Monitoring Spatial Changes in Manufacturing Firms in Seoul Metropolitan Area Using Firm Life Cycle and Locational Factors
Abstract
:1. Introduction
2. Literature Review
3. Research Design and Data
3.1. Research Design
3.1.1. Life-Cycle Perspective
- ;
- ;
- ;
- ;
- .
3.1.2. Regression Analysis with Spatial Autocorrelation
- : Dependent variable in city (number of new/closure/inflow/outflow firms);
- : Independent variables (firm location factor);
- : Constant : Parameters : Errors.
3.2. Data
4. Portfolio Analysis
5. Regression Analysis
5.1. Setting Independent Variables
5.2. Fit a Baseline OLS Model without Considering Spatial Autocorrelation
5.3. Diagnostics for Spatial Dependence
5.4. Results of Regression Analysis
5.4.1. Light Industry
5.4.2. Heavy Industry
5.4.3. High-Tech Industry
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wegener, M. Operational urban models: State of the art. J. Am. Plan. Assoc. 1994, 60, 17–29. [Google Scholar] [CrossRef]
- Hyter, R. The Dynamics of Industrial Location: The Factory, the Firm and Production System; Department of Geography, Simon Fraser University: Burnaby, BC, Canada, 2004. [Google Scholar]
- Korean Statistical Information Service. 2016. Available online: http://kosis.kr/ (accessed on 5 February 2018).
- Lee, S.; An, Y.; Kim, K. Relationship between transit modal split and intra-city trip ratio by car for compact city planning of municipalities in the Seoul Metropolitan Area. Cities 2017, 70, 11–21. [Google Scholar] [CrossRef]
- Arauzo-Carod, J.; Liviano-Solis, D.; Manjón-Antolín, M. Empirical studies in industrial location: An assessment of their methods and results. J. Reg. Sci. 2010, 50, 685–711. [Google Scholar] [CrossRef]
- Artz, G.M.; Kim, Y.; Orazem, P.F. Does Agglomeration Matter Everywhere? New firm location decisions in rural and urban markets. J. Reg. Sci. 2016, 56, 72–95. [Google Scholar] [CrossRef]
- Sivakumar, A.; Bhat, C. Comprehensive, unified framework for analyzing spatial location choice. Transp. Res. Rec. 2007, 2003, 103–111. [Google Scholar] [CrossRef]
- Li, C.; Song, Y.; Chen, Y. Infrastructure Development and Urbanization in China. In China’s Urbanization and Socioeconomic Impact; Springer: Singapore, 2017; pp. 91–107. [Google Scholar]
- De Bok, M. Using firmographic microsimulation for land use and transport scenario valuation: Model calibration. In Proceedings of the 45th ERSA Congress, Amsterdam, The Netherlands, 23–27 August 2005; pp. 1–26. [Google Scholar]
- Alanón, A.; Arauzo, J.M.; Myro, R. Accessibility, agglomeration and location. Entrep. Ind. Locat. Econ. Growth 2007, 247–267. [Google Scholar]
- Arauzo-Carod, J.-M.; Viladecans, E. Industrial location at the intra-metropolitan level: The role of agglomeration economies. Reg. Stud. 2009, 43, 545–558. [Google Scholar] [CrossRef]
- Bhat, C.R.; Paleti, R.; Singh, P. A Spatial multivariate count model for firm location decisions. J. Reg. Sci. 2014, 54, 462–502. [Google Scholar] [CrossRef]
- Buczkowska, S.; de Lapparent, M. Location choices of newly created establishments: Spatial patterns at the aggregate level. Reg. Sci. Urban Econ. 2014, 48, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Pellenbarg, P.H.; van Wissen, L.J.G.; van Dijk, J. Firm Relocation: State of the Art and Research Prospects; University of Groningen: Groningen, The Netherlands, 2002. [Google Scholar]
- Lee, B. A study on the determinants of manufacturing productivity. Korea Econ. Rev. 2000, 48, 291–322. [Google Scholar]
