Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps
Abstract
:1. Introduction
2. Social Acceptance
3. Methods
3.1. Case Study Methods
3.2. Analytical Approach
4. Case Study
4.1. The Mitigation Lens
4.2. The Adaptation Lens
4.3. The Trift Project
5. Results
5.1. Social Acceptance in Different Stages of the Trift Project
5.2. Social Acceptance in the Stage of the Participatory Process
5.2.1. Socio-Political Acceptance
5.2.2. Market Acceptance
5.2.3. Societal and Community Acceptance
Procedural Justice
Distributional Justice
- Water taxThe canton holds more than 50% of the shares of the hydropower company and simultaneously collects the water resource tax (Wasserzins) from the hydropower company. The local municipalities collect corporate and property taxes from KWO. This is taken for granted because the taxes are regulated by law.
- Regional jobsIt was important to the regional actors that the construction and the operation of the dam would create new jobs in the region. Job creation is essential in such remote areas.
- Regional tourismKWO created the tourism sector ‘Grimselwelt’, where power plants are marketed. Former KWO works railways have been opened for tourism, and hiking trails, bridges, restaurants, and hotels are also in operation. The regional actors appreciated that the local economy benefits from these tourism opportunities.
- Regional engagementThe regional actors valued that KWO supports local events and projects. KWO’s activities have gained a favorable reputation within the region.
Trust Building
5.2.4. Geographical Concepts
Place
Landscape
Distance Decay
5.2.5. Environmental Impacts
Environmental Impact
Compensatory Measurements
Protection Status
5.2.6. Ownership of the Hydropower Company
5.2.7. Multi-Purpose Reservoir
5.2.8. Polycentric Approach
5.2.9. Interrelations
Interrelations with Other Stages of the Trift Project
Interrelations with Processes beyond the Trift Project
5.2.10. The Objection Against the Trift Project
6. Discussion
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No | Function | Category | Date |
---|---|---|---|
I1 | Regional NGO | NGO | 06.06.2017 |
I2 | Regional NGO | 09.06.2017 | |
I3 | Cantonal NGO | 07.06.2017 | |
I4 | Cantonal NGO | 22.08.2018 | |
I5 | National NGO | 10.06.2017 | |
I6 | National NGO | 13.06.2017 | |
I7 | National NGO | 15.06.2017 | |
I8 | National NGO | 26.10.2017 | |
I9 | Commune President | Politicians | 22.06.2017 |
I10 | Commune President | 22.06.2017 | |
I11 | Commune President | 22.06.2017 | |
I12 | Cantonal politician | 30.10.2017 | |
I13 | Cantonal politician | 20.10.2017 | |
I14 | Cantonal politician | 16.10.2017 | |
I15 | Cantonal politician | 24.10.2017 | |
I16 | Cantonal politician | 06.10.2017 | |
I17 | Cantonal politician | 10.10.2017 | |
I18 | Regional administration | Administration | 15.08.2017 |
I19 | Cantonal administration | 30.10.2017 | |
I20 | Cantonal administration | 14.12.2017 | |
I21 | Cantonal administration | 20.12.2018 | |
I22 | Hydropower Company | Industry | 13.08.2017 |
I23 | Hydropower Company | 14.11.2018 |
References
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Schaefli, B.; Manso, P.; Fischer, M.; Huss, M.; Farinotti, D. The role of glacier retreat for Swiss hydropower production. Renew. Energy 2019, 132, 615–627. [Google Scholar] [CrossRef]
- Brunner, M.I.; Björnsen Gurung, A.; Zappa, M.; Zekollari, H.; Farinotti, D.; Stähli, M. Present and future water scarcity in Switzerland: Potential for alleviation through reservoirs and lakes. Sci. Total Environ. 2019, 666, 1033–1047. [Google Scholar] [CrossRef] [PubMed]
