Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling Basis
2.1.1. Establishment of the Indicator Layer for the PSR Model
2.1.2. Construction of the Indicator System for the PSR Model
2.2. Evaluation Model on Atmospheric Environment Sustainability
2.2.1. Basic Concept of the Model
2.2.2. Evaluation Steps
3. Results
3.1. Standardize the Evaluation Indicator
3.2. Determine the Weights
3.3. Calculate the Comprehensive Evaluation Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Calculation Results by the Three Different Methods for Each Province in Northeast China
The Element Layer | Year | The Entropy Weight Method | The Rough Set Method | Rough Set + Entropy Weight Method |
---|---|---|---|---|
The Pressure Layer | 2009 | 0.8541 | 0.7277 | 0.8312 |
2010 | 0.7441 | 0.7259 | 0.8248 | |
2011 | 0.8253 | 0.7698 | 0.8810 | |
2012 | 0.7355 | 0.6947 | 0.8000 | |
2013 | 0.7490 | 0.7143 | 0.8162 | |
2014 | 0.8288 | 0.7736 | 0.8737 | |
2015 | 0.8480 | 0.6049 | 0.6996 | |
2016 | 0.4321 | 0.4541 | 0.5118 | |
2017 | 0.4223 | 0.2848 | 0.3320 | |
The State Layer | 2009 | 0.2802 | 0.3164 | 0.3423 |
2010 | 0.2978 | 0.2491 | 0.2798 | |
2011 | 0.3399 | 0.4173 | 0.4551 | |
2012 | 0.4399 | 0.4096 | 0.4523 | |
2013 | 0.4805 | 0.4349 | 0.4811 | |
2014 | 0.5015 | 0.5482 | 0.5972 | |
2015 | 0.4858 | 0.4646 | 0.5147 | |
2016 | 0.4005 | 0.4534 | 0.5164 | |
2017 | 0.5748 | 0.4524 | 0.5162 | |
The Response Layer | 2009 | 0.5419 | 0.3788 | 0.3680 |
2010 | 0.2241 | 0.3162 | 0.3089 | |
2011 | 0.2706 | 0.2277 | 0.2108 | |
2012 | 0.2022 | 0.3053 | 0.2977 | |
2013 | 0.7917 | 0.7251 | 0.7017 | |
2014 | 1.0193 | 0.9406 | 0.9290 | |
2015 | 0.5652 | 0.4886 | 0.4666 | |
2016 | 0.5460 | 0.6186 | 0.5958 | |
2017 | 0.3421 | 0.3951 | 0.3896 | |
The Sustainable Layer | 2009 | 0.5670 | 0.2794 | 0.4556 |
2010 | 0.5161 | 0.3241 | 0.4454 | |
2011 | 0.5873 | 0.4156 | 0.5912 | |
2012 | 0.5710 | 0.4463 | 0.5815 | |
2013 | 0.5674 | 0.3967 | 0.6110 | |
2014 | 0.7953 | 0.5237 | 0.7278 | |
2015 | 0.6302 | 0.4894 | 0.6869 | |
2016 | 0.4433 | 0.4326 | 0.4624 | |
2017 | 0.5015 | 0.5720 | 0.5493 |
The Element Layer | Year | The Entropy Weight Method | The Rough Set Method | Rough Set + Entropy Weight Method |
---|---|---|---|---|
The Pressure Layer | 2009 | 0.5787 | 0.8304 | 0.7045 |
2010 | 0.5291 | 0.7724 | 0.6507 | |
2011 | 0.5639 | 0.8408 | 0.7024 | |
2012 | 0.5307 | 0.7932 | 0.6620 | |
2013 | 0.5203 | 0.7740 | 0.6471 | |
2014 | 0.6030 | 0.8412 | 0.7221 | |
2015 | 0.5501 | 0.7781 | 0.6641 | |
2016 | 0.3501 | 0.4873 | 0.4187 | |
2017 | 0.3017 | 0.4121 | 0.3569 | |
The State Layer | 2009 | 0.2179 | 0.2761 | 0.2347 |
2010 | 0.2635 | 0.3322 | 0.2831 | |
2011 | 0.3164 | 0.4018 | 0.3413 | |
2012 | 0.3517 | 0.4488 | 0.3799 | |
2013 | 0.3832 | 0.4884 | 0.4132 | |
2014 | 0.4023 | 0.5143 | 0.4343 | |
2015 | 0.4014 | 0.5168 | 0.4351 | |