- Keeble, D.; Wever, E. New Firms and Regional Development in Europe; Taylor & Francis: Milton Park, UK, 1986. [Google Scholar]
- Papke, L.E. Interstate business tax differentials and new firm location: Evidence from panel data. J. Public Econ. 1991, 45, 47–68. [Google Scholar] [CrossRef]
- Wang, F.; Chen, C.; Xiu, C.; Zhang, P. Location analysis of retail stores in Changchun, China: A street centrality perspective. Cities 2014, 41, 54–63. [Google Scholar] [CrossRef]
- Fahmi, F.Z.; Koster, S.; van Dijk, J. The location of creative industries in a developing country: The case of Indonesia. Cities 2016, 59, 66–79. [Google Scholar] [CrossRef]
- Musil, R.; Eder, J. Towards a location sensitive R&D policy. Local buzz, spatial concentration and specialisation as a challenge for urban planning—Empirical findings from the life sciences and ICT clusters in Vienna. Cities 2016, 59, 20–29. [Google Scholar] [CrossRef]
- Moeckel, R. Microsimulation of firm location decisions. In Proceedings of the 9th International Conference on Computers in Urban Planning and Urban Management, London, UK, 7 June 2005; pp. 2005–2029. [Google Scholar]
- Van Wissen, L. A micro-simulation model of firms: Applications of concepts of the demography of the firm. Pap. Reg. Sci. 2000, 79, 111–134. [Google Scholar] [CrossRef]
- Van Wissen, L. Demography of the firm: A useful metaphor? Eur. J. Pop. 2002, 18, 263–279. [Google Scholar] [CrossRef]
- An, Y.; Kang, Y.; Lee, S. A study on the impact of soft location factors in the relocation of service and manufacturing firms. Int. J. Urban Sci. 2014, 18, 327–339. [Google Scholar] [CrossRef]
- Van Wissen, L. The Concept of Carrying Capacity in the Demography of Firms. In Population and Families in the Low Countries; van den Brekel, H., Deven, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 219–244. [Google Scholar]
- Van Dijk, J.; Pellenbarg, P.H. Firm relocation decisions in The Netherlands: An ordered logit approach. Pap. Reg. Sci. 2000, 79, 191–219. [Google Scholar] [CrossRef]
- Chin, A.; Hong, J. The Location Decisions of Foreign Logistics Firms in China: Does Transport Network Capacity Matter? East Asian Bureau of Economic Research: Canberra, Australia, 2005. [Google Scholar]
- Koenig, W.D.; Knops, J.M.H. Testing for spatial autocorrelation in ecological studies. Ecography 1998, 21, 423–429. [Google Scholar] [CrossRef]
- Koenig, W.D. Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 1999, 14, 22–26. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Smith, T.E. Notebook on Spatial Data Analysis. 2016. Available online: http://www.seas.upenn.edu/~ese502/#notebook (accessed on 25 February 2018).
- Michael, D.W.; Kristian, S.G. Spatial Regression Models; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Woodward, D.P. Locational determinants of Japanese manufacturing start-ups in the United States. South. Econ. J. 1992, 58, 690–708. [Google Scholar] [CrossRef]
- Cheng, L.K.; Kwan, Y.K. What are the determinants of the location of foreign direct investment? The Chinese experience. J. Int. Econ. 2000, 51, 379–400. [Google Scholar] [CrossRef]
- Lee, H.; Lee, B. An analysis of firm relocation in the manufacturing industries. J. Korea Plan. Assoc. 2002, 37, 103–116. [Google Scholar]
- Korea Chamber Commerce and Industry (KCCI). Available online: http://www.korcham.net/ (accessed on 5 February 2018).
- The National Law Information Center, the Korea Representative Legal Information Web Site. Available online: http://www.law.go.kr/ (accessed on 5 February 2018).
- Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54, 187–211. [Google Scholar] [CrossRef]
- Stephen, A.M. GeoDa and Spatial Regression Modelling; Population Research Institute: Front Royal, VA, USA, 2006. [Google Scholar]
- Yi, C. An Analysis on the Determinants of the Agglomeration by Industrial Type in Seoul Metropolitan Region with Spatial Econometrics. Gyeonggi Res. Inst. 2016, 16, 1–33. [Google Scholar]
- An, Y.; Wan, L. Modelling industrial firm relocation with impacts of spatial dependence. Int. J. Urban Sci. 2018, 22, 80–103. [Google Scholar] [CrossRef]
- Korea Chamber Commerce and Industry. Business Yearbook. Maeil Business News Korea, 2009 and 2010.
- Anselin, L. Exploring Spatial Data with GeoDaTM: A Workbook; Center for Spatially Integrated Social Science: Santa Barbara, CA, USA, 2005. [Google Scholar]
- Bartik, T.J. Business location decisions in the United States: Estimates of the effects of unionization, taxes, and other characteristics of states. J. Bus. Econ. Stat. 1985, 3, 14–22. [Google Scholar]
- Agarwal, R.; Audretsch, D.B. Does entry size matter? The impact of the life cycle and technology on firm survival. J. Ind. Econ. 2001, 49, 21–43. [Google Scholar] [CrossRef]
- Henderson, V.; Kuncoro, A.; Turner, M. Industrial development in cities. J. Political Econ. 1995, 103, 1067–1090. [Google Scholar] [CrossRef]
- Do, H.; Lee, Y. Empirical study on firm relocation choice in Seoul metropolitan area. Seoul Stud. 2008, 9, 131–144. [Google Scholar]
- Erickson, R.A.; Wasylenko, M. Firm relocation and site selection in suburban municipalities. J. Urban Econ. 1980, 8, 69–85. [Google Scholar] [CrossRef]
- Braun, M.T.; Oswald, F.L. Exploratory regression analysis: A tool for selecting models and determining predictor importance. Behav. Res. Methods 2011, 43, 331–339. [Google Scholar] [CrossRef]
- Choi, U.; Kwon, O.; Lee, E.; Son, D.; Cho, M.; Chung, Y. Evaluating of Sigumajang Aroma by Stepwise Multiple Regression Analysis of Gas Chromatographic Profiles. J. Microbiol. Biotechnol. 2000, 10, 476–481. [Google Scholar]
- Rubalcaba, L.; Michel, S.; Sundbo, J.; Brown, S.W.; Reynoso, J. Shaping, organizing, and rethinking service innovation: A multidimensional framework. J. Serv. Manag. 2012, 23, 696–715. [Google Scholar] [CrossRef]
- Heckman, J.S. Survey of Location Decisions in The South. Econ. Rev. 1982, 6, 6–19. [Google Scholar]
- Oum, T.H.; Park, J.H. Multinational firms’ location preference for regional distribution centers: Focus on the Northeast Asian region. Transp. Res. Part E Logist. Transp. Rev. 2004, 40, 101–121. [Google Scholar] [CrossRef]
- Yan, J. A Study on the Changing Location of Office Space in Seoul Metropolitan Area; Seoul Institute: Seoul, Korea, 2004. [Google Scholar]