- Kellner, E.; Weingartner, R. Mehrzweckspeicher als Anpassung an den Klimawandel. Wasser Energ. Luft 2018, 110, 101–107. [Google Scholar]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.S.; Clague, J.J.; Vuille, M.; Buytaert, W.; Cayan, D.R.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Ho, M.; Lall, U.; Allaire, M.; Devineni, N.; Kwon, H.H.; Pal, I.; Raff, D.; Wegner, D. The future role of dams in the United States of America. Water Resour. Res. 2017, 53, 982–998. [Google Scholar] [CrossRef]
- Hess, C.E.E.; Fenrich, E. Socio-environmental conflicts on hydropower: The São Luiz do Tapajós project in Brazil. Environ. Sci. Policy 2017, 73, 20–28. [Google Scholar] [CrossRef]
- Martínez, V.; Castillo, O.L. The political ecology of hydropower: Social justice and conflict in Colombian hydroelectricity development. Energy Res. Soc. Sci. 2016, 22, 69–78. [Google Scholar] [CrossRef]
- Farinotti, D.; Pistocchi, A.; Huss, M. From dwindling ice to headwater lakes: Could dams replace glaciers in the European Alps? Environ. Res. Lett. 2016, 11, 054022. [Google Scholar] [CrossRef]
- Ehrbar, D.; Schmocker, L.; Vetsch, D.; Boes, R. Hydropower Potential in the Periglacial Environment of Switzerland under Climate Change. Sustainability 2018, 10, 2794. [Google Scholar] [CrossRef]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef] [Green Version]
- Tabi, A.; Wüstenhagen, R. Keep it local and fish-friendly: Social acceptance of hydropower projects in Switzerland. Renew. Sustain. Energy Rev. 2017, 68, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Batel, S.; Devine-Wright, P.; Tangeland, T. Social acceptance of low carbon energy and associated infrastructures: A critical discussion. Energy Policy 2013, 58, 1–5. [Google Scholar] [CrossRef]
- Dermont, C.; Ingold, K.; Kammermann, L.; Stadelmann-Steffen, I. Bringing the policy making perspective in: A political science approach to social acceptance. Energy Policy 2017, 108, 359–368. [Google Scholar] [CrossRef]
- Devine-Wright, P.; Batel, S.; Aas, O.; Sovacool, B.; Labelle, M.C.; Ruud, A. A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage. Energy Policy 2017, 107, 27–31. [Google Scholar] [CrossRef]
- Wolsink, M. Social acceptance revisited: Gaps, questionable trends, and an auspicious perspective. Energy Res. Soc. Sci. 2018, 46, 287–295. [Google Scholar] [CrossRef]
- Wolsink, M. Wind power for the electricity supply of houses. Neth. J. Hous. Environ. Res. 1987, 2, 195–214. [Google Scholar] [CrossRef]
- Plum, C.; Olschewski, R.; Jobin, M.; van Vliet, O. Public preferences for the Swiss electricity system after the nuclear phase-out: A choice experiment. Energy Policy 2019, 130, 181–196. [Google Scholar] [CrossRef]
- Söderholm, P.; Ek, K.; Pettersson, M. Wind power development in Sweden: Global policies and local obstacles. Renew. Sustain. Energy Rev. 2007, 11, 365–400. [Google Scholar] [CrossRef]
- Wolsink, M. Wind power implementation: The nature of public attitudes: Equity and fairness instead of ‘backyard motives’. Renew. Sustain. Energy Rev. 2007, 11, 1188–1207. [Google Scholar] [CrossRef]
- Ladenburg, J.; Möller, B. Attitude and acceptance of offshore wind farms—The influence of travel time and wind farm attributes. Renew. Sustain. Energy Rev. 2011, 15, 4223–4235. [Google Scholar] [CrossRef]
- Spiess, H.; Lobsiger-Kägi, E.; Carabias-Hütter, V.; Marcolla, A. Future acceptance of wind energy production: Exploring future local acceptance of wind energy production in a Swiss alpine region. Technol. Forecast. Soc. Chang. 2015, 101, 263–274. [Google Scholar] [CrossRef]