2016 | 0.3179 | 0.4819 | 0.3784 | |
2017 | 0.3348 | 0.4993 | 0.3948 | |
The Response Layer | 2009 | 0.4360 | 0.3566 | 0.3826 |
2010 | 0.2824 | 0.2236 | 0.2643 | |
2011 | 0.2958 | 0.2230 | 0.2168 | |
2012 | 0.2298 | 0.1773 | 0.2116 | |
2013 | 0.7305 | 0.6101 | 0.5560 | |
2014 | 0.9405 | 0.7977 | 0.8637 | |
2015 | 0.5843 | 0.4679 | 0.4654 | |
2016 | 0.5711 | 0.4668 | 0.4176 | |
2017 | 0.3891 | 0.3223 | 0.3717 | |
The Sustainable Layer | 2009 | 0.1625 | 0.6836 | 0.4310 |
2010 | 0.2574 | 0.6138 | 0.3955 | |
2011 | 0.1781 | 0.6455 | 0.5787 | |
2012 | 0.2459 | 0.6007 | 0.5277 | |
2013 | 0.1162 | 0.6836 | 0.6509 | |
2014 | 0.2937 | 0.8182 | 0.7775 | |
2015 | 0.1504 | 0.6749 | 0.6223 | |
2016 | 0.3844 | 0.4363 | 0.3958 | |
2017 | 0.5014 | 0.3675 | 0.4527 |
The Element Layer | Year | The Entropy Weight Method | The Rough Set Method | Rough Set + Entropy Weight Method |
---|---|---|---|---|
The Pressure Layer | 2009 | 0.6649 | 0.7194 | 0.5918 |
2010 | 0.5201 | 0.5750 | 0.4549 | |
2011 | 0.6700 | 0.7353 | 0.6026 | |
2012 | 0.5629 | 0.6250 | 0.4997 | |
2013 | 0.5923 | 0.6518 | 0.5299 | |
2014 | 0.5966 | 0.6442 | 0.5176 | |
2015 | 0.6447 | 0.6922 | 0.5740 | |
2016 | 0.4519 | 0.4791 | 0.4060 | |
2017 | 0.2979 | 0.3183 | 0.2573 | |
The State Layer | 2009 | 0.3147 | 0.3227 | 0.2804 |
2010 | 0.2814 | 0.2903 | 0.2397 | |
2011 | 0.4655 | 0.4774 | 0.4158 | |
2012 | 0.5076 | 0.5217 | 0.4525 | |
2013 | 0.4985 | 0.5137 | 0.4383 | |
2014 | 0.4017 | 0.4182 | 0.3386 | |
2015 | 0.5032 | 0.5211 | 0.4406 | |
2016 | 0.4505 | 0.4927 | 0.4091 | |
2017 | 0.5008 | 0.5421 | 0.4563 | |
The Response Layer | 2009 | 0.5174 | 0.4573 | 0.4277 |
2010 | 0.2486 | 0.2045 | 0.1937 | |
2011 | 0.3711 | 0.3268 | 0.3013 | |
2012 | 0.2556 | 0.2181 | 0.2102 | |
2013 | 0.6836 | 0.5979 | 0.5163 | |
2014 | 0.8349 | 0.7132 | 0.6495 | |
2015 | 0.5190 | 0.4393 | 0.3890 | |
2016 | 0.5600 | 0.4905 | 0.4256 | |
2017 | 0.3785 | 0.3232 | 0.3046 | |
The Sustainable Layer | 2009 | 0.3605 | 0.5470 | 0.3951 |
2010 | 0.4691 | 0.5913 | 0.4575 | |
2011 | 0.3333 | 0.4802 | 0.3908 | |
2012 | 0.4482 | 0.5543 | 0.4677 | |
2013 | 0.3444 | 0.5244 | 0.4417 | |
2014 | 0.5337 | 0.6879 | 0.5885 | |
2015 | 0.3522 | 0.5181 | 0.4301 | |
2016 | 0.5235 | 0.5173 | 0.4584 | |
2017 | 0.4586 | 0.3693 | 0.3572 |
References
- Barbier, E.B. The concept of sustainable economic development. Environ. Conserv. 1987, 14, 101–110. [Google Scholar] [CrossRef]
- Spangenberg, J.H. Institutional sustainability indicators: an analysis of the institutions in Agenda 21 and a draft set of indicators for monitoring their effectivity. Sustain. Dev. 2002, 10, 103–115. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. The 21st Century Agenda of China: White Paper on Population, Environment and Development in the 21st Century; China Environmental Science Press: Beijing, China, 1994.