- Choi, J.Y.; Oh, K.S. An Analysis of Relocation of SW Industries using GIS Flow Map. J. Korea Spat. Inf. Soc. 2010, 18, 41–52. [Google Scholar]
- Hong, S. Choice of Location Regarding to the Type of Business and the Trait of Regions; Yonsei University: Seoul, Korea, 2006. [Google Scholar]
- Wan, L.; An, Y. Identifying growth patterns of the high-tech manufacturing industry across the Seoul metropolitan area using latent class analysis. J. Urban Plan. Dev. 2017, 143, 04017011. [Google Scholar] [CrossRef]
Industry Type | Total Firms *** (2010) | New Firms (2010) | Closure Firms (2010) | Relocated Firms (2009–2010) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total Relocation | Intra-City * Relocation | Inter-City ** Relocation | |||||||||
No. | Ratio | No. | Ratio | No. | Ratio | No. | Ratio | No. | Ratio | ||
Light Industry | 10,596 | 1877 | 17.7% | 2097 | 19.8% | 1232 | 11.6% | 888 | 8.4% | 344 | 3.2% |
Heavy Industry | 14,994 | 2755 | 18.4% | 2675 | 17.8% | 1372 | 9.2% | 983 | 6.4% | 389 | 2.6% |
High-Tech Industry | 15,788 | 3410 | 21.6% | 2711 | 12.2% | 2046 | 13.0% | 1468 | 9.3% | 578 | 3.7% |
Total | 41,378 | 8042 | 19.4% | 7483 | 18.1% | 4650 | 11.2% | 3339 | 8.1% | 1311 | 3.2% |
Division | Variable | N | Avg. | Sum | Min. | Max. | S. d. | ||
---|---|---|---|---|---|---|---|---|---|
Light Industry | Formation | 79 | 23.8 | 1877 | 0 | 113 | 22.0 | ||
Dissolution | 79 | 26.5 | 2097 | 0 | 132 | 26.8 | |||
Relocation | Inflow | 79 | 4.4 | 344 | 0 | 20 | 4.3 | ||
Outflow | 79 | 4.4 | 344 | 0 | 42 | 6.5 | |||
Heavy Industry | Formation | 79 | 34.9 | 2755 | 1 | 263 | 43.5 | ||
Dissolution | 79 | 33.9 | 2675 | 0 | 286 | 44.6 | |||
Relocation | Inflow | 79 | 4.9 | 389 | 0 | 36 | 6.0 | ||
Outflow | 79 | 4.9 | 389 | 0 | 32 | 5.7 | |||
High-tech Industry | Formation | 79 | 43.2 | 3410 | 0 | 343 | 59.0 | ||
Dissolution | 79 | 34.3 | 2711 | 0 | 258 | 44.1 | |||
Relocation | Inflow | 79 | 7.32 | 578 | 0 | 44 | 7.9 | ||
Outflow | 79 | 7.32 | 578 | 0 | 35 | 8.1 |
Type of Variables | Marks | Definition | Sources | Year | Descriptive Statistics | |||
---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | Std. Dev. Dev. | |||||
Density Variables | Pop_Den | Residential population (10,000 persons) per km2 | KOSIS * | 2010 | 456.9 | 27,578.1 | 9572.8 | 7131.9 |
Emp_Den | Number of existing employees (10,000 persons) per km2 | KOSIS | 2010 | 146.0 | 16,724.1 | 3854.4 | 3638.6 | |
Firm_Den | Number of existing manufacturing firms per km2 | KOSIS | 2010 | 38.2 | 2311.0 | 695.1 | 558.8 | |
L_Firm_Den | Number of existing light industry firms per km2 | KOSIS | 2010 | 0.3 | 363.2 | 28.3 | 47.2 | |
