An Assessment of the Impact of Spatial Agglomeration on the Quality of China’s Wood Processing Industry Products
Abstract
:1. Introduction
2. Theoretical Mechanism
2.1. Theoretical Framework
2.2. Mechanism
3. Modeling Process
3.1. Variables
3.1.1. Export Products Quality (r-quality)
3.1.2. Spatial Agglomeration Index (EG)
3.1.3. Control Variables
Enterprise Level
3.2. Data
3.3. Model
3.4. Descriptive Statistics
3.5. Heteroscedasticity, Autocorrelation, and Multicollinearity
3.6. Regression Analysis
3.7. Data Robustness
4. Discussion
5. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
Appendix A
Industry ID | Industry | Interpretation |
---|---|---|
2011 | sawn timber processing industry | Processing ordinary sawn timber and special sawn timber. |
2012 | wood chip processing industry | Processing needles and hardwood chips |
2021 | plywood manufacturing industry | Manufacturing wood plywood, bamboo plywood, bamboo plywood, and bamboo laminates |
2022 | fiberboard manufacturing industry | Manufacturing wood and non-wood fiberboard |
2023 | particleboard manufacturing industry | Manufacturing wood and non-wood shaving fiberboard |
2029 | other wood panel manufacturing industry | Manufacturing veneer, thermosetting resin decorative laminate, wood-based panel surface decoration, glued wood, laminated wood |
2031 | wood products for manufacturing industry | Producing wooden farm implements, wooden doors and windows, small pieces of flooring, wooden packaging supplies, etc. |
2033 | wood products for daily use industry | Producing wooden cooking utensils, pots, barrels, and other household wood products |
2040 | bamboo and rattan palm industry | Producing daily necessities and packaging supplies made by bamboo and rattan palm. |
Stats | Mean | Median | Max | Min | Sd |
---|---|---|---|---|---|
rquality | 0.555 | 0.579 | 1.000 | 0.000 | 0.138 |
EG | 0.060 | 0.043 | 3.626 | −4.974 | 0.155 |
TFP | 6.986 | 6.959 | 14.274 | 2.512 | 1.166 |
sub | 0.154 | 0.000 | 1.000 | 0.000 | 0.361 |
scale | 8.835 | 8.859 | 14.116 | 1.099 | 1.593 |
age | 8.445 | 7.000 | 87.000 | 1.000 | 5.489 |
lngdp | 6.554 | 6.773 | 9.728 | −2.017 | 1.911 |
ddft | 83.550 | 61.444 | 442.620 | 0.167 | 70.064 |
FCS | 0.742 | 1.000 | 1.000 | 0.000 | 0.438 |
EG | TFP | Sub | Scale | Age | lngdp | ddft | FCS | |
---|---|---|---|---|---|---|---|---|
EG | 1.000 | |||||||
TFP | −0.008 | 1.000 | ||||||
sub | −0.022 | −0.013 | 1.000 | |||||
scale | −0.036 | 0.368 | 0.104 | 1.000 | ||||
age | 0.049 | −0.023 | 0.072 | 0.227 | 1.000 | |||
lngdp | 0.018 | −0.126 | 0.007 | −0.028 | −0.004 | 1.000 | ||
ddft | −0.016 | 0.013 | −0.016 | −0.007 | 0.003 | −0.439 | 1.000 | |
FCS | 0.027 | −0.060 | 0.012 | −0.003 | 0.008 | 0.504 | −0.365 | 1.000 |
VIF | 1.01 | 1.20 | 1.02 | 1.25 | 1.08 | 1.51 | 1.29 | 1.39 |
1/VIF | 0.994 | 0.836 | 0.984 | 0.798 | 0.930 | 0.661 | 0.778 | 0.720 |
References
- Yang, H.Q.; Nie, Y. Study on the Issues of Transformation, Upgrading and Regional Optimization of Chinese Lumber Processing Industry. Issues Agric. Econ. 2011, 32, 90–94, 112. (In Chinese) [Google Scholar]
- Zhang, J.; Li, F.; Liu, Y.; Cheng, B. An Assessment of Trade Facilitation’s Impacts on China’s Forest Product Exports to Countries Along the “Belt and Road” Based on the Perspective of Ternary Margins. Sustainability 2019, 11, 1298. [Google Scholar] [CrossRef]
- Ding, L.; Chen, K.L.; Liu, T.; Cheng, S.G.; Wang, X. Spatial-Temporal Hotspot Pattern Analysis of Provincial Environmental Pollution Incidents and Related Regional Sustainable Management in China in the Period 1995–2012. Sustainability 2015, 7, 14385–14407. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z. Analysis of Scale Economy of China’s Wood Processing Industry—Based on the First National Economic Census and 188 Enterprises Survey Data. China Rural Econ. 2010, 10, 36–42. (In Chinese) [Google Scholar]
- Tao, C.; Li, L.; Cheng, B. An Empirical Study on the Spatial Agglomeration Level of China’s Wood-Processing Industry. J. Beijing For. Univ. Soc. Sci. 2017, 16, 61–68. (In Chinese) [Google Scholar]
- Greenaway, D.; Kneller, R. Exporting, productivity and agglomeration. Eur. Econ. Rev. 2008, 52, 919–939. [Google Scholar] [CrossRef]
- Antonietti, R.; Cainelli, G. The role of spatial agglomeration in a structural model of innovation, productivity and export: A firm-level analysis. Ann. Reg. Sci. 2011, 46, 577–600. [Google Scholar] [CrossRef]
- Lin, B.; Liu, F.; Zhao, H. A Study on the Impact of Industrial Agglomeration’s Productivity Effect on Export Competitiveness of Chinese Manufacturing Industry. East China Econ. Manag. 2015, 29, 109–115. (In Chinese) [Google Scholar]