- Kraxner, F.; Yang, J.; Yamagata, Y. Attitudes towards forest, biomass and certification--a case study approach to integrate public opinion in Japan. Bioresour. Technol. 2009, 100, 4058–4061. [Google Scholar] [CrossRef] [PubMed]
- Susaeta, A.; Alavalapati, J.; Lal, P.; Matta, J.R.; Mercer, E. Assessing public preferences for forest biomass based energy in the southern United States. Environ. Manag. 2010, 45, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Labay, D.G.; Kinnear, T.C. Exploring the Consumer Decision Process in the Adoption of Solar Energy Systems. J. Consum. Res. 1981, 8, 271–278. [Google Scholar] [CrossRef]
- Yuan, X.; Zuo, J.; Ma, C. Social acceptance of solar energy technologies in China—End users’ perspective. Energy Policy 2011, 39, 1031–1036. [Google Scholar] [CrossRef]
- Hai, M.A. Rethinking the social acceptance of solar energy: Exploring “states of willingness” in Finland. Energy Res. Soc. Sci. 2019, 51, 96–106. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower’s future, the environment, and global electricity systems. Renew. Sustain. Energy Rev. 2010, 14, 713–723. [Google Scholar] [CrossRef]
- Arabatzis, G.; Myronidis, D. Contribution of SHP Stations to the development of an area and their social acceptance. Renew. Sustain. Energy Rev. 2011, 15, 3909–3917. [Google Scholar] [CrossRef]
- Höffken, J.I. A closer look at small hydropower projects in India: Social acceptability of two storage-based projects in Karnataka. Renew. Sustain. Energy Rev. 2014, 34, 155–166. [Google Scholar] [CrossRef]
- Kumar, D.; Katoch, S.S. Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas. Renew. Sustain. Energy Rev. 2014, 39, 87–101. [Google Scholar] [CrossRef]
- Kumar, D.; Katoch, S.S. Small hydropower development in western Himalayas: Strategy for faster implementation. Renew. Energy 2015, 77, 571–578. [Google Scholar] [CrossRef]
- Kumar, D.; Katoch, S.S. Sustainability suspense of small hydropower projects: A study from western Himalayan region of India. Renew. Energy 2015, 76, 220–233. [Google Scholar] [CrossRef]
- Malesios, C.; Arabatzis, G. Small hydropower stations in Greece: The local people’s attitudes in a mountainous prefecture. Renew. Sustain. Energy Rev. 2010, 14, 2492–2510. [Google Scholar] [CrossRef]
- Sharma, A.K.; Thakur, N.S. Resource potential and development of small hydro power projects in Jammu and Kashmir in the western Himalayan region: India. Renew. Sustain. Energy Rev. 2015, 52, 1354–1368. [Google Scholar] [CrossRef]
- Kataria, M. Willingness to pay for environmental improvements in hydropower regulated rivers. Energy Econ. 2009, 31, 69–76. [Google Scholar] [CrossRef]
- Klinglmair, A.; Bliem, M.G.; Brouwer, R. Exploring the public value of increased hydropower use: A choice experiment study for Austria. J. Environ. Econ. Policy 2015, 4, 315–336. [Google Scholar] [CrossRef]
- Stadelmann-Steffen, I.; Ingold, K.; Rieder, S.; Dermont, C.; Kammermann, L.; Strotz, C. (Eds.) Akzeptanz Erneuerbarer Energie; Univerität Bern; Interface Politikstudien Forschung Beratung; EAWAG: Bern/Luzern/Dübendorf, Switzerland, 2018; ISBN 978-3-03825-010-4. [Google Scholar]
- BFE. Schweizerische Elektrizitätsstatistik 2017; Bundesamt für Energie BFE: Berne, Switzerland, 2017. [Google Scholar]
- Vetterli, L. Konzessionsverfahren beschleunigen dank Zusammenarbeit. In Thema Umwelt: Die Rolle der Wasserkraft in der Energiestrategie 2050; Praktischer Umweltschutz Schweiz Pusch: Zurich, Switzerland, 2012; pp. 22–23. [Google Scholar]
- Umweltverbände Schweiz. Beschwerde Gegen Staumauer-Erhöhung Eingereicht; Aqua Viva: Schaffhausen, Switzerland, 2013. [Google Scholar]