H_Firm_Den | Number of existing heavy industry firms per km2 | KOSIS | 2010 | 1.1 | 194.5 | 27.0 | 34.9 | |
T_Firm_Den | Number of existing high-tech industry firms per km2 | KOSIS | 2010 | 0.0 | 258.4 | 16.8 | 35.9 | |
Human Capital | Sec_Deg | Percentage of working persons with high school degree | KOSIS | 2010 | 0.1 | 0.4 | 0.3 | 0.0 |
Ter_Deg | Percentage of working persons with bachelor’s degree or higher | KOSIS | 2010 | 0.0 | 0.1 | 0.0 | 0.0 | |
Wage | Average wage per household (1–10, 10: high, 1: low) | Biz-GIS ** | 2010 | 1.7 | 7.1 | 3.6 | 1.0 | |
Economic Variables | GRDP | Total amount of GRDP (100 million won) | KOSIS | 2010 | 39.816 | 3890.731 | 679.497 | 604.829 |
Land_P | Land price (1 million won) per m2 | Official Data | 2010 | 618.8 | 75,591.1 | 16,885.6 | 15,710.2 | |
FS_R_HS | Rent fee of residential floorspace (10,000 won) per m2 | Official Data | 2010 | 0.1 | 1.8 | 0.9 | 0.4 | |
FS_R_Ind | Rent fee of industrial floorspace (10,000 won) per m2 | Official Data | 2010 | 1.0 | 1.9 | 1.2 | 0.2 | |
FS_R_Off | Rent fee of official floorspace (10,000 won) per m2 | Official Data | 2010 | 2.4 | 6.7 | 3.4 | 0.9 | |
Floorspace | FS_HS | Total amount of residential floorspace (km2) | KOSIS | 2010 | 0.56378 | 43.07060 | 11.10036 | 0.788842 |
FS_Ind | Total amount of industrial floorspace (km2) | KOSIS | 2010 | 0.11236 | 14.29020 | 2.10715 | 2.81322 | |
FS_Off | Total amount of office floorspace (km2) | KOSIS | 2010 | 0.09951 | 11.49820 | 1.33440 | 1,079,954 | |
FS_Vacan_HS | Total amount of vacant residential floorspace (m2) | KOSIS | 2010 | 51,111 | 2,888,580 | 495,886 | 476,905 | |
FS_Vacan_Ind | Total amount of vacant industrial floorspace (m2) | KOSIS | 2010 | 7640 | 1,228,960 | 187,815 | 254,909 | |
FS_Vacan_Off | Total amount of vacant office floorspace (m2) | KOSIS | 2010 | 12,936 | 655,397 | 98,564 | 110,519 | |
Location Quotient | LQ_light | Location quotient of light industry | KOSIS | 2010 | 0.1 | 4.8 | 1.0 | 1.1 |
LQ_heavy | Location quotient of heavy industry | KOSIS | 2010 | 0.0 | 0.2 | 0.0 | 0.0 | |
LQ_high | Location quotient of high-tech industry | KOSIS | 2010 | 0.0 | 0.2 | 0.0 | 0.0 | |
LQ_all | Location quotient of all industry | KOSIS | 2010 | 0.1 | 3.2 | 1.0 | 0.8 | |
Transport | Sub_Den | Number of subway stations per km2 | NGII *** | 2010 | 0.0 | 0.9 | 0.2 | 0.2 |
Road_Ratio | Length of road in km2 | NGII | 2010 | 0.0 | 0.2 | 0.1 | 0.1 | |
Dis2Har | Distance to an international harbor from center point each city (km) | NGII | 2010 | 8.5 | 11.4 | 10.4 | 0.6 |
Industry Type | Dependent Variable | Adj. R2 | AICc | JB | K (BP) | VIF | Moran’s I (p-Value) | Model |
---|---|---|---|---|---|---|---|---|