- Liu, L. Sustainability: Living within One’s Own Ecological Means. Sustainability 2009, 1, 1412–1430. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Energy Efficiency, Ownership Structure, and Sustainable Development: Evidence from China. Sustainability 2017, 9, 912. [Google Scholar] [CrossRef]
- Li, L.; Yang, W. Total Factor Efficiency Study on China’s Industrial Coal Input and Wastewater Control with Dual Target Variables. Sustainability 2018, 10, 2121. [Google Scholar] [CrossRef]
- Novas, N.; Gázquez, J.A.; MacLennan, J.; García, R.M.; Fernández-Ros, M.; Manzano-Agugliaro, F. A real-time underground environment monitoring system for sustainable tourism of caves. J. Clean. Prod. 2017, 142, 2707–2721. [Google Scholar] [CrossRef]
- Opoku, A. Biodiversity and the built environment: Implications for the Sustainable Development Goals (SDGs). Resour. Conserv. Recycl. 2019, 141, 1–7. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Efficiency evaluation of industrial waste gas control in China: A study based on data envelopment analysis (DEA) model. J. Clean. Prod. 2018, 179, 1–11. [Google Scholar] [CrossRef]
- Santillán Soto, N.; García Cueto, O.R.; Lambert Arista, A.A.; Ojeda Benítez, S.; Cruz Sotelo, S.E. Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions. Sustainability 2019, 11, 2045. [Google Scholar] [CrossRef]
- Yeh, H.F.; Hsu, H.L. Using the Markov Chain to Analyze Precipitation and Groundwater Drought Characteristics and Linkage with Atmospheric Circulation. Sustainability 2019, 11, 1817. [Google Scholar] [CrossRef]
- Yang, W.; Yuan, G.; Han, J. Is China’s air pollution control policy effective? Evidence from Yangtze River Delta cities. J. Clean. Prod. 2019, 220, 110–133. [Google Scholar] [CrossRef]
- Rodriguez, Y.R. Great Smog of London. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 796–797. ISBN 978-0-12-386455-0. [Google Scholar]
- Ashraf, A.; Butt, A.; Khalid, I.; Alam, R.U.; Ahmad, S.R. Smog analysis and its effect on reported ocular surface diseases: A case study of 2016 smog event of Lahore. Atmos. Environ. 2019, 198, 257–264. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, W. Evaluating China’s Air Pollution Control Policy with Extended AQI Indicator System: Example of the Beijing-Tianjin-Hebei Region. Sustainability 2019, 11, 939. [Google Scholar] [CrossRef]
- Zhang, D.; Lei, L.; Ji, Q.; Kutan, A.M. Economic policy uncertainty in the US and China and their impact on the global markets. Econ. Model. 2019, 79, 47–56. [Google Scholar] [CrossRef]
- Xu, X.; Li, D.D.; Zhao, M. “Made in China” matters: Integration of the global labor market and the global labor share decline. China Econ. Rev. 2018, 52, 16–29. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Analysis of Total Factor Efficiency of Water Resource and Energy in China: A Study Based on DEA-SBM Model. Sustainability 2017, 9, 1316. [Google Scholar] [CrossRef]
- Springer, C.; Evans, S.; Lin, J.; Roland-Holst, D. Low carbon growth in China: The role of emissions trading in a transitioning economy. Appl. Energy 2019, 235, 1118–1125. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N. The role of the port industry in China’s national economy: An input–output analysis. Transp. Policy 2019, 78, 1–7. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Efficiency Evaluation and Policy Analysis of Industrial Wastewater Control in China. Energies 2017, 10, 1201. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook, 2017–2018; China Statistic Press: Beijing, China, 2018.