- Hayes, D.S. Kräftemessen zwischen Wasserkraft und Ökologie. Aqua Viva 2019, 1, 8–12. [Google Scholar]
- Müller, S.; Sieber, U.; Estoppey, R.; Haertel-Borer, S.; Leu, C.; Schärer, M. Schutz und Weiterentwicklung der Gewässer. Aqua Gas 2018, 4, 20–28. [Google Scholar]
- Fast, S. Social Acceptance of Renewable Energy: Trends, Concepts, and Geographies. Geogr. Compass 2013, 7, 853–866. [Google Scholar] [CrossRef]
- Boon, F.P.; Dieperink, C. Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development. Energy Policy 2014, 69, 297–307. [Google Scholar] [CrossRef]
- Maruyama, Y.; Nishikido, M.; Iida, T. The rise of community wind power in Japan: Enhanced acceptance through social innovation. Energy Policy 2007, 35, 2761–2769. [Google Scholar] [CrossRef]
- Parag, Y.; Janda, K.B. More than filler: Middle actors and socio-technical change in the energy system from the “middle-out”. Energy Res. Soc. Sci. 2014, 3, 102–112. [Google Scholar] [CrossRef]
- González, A.; Sandoval, H.; Acosta, P.; Henao, F. On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective. Sustainability 2016, 8, 1171. [Google Scholar] [CrossRef]
- Visschers, V.H.M.; Siegrist, M. Fair play in energy policy decisions: Procedural fairness, outcome fairness and acceptance of the decision to rebuild nuclear power plants. Energy Policy 2012, 46, 292–300. [Google Scholar] [CrossRef]
- Kellner, E.; Oberlack, C.; Gerber, J.D. Polycentric governance compensates for incoherence of resource regimes: The case of water uses under climate change in Oberhasli, Switzerland. Environ. Sci. Policy 2019, 100, 126–135. [Google Scholar] [CrossRef]
- Jagosh, J.; Bush, P.L.; Salsberg, J.; Macaulay, A.C.; Greenhalgh, T.; Wong, G.; Cargo, M.; Green, L.W.; Herbert, C.P.; Pluye, P. A realist evaluation of community-based participatory research: Partnership synergy, trust building and related ripple effects. BMC Public Health 2015, 15, 725. [Google Scholar] [CrossRef]
- Jordan, A.J.; Huitema, D.; van Asselt, H. (Eds.) Governing Climate Change: Polycentricity in Action; Cambridge University Press: Cambridge, UK, 2018; ISBN 9781108418126. [Google Scholar]
- Perlaviciute, G.; Steg, L. Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda. Renew. Sustain. Energy Rev. 2014, 35, 361–381. [Google Scholar] [CrossRef]
- Huijts, N.M.A.; Molin, E.J.E.; Steg, L. Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renew. Sustain. Energy Rev. 2012, 16, 525–531. [Google Scholar] [CrossRef]
- Scholz, R.W.; Tietje, O. Embedded Case Study Methods. Integrating Quantitative and Qualitative Knowledge; Sage: Thousand Oaks, CA, USA, 2002; ISBN 0761919465. [Google Scholar]
- Mayring, P. Qualitative Inhaltsanalyse. In Handbuch Qualitative Forschung in der Psychologie, (1. Aufl.); Mey, G., Mruck, K., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2010; pp. 601–613. ISBN 978-3-531-16726-8. [Google Scholar] [Green Version]
- Beach, D.; Pedersen, R.B. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing; University of Michigan Press: Ann Arbor, MI, USA, 2016; ISBN 0472053221. [Google Scholar]
- Botelho, A.; Ferreira, P.; Lima, F.; Pinto, L.M.C.; Sousa, S. Assessment of the environmental impacts associated with hydropower. Renew. Sustain. Energy Rev. 2017, 70, 896–904. [Google Scholar] [CrossRef]
- Bütler, M. Einsprache Projekt Trift. 2018. Available online: https://www.aquaviva.ch/images/Politik/Stellungnahmen/Stellungnahmen_2018/20180205_Einsprache%20KW%20Trift_RA%20Btler%20fr%20AV%20u.%20Grimselv_def.pdf (accessed on 10 May 2019).