Light | New firms | 0.77 | 599.62 | 0.00 | 0.50 | 2.66 | 0.0199 (0.50) | − Ter_Deg *** + GRDP *** + FS_R_Ind *** + Dis2Har *** + LQ_all *** |
Closed firms | 0.79 | 621.72 | 0.44 | 0.00 | 1.72 | −0.0328 (0.69) | + Sec_Deg + GRDP *** + Dis2Har *** + LQ_light *** + LQ_all *** | |
Flowed in firms | 0.60 | 388.71 | 0.05 | 0.00 | 1.15 | −0.0103 (0.96) | + Pop_Den + Wage *** + GRDP *** + Dis2Har *** + LQ_light ** | |
Flowed out firms | 0.78 | 404.78 | 0.11 | 0.00 | 2.01 | 0.0254 (0.44) | + Sec_Deg ** + GRDP *** + Dis2Har *** − FS_Vacan_Ind *** + LQ_all *** | |
Heavy | New firms | 0.77 | 703.51 | 0.00 | 0.01 | 3.05 | −0.1060 (0.05) | + H_Firm_Den *** + GRDP *** + FS_R_HS ** + FS_Vacan_Ind *** + LQ_heavy |
Closed firms | 0.84 | 680.84 | 0.00 | 0.00 | 2.49 | −0.1015 (0.06) | + GRDP *** + FS_HS *** − FS_Vacan_HS *** +FS_Vacan_Ind **+LQ_heavy *** | |
Flowed in firms | 0.76 | 396.81 | 0.00 | 0.00 | 3.98 | −0.0976 (0.08) | + H_Firm_Den *** + GRDP *** + FS_Ind *** − FS_Vacan_Off | |
Flowed out firms | 0.65 | 418.75 | 0.00 | 0.01 | 1.57 | −0.0319 (0.70) | + Emp_Den *** + H_Firm_Den *** − Dis2Har * + FS_Vacan_Ind *** | |
High-tech | New firms | 0.53 | 808.35 | 0.00 | 0.58 | 3.65 | −0.0259 (0.75) | + FS_R_HS ** + FS_Ind *** + FS_Vacan_Off + LQ_high *** − LQ_all *** |
Closed firms | 0.80 | 694.70 | 0.00 | 0.00 | 2.53 | −0.0888 (0.12) | + GRDP *** + FS_HS *** + FS_Ind *** − FS_Vacan_HS *** + LQ_high *** | |
Flowed in firms | 0.81 | 426.14 | 0.08 | 0.00 | 3.44 | −0.0406 (0.58) | + Emp_Den *** + FS_HS *** + FS_Ind *** + LQ_high *** − LQ_all *** | |
Flowed out firms | 0.62 | 481.07 | 0.01 | 0.00 | 3.49 | −0.0407 (0.57) | + Emp_Den + Land_P ** + FS_Vacan_Ind *** + LQ_high *** − LQ_all *** |
Industry Type | Dependent Variable | Values | Lagrange Multiplier | Robust LM | Diagnostic | ||
---|---|---|---|---|---|---|---|
Lag | Error | Lag | Error | ||||
Light | New firms | Value | 0.1264 | 0.0116 | 0.1459 | 0.0311 | OLS |
p-value | 0.7222 | 0.9143 | 0.7025 | 0.8601 | |||
Closed firms | Value | 1.1244 | 1.4917 | 0.1700 | 0.5373 | OLS | |
p-value | 0.2890 | 0.2220 | 0.6801 | 0.4636 | |||
Flowed in firms | Value | 0.9066 | 0.5011 | 0.4061 | 0.0007 | OLS | |
p-value | 0.3410 | 0.4790 | 0.5239 | 0.9791 | |||
Flowed out firms | Value | 0.2567 | 0.0103 | 0.5729 | 0.3265 | OLS | |
p-value | 0.6124 | 0.9191 | 0.4491 | 0.5677 | |||
Heavy | New firms | Value | 4.5384 | 5.9632 | 0.9545 | 2.3794 | SEM |
p-value | 0.0331 | 0.0146 ** | 0.3286 | 0.1230 | |||
Closed firms | Value | 2.7767 | 5.4318 | 0.5838 | 3.2388 | SEM | |
p-value | 0.0957 | 0.0198 ** | 0.4449 | 0.0719 * | |||
Flowed in firms | Value | 4.8131 | 3.2229 | 1.9974 | 0.4071 | SLM | |
p-value | 0.0282 ** | 0.0726 * | 0.1576 | 0.5234 | |||
