---|---|---|---|
1 | 4 | 111 | 2.337 | 4.222 |
2 | 4 | 105 | 2.049 | 4.863 |
3 | 4 | 112 | 2.086 | 2.818 |
4 | 5 | 107 | 2.021 | 2.411 |
5 | 6 | 112 | 1.954 | 2.812 |
6 | 6 | 112 | 1.913 | 2.369 |
7 | 6 | 112 | 1.918 | 2.235 |
8 | 7 | 105 | 1.875 | 2.179 |
9 | 8 | 112 | 1.849 | 2.103 |
10 | 9 | 112 | 1.842 | 2.098 |
11 | 10 | 112 | 1.840 | 2.089 |
12 | 11 | 109 | 1.839 | 2.088 |
13 | 12 | 112 | 1.824 | 2.091 |
14 | 12 | 105 | 1.824 | 2.091 |
15 | 13 | 112 | 1.821 | 2.098 |
16 | 13 | 109 | 1.819 | 2.089 |
17 | 14 | 112 | 1.814 | 2.089 |
18 | 14 | 105 | 1.814 | 2.088 |
19 | 15 | 112 | 1.809 | 2.088 |
20 | 15 | 105 | 1.810 | 2.087 |
21 | 16 | 112 | 1.807 | 2.090 |
22 | 16 | 104 | 1.807 | 2.089 |
23 | 17 | 112 | 1.803 | 2.086 |
24 | 17 | 107 | 1.803 | 2.084 |
25 | 18 | 112 | 1.799 | 2.086 |
26 | 18 | 107 | 1.799 | 2.084 |
27 | 19 | 113 | 1.798 | 2.084 |
28 | 20 | 102 | 1.794 | 2.084 |
29 | 21 | 108 | 1.791 | 2.082 |
30 | 22 | 102 | 1.790 | 2.082 |
31 | 23 | 102 | 1.786 | 2.082 |
32 | 24 | 108 | 1.785 | 2.082 |
33 | 25 | 111 | 1.783 | 2.081 |
34 | 26 | - | 1.782 | 2.080 |
Line No. | Length (km) | Mode | Via Node | Frequency (Headway) | Line No. | Length (km) | Mode | Via Node | Frequency (Headway) |
---|---|---|---|---|---|---|---|---|---|
1 | 33 | Subway | 1-2-3-6-8-10-13 | 20(3) | 14 | 29 | Bus | 9-15-6-8-10-14 | 15(4) |
2 | 13 | Bus | 5-4-6-15-7 | 20(3) | 15 | 29 | Bus | 2-5-4-6-8-10-11 | 6(10) |
3 | 27 | Bus | 12-4-6-15-9 | - | 16 | 21 | Bus | 1-2-3-6-4-5 | - |
4 | 15 | Bus | 12-4-2-3 | 12(5) | 17 | 20 | Bus | 1-2-4-6-15-7 | - |
5 | 23 | Bus | 12-11-10-14 | 5(12) | 18 | 17 | Bus | 7-10-14-13 | 15(4) |
6 | 11 | Bus | 8-15-7-10 | 15(4) | 19 | 17 | Bus | 7-10-13 | 12(5) |
7 | 17 | Bus | 12-11-13-14 | - | 20 | 23 | Bus | 4-2-3-6-8-10-11 | - |
8 | 28 | Bus | 5-4-6-8-10-14-13 | - | 21 | 13 | Bus | 4-2-3-6-15-7 | - |
9 | 22 | Bus | 7-10-11-12 | 5(12) | 22 | 11 | Bus | 2-3-6-8-15-7 | - |
10 | 27 | Bus | 11-12-4-6-3 | 2(30) | 23 | 29 | Bus | 2-3-6-8-10-14 | - |
11 | 23 | Bus | 8-10-11-12 | 5(12) | 24 | 14 | Bus | 5-2-3-6-15 | 12(5) |
12 | 16 | Bus | 2-3-6-15-9 | 20(3) | 25 | 20 | Bus | 5-4-6-8-15-9 | - |
13 | 14 | Bus | 1-2-5 | 12(5) | 26 | 12 | Bus | 10-11-13-14 | - |
Network | Number of Lines | Total Cost (Million KRW/hr) | User Cost (Million KRW/hr) | Operator Cost (Million KRW/hr) | Modal Split (Car/Transit) | TDOCO | Max. (DOCOi) |
---|---|---|---|---|---|---|---|
Existing | 4 | 225.6 | 225.1 | 0.5 | 80.3%/19.7% | 2.306 | 4.221 |
Improved | 16 | 204.8 | 203.0 | 1.8 | 72.3%/27.7% | 1.797 | 2.075 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kho, S.-Y.; Kim, D.-K. A Transit Route Network Design Problem Considering Equity. Sustainability 2019, 11, 3527. https://doi.org/10.3390/su11133527
Kim M, Kho S-Y, Kim D-K. A Transit Route Network Design Problem Considering Equity. Sustainability. 2019; 11(13):3527. https://doi.org/10.3390/su11133527
Chicago/Turabian StyleKim, Myeonghyeon, Seung-Young Kho, and Dong-Kyu Kim. 2019. "A Transit Route Network Design Problem Considering Equity" Sustainability 11, no. 13: 3527. https://doi.org/10.3390/su11133527
APA StyleKim, M., Kho, S. -Y., & Kim, D. -K. (2019). A Transit Route Network Design Problem Considering Equity. Sustainability, 11(13), 3527. https://doi.org/10.3390/su11133527