- Wang, J.; Zhang, X.; Yang, Q.; Zhang, K.; Zheng, Y.; Zhou, G. Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China. J. Environ. Sci. 2018, 71, 283–291. [Google Scholar] [CrossRef]
- Zhang, Q. Energy and resource conservation and air pollution abatement in China’s iron and steel industry. Resour. Conserv. Recycl. 2019, 147, 67–84. [Google Scholar] [CrossRef]
- Yang, H.; Tao, W.; Liu, Y.; Qiu, M.; Liu, J.; Jiang, K.; Yi, K.; Xiao, Y.; Tao, S. The contribution of the Beijing, Tianjin and Hebei region’s iron and steel industry to local air pollution in winter. Environ. Pollut. 2019, 245, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Flynn, A.; Tan-Mullins, M.; Cheshmehzangi, A. The making and remaking of ecological space in China: The political ecology of Chongming Eco-Island. Political Geogr. 2019, 69, 89–102. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Zhou, W.; Qi, L.; Zhou, L.; Wei, Y.; Li, J.; Shao, G.; Yu, D. Opportunities and challenges for the protection and ecological functions promotion of natural forests in China. For. Ecol. Manag. 2018, 410, 187–192. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Hao, Y.; Coscieme, L.; Zhang, J.; Jiang, N.; Casazza, M.; Giannetti, B.F. Quantitative analysis of the dynamic changes of ecological security in the provinces of China through emergy-ecological footprint hybrid indicators. J. Clean. Prod. 2018, 184, 678–695. [Google Scholar] [CrossRef]
- Zhang, Q.; Liao, H.; Hao, Y. Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces. Energy 2018, 150, 527–543. [Google Scholar] [CrossRef]
- Cheng, X.; Li, N.; Mu, H.; Guo, Y.; Jiang, Y. Study on Total-Factor Energy Efficiency in Three Provinces of Northeast China Based on SBM Model. Energy Procedia 2018, 152, 131–136. [Google Scholar] [CrossRef]
- Zhen, G.; Qieyi, L.; Xiaoxu, W. On Development Model based on Intra-county Cyclic Economy under Low-carbon Economy for Northeast China. Energy Procedia 2011, 5, 1553–1557. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, Y.; Qiao, H. An empirical study on the spatial distribution of the population, economy and water resources in Northeast China. Phys. Chem. Earth Parts A/B/C 2015, 79–82, 93–99. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, H.; Bai, F.; Tian, X.; Shi, F. How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China. Struct. Chang. Econ. Dyn. 2018, 47, 145–154. [Google Scholar] [CrossRef]
- Zeng, X.-W.; Qian, Z.M.; Vaughn, M.G.; Nelson, E.J.; Dharmage, S.C.; Bowatte, G.; Perret, J.; Chen, D.-H.; Ma, H.; Lin, S.; et al. Positive association between short-term ambient air pollution exposure and children blood pressure in China–Result from the Seven Northeast Cities (SNEC) study. Environ. Pollut. 2017, 224, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, Y.; An, Y.; Wang, R.; Lin, H.; Liu, M.; Li, S.; Ma, M.; Xiao, C. Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China. Environ. Pollut. 2019, 246, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Wang, X.; Zhang, X.; Zhang, Z.; Xiao, Y.; Tani, H.; Sun, Z. Exploring the effects of crop residue burning on local haze pollution in Northeast China using ground and satellite data. Atmos. Environ. 2019, 199, 189–201. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook, 2011–2017; China Statistic Press: Beijing, China, 2018.
- Lai, X.; Liu, J.; Georgiev, G. Low carbon technology integration innovation assessment index review based on rough set theory—An evidence from construction industry in China. J. Clean. Prod. 2016, 126, 88–96. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, Y.; Hu, Y.; Chen, H. Fuzzy Rough Set algorithm with Binary Shuffled Frog-Leaping (BSFL-FRSA): An innovative approach for identifying main drivers of carbon exchange in temperate deciduous forests. Ecol. Indic. 2017, 83, 41–52. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, Q.; Li, R. The establishment and application of fuzzy comprehensive model with weight based on entropy technology for air quality assessment. Procedia Eng. 2010, 7, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Gao, S.; Zhang, H.; Sun, Y.; Ma, Z.; Vedal, S.; Mao, J.; Bai, Z. Spatiotemporal modeling of PM2.5 concentrations at the national scale combining land use regression and Bayesian maximum entropy in China. Environ. Int. 2018, 116, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jiao, F.; Ren, L.; Xu, X.; Wang, J.; Wang, X. Coupling coordination relationship between urbanization and atmospheric environment security in Jinan City. J. Clean. Prod. 2018, 204, 1–11. [Google Scholar] [CrossRef]
- Ou, C.; Liu, W. Developing a sustainable indicator system based on the pressure–state–response framework for local fisheries: A case study of Gungliau, Taiwan. Ocean Coast. Manag. 2010, 53, 289–300. [Google Scholar] [CrossRef]
- Guo, M.; Bu, Y.; Cheng, J.; Jiang, Z. Natural Gas Security in China: A Simulation of Evolutionary Trajectory and Obstacle Degree Analysis. Sustainability 2018, 11, 96. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Zhou, L.Q.; Dong, B.Q.; Dai, C. Health assessment for urban rivers based on the pressure, state and response framework—A case study of the Shiwuli River. Ecol. Indic. 2019, 99, 324–331. [Google Scholar] [CrossRef]
- Li, S.; Li, R. Evaluating Energy Sustainability Using the Pressure-State-Response and Improved Matter-Element Extension Models: Case Study of China. Sustainability 2019, 11, 290. [Google Scholar] [CrossRef]
- Zhang, X.C.; Ma, C.; Zhan, S.F.; Chen, W.P. Evaluation and simulation for ecological risk based on emergy analysis and Pressure-State-Response Model in a coastal city, China. Procedia Environ. Sci. 2012, 13, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Xu, M.; Chen, W.; Lin, X.; Cao, C.; Singh, R.P. Postseismic Restoration of the Ecological Environment in the Wenchuan Region Using Satellite Data. Sustainability 2018, 10, 3990. [Google Scholar] [CrossRef]
- Neri, A.C.; Dupin, P.; Sánchez, L.E. A pressure–state–response approach to cumulative impact assessment. J. Clean. Prod. 2016, 126, 288–298. [Google Scholar] [CrossRef]
- Deng, M.; Chen, J.; Huang, J.; Niu, W. Agricultural Drought Risk Evaluation Based on an Optimized Comprehensive Index System. Sustainability 2018, 10, 3465. [Google Scholar] [CrossRef]
- Bai, X.; Tang, J. Ecological Security Assessment of Tianjin by PSR Model. Procedia Environ. Sci. 2010, 2, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, P.; Zhong, B.; Ouyang, G.; Bai, B.; Du, J. Coarse-to-fine visual tracking with PSR and scale driven expert-switching. Neurocomputing 2018, 275, 1456–1467. [Google Scholar] [CrossRef]
- Sun, B.; Tang, J.; Yu, D.; Song, Z.; Wang, P. Ecosystem health assessment: A PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China1. Ocean Coast. Manag. 2019, 168, 41–50. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Wang, J.; Yin, H.; Zhang, G. A comprehensive evaluation model of regional atmospheric environment carrying capacity: Model development and a case study in China. Ecol. Indic. 2018, 91, 259–267. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, R. Evaluating water resource sustainability in Beijing, China: Combining PSR model and matter-element extension method. J. Clean. Prod. 2019, 206, 171–179. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook, 2009–2017; China Statistic Press: Beijing, China, 2018.
- Liu, F.; Zhao, S.; Weng, M.; Liu, Y. Fire risk assessment for large-scale commercial buildings based on structure entropy weight method. Saf. Sci. 2017, 94, 26–40. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Järvinen, J.; Kovács, L.; Radeleczki, S. Defining rough sets using tolerances compatible with an equivalence. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Han, S.E. Roughness measures of locally finite covering rough sets. Int. J. Approx. Reason. 2019, 105, 368–385. [Google Scholar] [CrossRef]