- BFE. Botschaft zum ersten Massnahmenpaket der Energiestrategie 2050 (Revision des Energierechts) und zur Volksinitiative «Für den geordneten Ausstieg aus der Atomenergie (Atomausstiegsinitiative)»; Bundesamt für Energie BFE: Bern, Switzerland, 2013. [Google Scholar]
- BFE. Wasserkraftpotenzial der Schweiz. Abschätzung des Ausbaupotenzials der Wasserkraftnutzung im Rahmen der Energiestrategie 2050; Bundesamt für Energie BFE: Bern, Switzerland, 2012. [Google Scholar]
- Savelsberg, J.; Schillinger, M.; Schlecht, I.; Weigt, H. The Impact of Climate Change on Swiss Hydropower. Sustainability 2018, 10, 2541. [Google Scholar] [CrossRef]
- BFE. Statistik der Wasserkraftanlagen der Schweiz (WASTA); Bundesamt für Energie BFE: Bern, Switzerland, 2019. [Google Scholar]
- Umweltallianz. Natur-, Heimat-, Landschafts-, und Umweltschutzorganisationen Sagen JA zur Energiestrategie; Umweltallianz: Wiesbaden, Germany, 2017. [Google Scholar]
- Walter, G. Determining the local acceptance of wind energy projects in Switzerland: The importance of general attitudes and project characteristics. Energy Res.Soc. Sci. 2014, 4, 78–88. [Google Scholar] [CrossRef]
- UVEK. Bericht über die Ergebnisse der Vernehmlassung zum Ersten Massnahmenpaket der Energiestrategie 2050; UVEK: Bern, Switzerland, 2013. [Google Scholar]
- Pfammatter, R.; Piot, M. Situation und Perspektiven der Schweizer Wasserkraft. Wasser Energ. Luft 2014, 106, 1–11. [Google Scholar]
- SWV. Wasserkraft Schweiz. Available online: https://www.swv.ch/fachinformationen/wasserkraft-schweiz/ (accessed on 10 May 2019).
- Huss, M. Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res. 2011, 47, 469. [Google Scholar] [CrossRef]
- Marty, C.; Tilg, A.M.; Jonas, T. Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps. J. Hydrometeorol. 2017, 18, 1021–1031. [Google Scholar] [CrossRef]
- Haeberli, W.; Bütler, M.; Huggel, C.; Müller, H.; Schleiss, A. Neue Seen als Folge der Entgletscherung im Hochgebirge: Klimaabhängige Bildung und Herausforderungen für eine Nachhaltige Nutzung (NELAK). 2013. Available online: https://www.raonline.ch/pages/edu/pdf8/NELAK_Gletscher12.pdf (accessed on 14 May 2019).
- Berga, L. The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review. Engineering 2016, 2, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 891. [Google Scholar] [CrossRef]
- Mata, L.J.; Budhooram, J. Complementarity between mitigation and adaptation: The water sector. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 799–807. [Google Scholar] [CrossRef]
- Weingartner, R.; Schädler, B.; Reynard, E.; Bonriposi, M.; Graefe, O.; Herweg, K.; Homewood, C.; Huss, M.; Kauzlaric, M.; Liniger, H.; et al. MontanAqua: Wasserbewirtschaftung in Zeiten von Knappheit und Globalem Wandel. Wasserbewirtschaftungsoptionen für die Region Crans-Montana-Sierre im Wallis; Forschungsbericht des Nationalen Forschungsprogramms NFP 61: Bern, Switzerland, 2014; ISBN 978-3-9524412-0-6. [Google Scholar]
- Ehsani, N.; Vörösmarty, C.J.; Fekete, B.M.; Stakhiv, E.Z. Reservoir operations under climate change: Storage capacity options to mitigate risk. J. Hydrol. 2017, 555, 435–446. [Google Scholar] [CrossRef]
- Wanders, N.; Wada, Y. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 2015, 526, 208–220. [Google Scholar] [CrossRef]
- FOEN. Adaptation to Climate Change in Switzerland. Goals, Challenges and Fields of Action; First Part of the Federal Council’s Strategy; FOEN: Bern, Switzerland, 2012. [Google Scholar]
- BAFU. Anpassung an den Klimawandel in der Schweiz. Aktionsplan 2014–2019. Zweiter Teil der Strategie des Bundesrates vom 9 April 2014; BAFU: Bern, Switzerland, 2014. [Google Scholar]
- BAFU. Pilotprogramm Anpassung an den Klimawandel. Available online: https://www.bafu.admin.ch/bafu/de/home/themen/klima/fachinformationen/anpassung-an-den-klimawandel/pilotprogramm-anpassung-an-den-klimawandel.html (accessed on 15 May 2019).