Flowed out firms | Value | 0.3585 | 0.7435 | 0.0113 | 0.3963 | OLS | |
p-value | 0.5493 | 0.3885 | 0.9154 | 0.5290 | |||
High-tech | New firms | Value | 1.9852 | 0.2269 | 2.4523 | 0.6940 | OLS |
p-value | 0.1588 | 0.6338 | 0.1174 | 0.4048 | |||
Closed firms | Value | 0.1259 | 3.0961 | 0.2963 | 3.2664 | SEM | |
p-value | 0.7227 | 0.0785 * | 0.5862 | 0.0707 * | |||
Flowed in firms | Value | 0.6105 | 0.1418 | 0.4724 | 0.0037 | OLS | |
p-value | 0.4346 | 0.7065 | 0.4919 | 0.9517 | |||
Flowed out firms | Value | 0.9618 | 0.4200 | 0.5434 | 0.0017 | OLS | |
p-value | 0.3267 | 0.4610 | 0.5169 | 0.9676 |
Firm Life Cycle | Independent Variable | Coefficient | t(z)-Value | Model | Mode Performance | ||
---|---|---|---|---|---|---|---|
Adj.R2 (R2) | Log Likelihood | AIC (SC) | |||||
New Firms | Constant | −149.07 *** | −6.00 | OLS | 0.765896 (0.781097) | −292.009 | 596.018 (610.158) |
Ter_Deg | −295.27 *** | −3.53 | |||||
GRDP | 2.5 × 10−6 *** | 8.17 | |||||
FS_R_Ind | 37.49 *** | 3.47 | |||||
Dis2Har | 10.17 *** | 4.58 | |||||
LQ_all | 12.30 *** | 7.04 | |||||
Close Firms | Constant | −143.49 *** | −4.33 | OLS | 0.790968 (0.804542) | −303.061 | 618.123 (632.263) |
Sec_Deg | 66.33 * | 1.96 | |||||
GRDP | 3.4 × 10−6 *** | 13.02 | |||||
Dis2Har | 10.34 *** | 3.68 | |||||
LQ_light_ | 317.94 *** | 5.06 | |||||
LQ_all | 7.16 *** | 2.98 | |||||
Inflow Firms | Constant | −20.79 *** | −3.40 | OLS | 0.598220 (0.624310) | −186.556 | 385.111 (399.251) |
Pop_Den | 8.5 × 10−5 * | 1.82 | |||||
Wage | 0.93 ** | 2.71 | |||||
GRDP | 4.5 × 10−7 *** | 8.24 | |||||
Dis2Har | 1.56 ** | 2.70 | |||||
LQ_light | 39.71 *** | 3.51 | |||||
Outflow Firms | Constant | −26.95 *** | −3.43 | OLS | 0.779076 (0.793422) | −194.592 | 401.184 (415.324) |
Sec_Deg | 16.61 * | 1.84 | |||||
GRDP | 1.2 × 10−6 *** | 14.90 | |||||
Dis2Har | 1.88 *** | 2.92 | |||||
FS_Vacan_Ind | −1.2 × 10−5 *** | −6.20 | |||||
LQ_all | 2.46 *** | 4.16 |
Firm Life Cycle | Independent Variable | Coefficient. | t(z)-Value | Model | Mode Performance | ||
---|---|---|---|---|---|---|---|
Adj.R2 (R2) | Log Likelihood | AIC (SC) | |||||
New Firms | Constant | −33.13 *** | −4.84 | SEM | - (0.813982) | −340.442 | 692.883 (707.023) |
H_Firm_Den | 0.18 *** | 3.02 | |||||
GRDP | 1.5 × 10−6 *** | 3.28 | |||||
FS_R_HS | 27.23 *** | 3.71 | |||||
FS_Vacan_Ind | 1.1 × 10−4 *** | 8.52 | |||||
LQ_heavy | 8.28 ** | 2.44 | |||||
Lambda (λ) | −0.65 *** | −3.30 | |||||
Close Firms | Constant | −19.81 *** | −5.57 | SEM | - (0.862736) | −329.962 | 671.923 (686.064) |
GRDP | 2.5 × 10−6 *** | 7.50 | |||||
FS_HS | 1.3 × 10−6 *** | 3.63 | |||||
FS_Vacan_HS | −2.7 × 10−5 *** | −4.57 | |||||
FS_Vacan_Ind | 7.3 × 10−5 *** | 7.52 | |||||