- Fang, Y.; Min, F. Cost-sensitive approximate attribute reduction with three-way decisions. Int. J. Approx. Reason. 2019, 104, 148–165. [Google Scholar] [CrossRef]
- Kunz, M.; Puchta, A.; Groll, S.; Fuchs, L.; Pernul, G. Attribute quality management for dynamic identity and access management. J. Inf. Secur. Appl. 2019, 44, 64–79. [Google Scholar] [CrossRef]
- Wang, Q.; Qian, Y.; Liang, X.; Guo, Q.; Liang, J. Local neighborhood rough set. Knowl.-Based Syst. 2018, 153, 53–64. [Google Scholar] [CrossRef]
- Han, S.E. Covering rough set structures for a locally finite covering approximation space. Inf. Sci. 2019, 480, 420–437. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Z.; Zheng, Y.; Jiang, R. Mechanical Product Ecological Design Knowledge Reduction Based on Rough Set. Procedia CIRP 2019, 80, 33–38. [Google Scholar] [CrossRef]
- Wang, C.; Huang, Y.; Shao, M.; Fan, X. Fuzzy rough set-based attribute reduction using distance measures. Knowl.-Based Syst. 2019, 164, 205–212. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Zhang, W.; Yu, D.; Chen, K. A hybrid approach combining an extended BBO algorithm with an intuitionistic fuzzy entropy weight method for QoS-aware manufacturing service supply chain optimization. Neurocomputing 2018, 272, 439–452. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, X.; Yang, J.; Chen, Y.; Wu, J. Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment. Knowl.-Based Syst. 2019, 163, 358–375. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Chen, C.L.P.; Zhang, Y.; Li, H.-X. Fuzzy clustering with the entropy of attribute weights. Neurocomputing 2016, 198, 125–134. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y. Entropy numbers of functions on [−1,1] with Jacobi weights. J. Math. Anal. Appl. 2017, 445, 985–997. [Google Scholar] [CrossRef]
- Jing, Y.; Li, T.; Fujita, H.; Wang, B.; Cheng, N. An incremental attribute reduction method for dynamic data mining. Inf. Sci. 2018, 465, 202–218. [Google Scholar] [CrossRef]
- Konecny, J.; Krajča, P. On attribute reduction in concept lattices: The polynomial time discernibility matrix-based method becomes the CR-method. Inf. Sci. 2019, 491, 48–62. [Google Scholar] [CrossRef]
- Chen, J.; Mi, J.; Xie, B.; Lin, Y. A fast attribute reduction method for large formal decision contexts. Int. J. Approx. Reason. 2019, 106, 1–17. [Google Scholar] [CrossRef]
- Qiu, Y. Management Decision Entropy and Its Application; China Electric Power Press: Beijing, China, 2011. [Google Scholar]
- Virto, L.R. A preliminary assessment of the indicators for Sustainable Development Goal (SDG) 14 “Conserve and sustainably use the oceans, seas and marine resources for sustainable development”. Mar. Policy 2018, 98, 47–57. [Google Scholar] [CrossRef]
- Kılkış, Ş.; Krajačić, G.; Duić, N.; Rosen, M.A.; Al-Nimr, M.A. Advancements in sustainable development of energy, water and environment systems. Energy Convers. Manag. 2018, 176, 164–183. [Google Scholar] [CrossRef]
- Ye, J. Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets. Appl. Math. Model. 2010, 34, 3864–3870. [Google Scholar] [CrossRef]
- Ji, Y.; Huang, G.H.; Sun, W. Risk assessment of hydropower stations through an integrated fuzzy entropy-weight multiple criteria decision making method: A case study of the Xiangxi River. Expert Syst. Appl. 2015, 42, 5380–5389. [Google Scholar] [CrossRef]
- Cui, Y.; Feng, P.; Jin, J.; Liu, L. Water Resources Carrying Capacity Evaluation and Diagnosis Based on Set Pair Analysis and Improved the Entropy Weight Method. Entropy 2018, 20, 359. [Google Scholar] [CrossRef]
- Heilongjiang Provincial Government. Implementation Rules of Air Pollution Prevention Action Plan in Heilongjiang; Heilongjiang Provincial Government: Harbin, Heilongjiang, China, 2014.
- Heilongjiang Provincial Government. Special Action Plan for Air Pollution Prevention and Control in Heilongjiang Province, 2016–2018; Heilongjiang Provincial Government: Harbin, Heilongjiang, China, 2016.