- Branche, E. Multipurpose Water Uses of Hydropower Reservoirs. “Sharing the Water Uses of Multipurpose Hydropower Reservoirs: The SHARE Concept”; World Water Council: Edf, France, 2015. [Google Scholar]
- Ahmed, J.A.; Sarma, A.K. Genetic Algorithm for Optimal Operating Policy of a Multipurpose Reservoir. Water Resour. Manag. 2005, 19, 145–161. [Google Scholar] [CrossRef]
- Kumar, D.N.; Reddy, M.J. Ant Colony Optimization for Multi-Purpose Reservoir Operation. Water Resour. Manag. 2006, 20, 879–898. [Google Scholar] [CrossRef]
- Mehta, R.; Jain, S.K. Optimal Operation of a Multi-Purpose Reservoir Using Neuro-Fuzzy Technique. Water Resour. Manag. 2009, 23, 509–529. [Google Scholar] [CrossRef]
- Haeberli, W.; Buetler, M.; Huggel, C.; Friedli, T.L.; Schaub, Y.; Schleiss, A.J. New lakes in deglaciating high-mountain regions—Opportunities and risks. Clim. Chang. 2016, 139, 201–214. [Google Scholar] [CrossRef]
- Haeberli, W.; Bütler, M.; Huggel, C.; Müller, H.; Schleiss, A. Neue Seen als Folge des Gletscherschwundes im Hochgebirge—Chancen und Risiken; Forschungsbericht NFP 61; ETH Zurich: Zurich, Switzerland, 2013. [Google Scholar]
- geo7. Multifunktionsspeicher im Oberhasli. Bericht; geo7: Bern, Switzerland, 2017. [Google Scholar]
- Schweizer, S.; Zeh Weissmann, H.; Ursin, M. Der Begleitgruppenprozess zu den Ausbauprojekten und zur Restwassersanierung im Oberhasli. Wasser Energ. Luft 2012, 104, 11–17. [Google Scholar]
- Haeberli, W.; Linsbauer, A.; Cochachin, A.; Salazar, C.; Fischer, U.H. On the morphological characteristics of overdeepenings in high-mountain glacier beds. Earth Surf. Process. Landf. 2016, 41, 1980–1990. [Google Scholar] [CrossRef]
- Dazio, P. Integrale Wasserwirtschaft. Aqua Gas 2017, 4, 16–23. [Google Scholar]
- Gaede, J.; Rowlands, I.H. Visualizing social acceptance research. Energy Res. Soc. Sci. 2018, 40, 142–158. [Google Scholar] [CrossRef]
- Bache, I.; Flinders, M. (Eds.) Multi-Level Governance; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Rosso-Cerón, A.M.; Kafarov, V. Barriers to social acceptance of renewable energy systems in Colombia. Curr. Opin. Chem. Eng. 2015, 10, 103–110. [Google Scholar] [CrossRef]
- Friedl, C.; Reichl, J. Realizing energy infrastructure projects—A qualitative empirical analysis of local practices to address social acceptance. Energy Policy 2016, 89, 184–193. [Google Scholar] [CrossRef]
- Jami, A.A.; Walsh, P.R. From consultation to collaboration: A participatory framework for positive community engagement with wind energy projects in Ontario, Canada. Energy Res. Soc. Sci. 2017, 27, 14–24. [Google Scholar] [CrossRef]
- Peterson, T.R.; Stephens, J.C.; Wilson, E.J. Public perception of and engagement with emerging low-carbon energy technologies: A literature review. MRS Energy Sustain. 2015, 2, 216. [Google Scholar] [CrossRef]
- Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Glob. Environ. Chang. 2010, 20, 550–557. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Knieper, C. The capacity of water governance to deal with the climate change adaptation challenge: Using fuzzy set Qualitative Comparative Analysis to distinguish between polycentric, fragmented and centralized regimes. Glob. Environ. Chang. 2014, 29, 139–154. [Google Scholar] [CrossRef]
- Carlisle, K.; Gruby, R.L. Polycentric Systems of Governance: A Theoretical Model for the Commons. Policy Stud. J. 2017, 10, 629. [Google Scholar] [CrossRef]
- Carlisle, K.; Gruby, R.L. Why the path to polycentricity matters: Evidence from fisheries governance in Palau. Environ. Policy Gov. 2018, 28, 223–235. [Google Scholar] [CrossRef]
- Folke, C.; Pritchard, L., Jr.; Berkes, F.; Colding, J.; Svedin, U. The Problem of Fit between Ecosystems and Institutions: Ten Years Later. Ecol. Soc. 2007, 12, 1–18. [Google Scholar] [CrossRef]
Actors (A) | Environmental impacts (EI) |
A1 Relevant actors | EI1 Environmental impacts |
Stages of the process (S) | EI2 Compensatory measurements |
S1 Indications for the process stages | EI3 Protection status |