LQ_heavy | 22.19 *** | 8.80 | |||||
Lambda (λ) | −0.53 ** | −2.40 | |||||
Inflow Firms | Constant | 0.56 | 0.69 | SLM | - (0.784754) | −189.953 | 391.906 (406.046) |
H_Firm_Den | 0.04 *** | 5.03 | |||||
GRDP | 3.8 × 10−7 *** | 3.65 | |||||
FS_Ind | 1.3 × 10−6 *** | 9.64 | |||||
FS_Vacan_Off | −9.2 × 10−6 * | −1.63 | |||||
Rho (ρ) | −0.23 ** | −1.76 | |||||
Outflow Firms | Constant | 13.60 * | 1.86 | OLS | 0.647335 (0.665655) | −202.783 | 415.567 (427.351) |
Emp_Den | 5.0 × 10−4 *** | 4.01 | |||||
H_Firm_Den | 0.05 *** | 5.04 | |||||
Dis2Har | −1.30 * | −1.88 | |||||
FS_Vacan_Ind | 7.7 × 10−6 *** | 4.45 |
Firm Life Cycle | Independent Variable | Coefficient | t(z)-Value | Model | Mode Performance | ||
---|---|---|---|---|---|---|---|
Adj.R2 (R2) | Log Likelihood | AIC (SC) | |||||
New Firms | Constant | −26.20 | −1.40 | OLS | 0.529758 (0.560293) | −396.375 | 804.75 (818.891) |
FS_R_HS | 39.10 ** | 2.13 | |||||
FS_Ind | 1.1 × 10−5 *** | 4.99 | |||||
FS_Vacan_Off | 7.6 × 10−5 | 1.49 | |||||
LQ_high | 1089.08 *** | 5.07 | |||||
LQ_all | −34.54 *** | −2.98 | |||||
Close Firms | Constant | −15.75 ** | −2.62 | SEM | - (0.678434) | −361.471 | 734.942 (749.083) |
GRDP | 1.8 × 10−6 *** | 3.51 | |||||
FS_HS | 2.9 × 10−6 *** | 5.02 | |||||
FS_Ind | 6.9 × 10−6 *** | 4.57 | |||||
FS_Vacan_HS | −4.6 × 10−5 *** | −4.97 | |||||
LQ_high | 14.26 *** | 3.73 | |||||
Lambda (λ) | 0.11 | 0.46 | |||||
Inflow Firms | Constant | −0.52 | −0.57 | OLS | 0.806362 (0.818936) | −205.268 | 422.537 (436.677) |
Emp_Den | 6.3 × 10−5 *** | 5.50 | |||||
FS_HS | 1.2 × 10−7 ** | 2.34 | |||||
FS_Ind | 1.7 × 10−6 *** | 9.25 | |||||
LQ_high | 148.86 *** | 8.31 | |||||
LQ_all | −4.58 *** | −4.71 | |||||
Outflow Firms | Constant | −0.64 | −0.48 | OLS | 0.619042 (0.643780) | −232.734 | 477.467 (491.608) |
Emp_Den | 4.5 × 10−4 * | 1.70 | |||||
Land_P | 1.6 × 10−6 ** | 2.44 | |||||
FS_Vacan_Ind | 1.5 × 10−5 *** | 4.81 | |||||
LQ_high | 171.08 *** | 6.32 | |||||
LQ_all | −5.15 *** | −3.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Wan, L. Monitoring Spatial Changes in Manufacturing Firms in Seoul Metropolitan Area Using Firm Life Cycle and Locational Factors. Sustainability 2019, 11, 3808. https://doi.org/10.3390/su11143808
An Y, Wan L. Monitoring Spatial Changes in Manufacturing Firms in Seoul Metropolitan Area Using Firm Life Cycle and Locational Factors. Sustainability. 2019; 11(14):3808. https://doi.org/10.3390/su11143808
Chicago/Turabian StyleAn, Youngsoo, and Li Wan. 2019. "Monitoring Spatial Changes in Manufacturing Firms in Seoul Metropolitan Area Using Firm Life Cycle and Locational Factors" Sustainability 11, no. 14: 3808. https://doi.org/10.3390/su11143808