- The 12th People’s Congress of Heilongjiang Province. Air Pollution Prevention and Control Regulations of Heilongjiang Province; People’s Congress of Heilongjiang Province: Harbin, Heilongjiang, China, 2017.
- Xinhua Net Ministry of Ecology and Environment: 65 People in 4 Cities of Heilongjiang Province Are Reproaches for Their Ineffectively Control Haze. Available online: http://www.xinhuanet.com/2018-05/29/c_129882781.htm (accessed on 1 July 2019).
- Yang, Y.; Yang, W. Does Whistleblowing Work for Air Pollution Control in China? A Study Based on Three-party Evolutionary Game Model under Incomplete Information. Sustainability 2019, 11, 324. [Google Scholar] [CrossRef]
The Element Layer | The Indicator Layer | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
The Pressure Layer | SO2 | 0.060 | 0.061 | 0.000 | 0.015 | 0.063 | 0.095 | 0.126 | 0.352 | 0.437 |
Nitric Oxide | 0.004 | 0.177 | 0.000 | 0.004 | 0.041 | 0.068 | 0.177 | 0.311 | 0.477 | |
Smoke (Dust) | 0.111 | 0.093 | 0.174 | 0.119 | 0.090 | 0.000 | 0.188 | 0.437 | 0.493 | |
Oil Reserves | 0.000 | 0.000 | 0.060 | 0.080 | 0.132 | 0.168 | 0.192 | 0.218 | 0.218 | |
Natural Gas Reserves | 0.084 | 0.000 | 0.034 | 0.053 | 0.073 | 0.079 | 0.098 | 0.110 | 0.079 | |
Coal Reserves | 0.000 | 0.109 | 0.951 | 0.966 | 1.000 | 0.903 | 0.971 | 0.882 | 1.000 | |
The State Layer | Regional GDP (Hundred Million RMB) | 0.539 | 0.651 | 0.791 | 0.861 | 0.909 | 0.946 | 0.948 | 0.967 | 1.000 |
Value Added of the Secondary Industry (Hundred Million RMB) | 0.671 | 0.831 | 0.987 | 1.000 | 0.968 | 0.918 | 0.793 | 0.727 | 0.671 | |
Value Added of the Service Industry (Hundred Million RMB) | 0.377 | 0.453 | 0.552 | 0.623 | 0.690 | 0.775 | 0.861 | 0.936 | 1.000 | |
Industrial Value Added (Hundred Million RMB) | 0.675 | 0.844 | 0.999 | 1.000 | 0.971 | 0.912 | 0.772 | 0.694 | 0.633 | |
GDP per capita (RMB) | 0.535 | 0.646 | 0.783 | 0.852 | 0.899 | 0.936 | 0.941 | 0.965 | 1.000 | |
Coal Consumption (Ten Thousand Tons) | 0.786 | 0.869 | 0.939 | 0.994 | 0.944 | 0.967 | 0.956 | 0.999 | 1.000 | |
Crude Oil Consumption (Ten Thousand Tons) | 0.933 | 0.952 | 0.996 | 0.980 | 0.962 | 0.969 | 0.960 | 1.000 | 0.973 | |
Natural Gas Consumption (Hundred Million Cubic Meters) | 0.012 | 0.000 | 0.135 | 0.464 | 0.598 | 0.686 | 0.727 | 1.000 | 0.792 | |
The Response Layer | Investment in Industrial Pollution Control (Ten Thousand RMB) | 0.479 | 0.238 | 0.487 | 0.189 | 1.000 | 0.858 | 0.934 | 0.840 | 0.440 |
Investment in Waste Gas Control (Ten Thousand RMB) | 0.271 | 0.091 | 0.422 | 0.149 | 1.000 | 0.871 | 0.730 | 0.835 | 0.373 | |
Local Fiscal Expenditure on Environmental Protection (Hundred Million RMB) | 0.000 | 0.223 | 0.248 | 0.341 | 0.423 | 0.391 | 0.719 | 0.405 | 1.000 |
The Element Layer | The Indicator Layer | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|
The Pressure Layer | SO2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
Nitric Oxide | 1 | 1 | 1 | 1 | 1 | 2 | 2 | |
Smoke (Dust) | 1 | 1 | 1 | 1 | 1 | 2 | 2 | |
Oil Reserves | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Natural Gas Reserves | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Coal Reserves | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
The State Layer | Regional GDP (Hundred Million RMB) | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Value Added of the Secondary Industry (Hundred Million RMB) | 4 | 4 | 4 | 4 | 4 | 3 | 3 | |
Value Added of the Service Industry (Hundred Million RMB) | 3 | 3 | 3 | 4 | 4 | 4 | 4 | |
Industrial Value Added (Hundred Million RMB) | 4 | 4 | 4 | 4 | 4 | 3 | 3 | |
GDP per capita (RMB) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
Coal Consumption (Ten Thousand Tons) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
Crude Oil Consumption (Ten Thousand Tons) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