Socio-political acceptance (SPA) | Ownership of the hydropower company (OS) |
SPA1 Socio-political acceptance | OS1 Ownership |
Market acceptance (MA) | Multi-purpose reservoir (MR) |
MA1 Market acceptance | MR1 Indications for multi-purpose uses |
Societal and community acceptance (SCA) | Polycentric approach (PA) |
SCA1 Procedural justice | PA1 Polycentric processes |
SCA2 Distributional justice | Interrelations (I) |
SCA3 Trust building | I1 Interrelations with other stages |
Geographical concepts (GC) | I2 Interrelations with other processes |
GC1 Place | |
GC2 Landscape | |
GC3 Distance decay |
Stage | Object of Acceptance | Relevant Actors | Dimension of Social Acceptance | Interrelations | |
---|---|---|---|---|---|
1 | Launch a project | Launch of the project | Hydropower Company KWO | Market acceptance; Socio-political acceptance of energy policies at international and national level | European and Swiss energy market |
2 | Choosing a site for a project | Site of the project | Hydropower Company KWO | Not a question of acceptance. Natural conditions led to a potential side. | Public policies about nature conservation; Protected areas in the intended territory; Climate change |
3 | Feasibility studies “hydropower” | Feasibility studies | Scientists; Hydropower Company KWO; Engineering offices | Not a question of acceptance. Natural conditions led to a potential project. | |
4 | Feasibility study “multi-purpose” | Multi-purpose use of the Trift reservoir | Cantonal administration of Bern; | Socio-political acceptance of energy and water policies at national and cantonal levels | |
5 | Participatory process | Collectively negotiated draft of a concession | Hydropower Company KWO; Municipalities; Cantonal administration of Bern; NGOs with veto power | Socio-political acceptance of energy, water and environmental policies at international, national, and cantonal levels; Market acceptance; Societal and community acceptance of the Trift project | Forthcoming vote on the Swiss Energy Strategy 2050; Selected site of the project in Stage 2; Results of the feasibility studies in Stage 3; Experience with other hydropower projects; Funding instrument for electricity from renewable energy sources |
6 | Administrative process | Recommendation to the Great Council | National administration; Cantonal administration of Bern; State Council | Not a question of acceptance. The concession is proofed for legal conformity. | Commitment to the participatory process in Stage 5 |
7 | Vote on the concession | Granting a concession | Great Council of the canton of Bern | Socio-political acceptance of energy, water and environmental policies at international, national, and cantonal levels; Market acceptance | Result of the administrative process with the recommendation in stage 6; Participating actors and the result of the participatory process in Stage 5 |
8 | Permit | Trift project | Local authorities; People affected; NGOs with veto power; Cantonal administration of Bern; Cantonal or national courts | Societal and community acceptance; Socio-political acceptance of energy, water, and environmental policies at international, national, and cantonal levels | Participating actors and the result of the participatory process in Stage 5 |
9 | Realisation decision | Realization of the project | Hydropower Company KWO | Market acceptance | National subsidies; European and Swiss energy market |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kellner, E. Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps. Sustainability 2019, 11, 3819. https://doi.org/10.3390/su11143819
Kellner E. Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps. Sustainability. 2019; 11(14):3819. https://doi.org/10.3390/su11143819
Chicago/Turabian StyleKellner, Elke. 2019. "Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps" Sustainability 11, no. 14: 3819. https://doi.org/10.3390/su11143819
APA StyleKellner, E. (2019). Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps. Sustainability, 11(14), 3819. https://doi.org/10.3390/su11143819