Natural Gas Consumption (Hundred Million Cubic Meters) | 1 | 2 | 3 | 3 | 3 | 4 | 4 | |
The Response Layer | Investment in Industrial Pollution Control (Ten Thousand RMB) | 2 | 1 | 4 | 4 | 4 | 4 | 2 |
Investment in Waste Gas Control (Ten Thousand RMB) | 2 | 1 | 4 | 4 | 3 | 4 | 2 | |
Local Fiscal Expenditure on Environmental Protection (Hundred Million RMB) | 1 | 2 | 2 | 2 | 3 | 2 | 4 |
The Element Layer | Indicator | Average Weight | ||
---|---|---|---|---|
The Pressure Layer | a1 | 0.2409 | 0.1667 | 0.2038 |
a2 | 0.2862 | 0.1667 | 0.2264 | |
a3 | 0.1533 | 0.1667 | 0.1600 | |
a4 | 0.1525 | 0.0000 | 0.0763 | |
a5 | 0.0753 | 0.0000 | 0.0376 | |
a6 | 0.0919 | 0.5000 | 0.2959 | |
The State Layer | b1 | 0.0375 | 0.1250 | 0.0813 |
b2 | 0.0256 | 0.1250 | 0.0753 | |
b3 | 0.0995 | 0.2500 | 0.1747 | |
b4 | 0.0311 | 0.1250 | 0.0780 | |
b5 | 0.0380 | 0.1250 | 0.0815 | |
b6 | 0.0059 | 0.0000 | 0.0029 | |
b7 | 0.0005 | 0.0000 | 0.0002 | |
b8 | 0.7619 | 0.2500 | 0.5060 | |
The Response Layer | c1 | 0.2158 | 0.2500 | 0.2329 |
c2 | 0.3568 | 0.2500 | 0.3034 | |
c3 | 0.4274 | 0.5000 | 0.4637 |
Year | p Value | S Value | R Value | Sustainable Value Z | Level |
---|---|---|---|---|---|
2009 | 0.1677 | 0.0023 | 0.0273 | 0.5810 | Poor |
2010 | 0.1549 | 0.0028 | 0.0189 | 0.5455 | Poor |
2011 | 0.1672 | 0.0034 | 0.0155 | 0.7287 | Medium |
2012 | 0.1576 | 0.0037 | 0.0151 | 0.6777 | Medium |
2013 | 0.1541 | 0.0041 | 0.0397 | 0.8009 | Good |
2014 | 0.1719 | 0.0043 | 0.0617 | 0.9275 | Excellent |
2015 | 0.1581 | 0.0043 | 0.0332 | 0.7723 | Good |
2016 | 0.0997 | 0.0037 | 0.0298 | 0.5459 | Poor |
2017 | 0.0850 | 0.0039 | 0.0266 | 0.6027 | Medium |
The Element Layer | Year | The Entropy Weight Method | The Rough Set Method | Rough Set + Entropy Weight Method |
---|---|---|---|---|
The Pressure Layer | 2009 | 0.7090 | 0.6882 | 0.7092 |
2010 | 0.5728 | 0.7016 | 0.6364 | |
2011 | 0.6807 | 0.7199 | 0.7239 | |
2012 | 0.5878 | 0.6831 | 0.6473 | |
2013 | 0.6439 | 0.6915 | 0.6624 | |
2014 | 0.6928 | 0.7776 | 0.7033 | |
2015 | 0.6724 | 0.7164 | 0.6486 | |
2016 | 0.4083 | 0.4420 | 0.4418 | |
2017 | 0.3944 | 0.3380 | 0.3233 | |
The State Layer | 2009 | 0.3063 | 0.3587 | 0.2879 |
2010 | 0.3195 | 0.2727 | 0.2727 | |
2011 | 0.4249 | 0.4063 | 0.4061 | |
2012 | 0.4159 | 0.4477 | 0.4270 | |
2013 | 0.4996 | 0.4999 | 0.4497 | |
2014 | 0.4640 | 0.4757 | 0.4574 | |
2015 | 0.4876 | 0.5377 | 0.4659 | |
2016 | 0.3623 | 0.4488 | 0.4274 | |
2017 | 0.4944 | 0.5168 | 0.4596 | |
The Response Layer | 2009 | 0.5036 | 0.4075 | 0.4039 |
2010 | 0.2560 | 0.2846 | 0.2557 | |
2011 | 0.3749 | 0.2587 | 0.2562 | |
2012 | 0.2300 | 0.2195 | 0.2389 | |
2013 | 0.7124 | 0.6638 | 0.6034 | |
2014 | 0.8988 | 0.7609 | 0.8225 | |
2015 | 0.5120 | 0.4447 | 0.4475 | |
2016 | 0.5429 | 0.5613 | 0.4860 | |
2017 | 0.3794 | 0.3243 | 0.3577 | |
The Sustainable Layer | 2009 | 0.3349 | 0.4542 | 0.4180 |
2010 | 0.3781 | 0.5273 | 0.4273 | |
2011 | 0.3898 | 0.4698 | 0.5072 | |
2012 | 0.4127 | 0.5105 | 0.5143 | |
2013 | 0.3490 | 0.5667 | 0.5460 | |
2014 | 0.5182 | 0.6392 | 0.6799 | |
2015 | 0.4124 | 0.5746 | 0.5630 | |
2016 | 0.5036 | 0.4915 | 0.4454 | |
2017 | 0.4663 | 0.4455 | 0.4544 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Sun, M.; Yuan, G.; Zhou, Q.; Liu, J. Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method. Sustainability 2019, 11, 3793. https://doi.org/10.3390/su11143793
Li Y, Sun M, Yuan G, Zhou Q, Liu J. Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method. Sustainability. 2019; 11(14):3793. https://doi.org/10.3390/su11143793
Chicago/Turabian StyleLi, Yuangang, Maohua Sun, Guanghui Yuan, Qi Zhou, and Jinyue Liu. 2019. "Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method" Sustainability 11, no. 14: 3793. https://doi.org/10.3390/su11143793
APA StyleLi, Y., Sun, M., Yuan, G., Zhou, Q., & Liu, J. (2019). Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method. Sustainability, 11(14), 3793. https://doi.org/10.3390/su11143793