- Wen, D.; Yan, G. Spatial Agglomeration and Export of China’s Manufacturing Industry: Based on Enterprise Level Research. Manag. World 2014, 10, 57–74. (In Chinese) [Google Scholar]
- Syverson, C. Prices, spatial competition and heterogeneous producers: An empirical test. J. Ind. Econ. 2007, 55, 26. [Google Scholar] [CrossRef]
- Fan, D.; Du, M. Research on the spatial and temporal differentiation of China’s industrial technology innovation resource allocation—Based on the new normal perspective. Stud. Sci. Sci. 2017, 35, 1167–1178. (In Chinese) [Google Scholar]
- Marshall, A. Principles of Economics; Palgrave Macmillan: Basingstoke, UK, 1920. [Google Scholar]
- Ellison, G.; Glaeser, E.L.; Kerr, W.R. What Causes Industry Agglomeration? Evidence from Coagglomeration Patterns. Am. Econ. Rev. 2010, 100, 1195–1213. [Google Scholar] [CrossRef]
- Audretsch, D.B. Agglomeration and the Location of Innovative Activity. Oxf. Rev. Econ. Policy 1998, 14, 18–29. [Google Scholar] [CrossRef]
- Chang, C.L.; Oxley, L. Industrial agglomeration, geographic innovation and total factor productivity: The case of Taiwan. Math. Comput. Simul. 2009, 79, 2787–2796. [Google Scholar] [CrossRef] [Green Version]
- Greenstone, M.; Hornbeck, R.; Moretti, E. Identifying Agglomeration Spillovers: Evidence from Winners and Losers of Large Plant Openings. J. Polit. Econ. 2010, 118, 536–598. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Yu, W.; Guo, X.; Zhao, D. Creative industries agglomeration, regional innovation and productivity growth in China. Chin. Geogr. Sci. 2014, 24, 258–268. [Google Scholar] [CrossRef]
- Head, C.K.; Mayer, T. The Empirics of Agglomeration and Trade. Handb. Reg. Urban Econ. 2004, 4, 2609–2669. [Google Scholar]
- Liu, Z.; Yan, J.; Xu, J. Geographic Agglomeration and the Firm Export Decision—Research Based on Technological Sophistication. Ind. Econ. Res. 2014, 2, 73–82. (In Chinese) [Google Scholar]
- Ma, A.C. Export Spillovers to Chinese Firms: Evidence from Provincial Data. J. Chin. Econ. Bus. Stud. 2006, 4, 127–149. [Google Scholar] [CrossRef]
- Fan, H.; Li, Y.A.; Yeaple, S.R. Trade Liberalization, Quality, and Export Prices. Rev. Econ. Stat. 2015, 97, 1033–1051. [Google Scholar] [CrossRef]
- Amighini, A.; Sanfilippo, M. Impact of South–South FDI and Trade on the Export Upgrading of African Economies. World Dev. 2014, 64, 1–17. [Google Scholar] [CrossRef]
- Ito, B.; Xu, Z.Y.; Yashiro, N. Does Agglomeration Promote Internationalization of Chinese Firms. China Econ. Rev. 2015, 34, 109–121. [Google Scholar] [CrossRef]
- Sun, C.; Yu, H.; Zhao, R. Relationship between Agglomeration and Quality of Urban Export Products. J. Int. Trade 2014, 7, 23–32. (In Chinese) [Google Scholar]
- He, X. The Effect of Industrial Agglomeration on the Quality of Export Products of the Empirical Analysis Based on Dynamic Panel Data of the Cities above Prefectural Level of China. West Forum 2017, 2, 100–106. (In Chinese) [Google Scholar]
- Tian, X.; Tang, M. Industrial Concentration, Quality Difference and Price Difference of Export Products of Firms. J. Shanghai Univ. Int. Bus. Econ. 2018, 3, 25–36. (In Chinese) [Google Scholar]
- Amiti, M.; Khandelwal, A. Import Competition and Quality Upgrading. Rev. Econ. Stat. 2014, 95, 476–490. [Google Scholar] [CrossRef]
- Khandelwal, A.K.; Schott, P.K.; Wei, S.J. Trade Liberalization and Embedded Institutional Reform: Evidence from Chinese Exporters. Am. Econ. Rev. 2013, 103, 2169–2195. [Google Scholar] [CrossRef]
- Li, K.; Jiang, W.; Song, L. The Mystery of Changes in the Quality of China’s Exports: A Micro-level Explanation Based on Market Entry. Soc. Sci. China 2014, 3, 80–103, 206. (In Chinese) [Google Scholar] [CrossRef]
- Shi, B. The Product Quality Heterogeneity of China Firms’ Export: Measurement and Facts. China Econ. Q. 2014, 13, 263–284. (In Chinese) [Google Scholar]
- Yu, M.; Zhang, R. Estimating China’s Manufacturing Export Quality: Pitfalls and Remedy. China Econ. Q. 2017, 16, 463–484. (In Chinese) [Google Scholar]
- Amit, K. The Long and Short of Quality Ladders. Rev. Econ. Stud. 2010, 77, 1450–1476. [Google Scholar]
- Hallak, J.C.; Schott, P.K. Estimating Cross-Country Differences in Product Quality. Q. J. Econ. 2011, 126, 417–474. [Google Scholar] [CrossRef]
- Aw, B.Y.; Roberts, M.J. Measuring Quality Change in Quota-Constrained Import Markets: The Case of U.S. Footwear. J. Int. Econ. 1986, 21, 45–60. [Google Scholar] [CrossRef]
- Harrigan, J.; Barrows, G. Testing the Theory of Trade Policy: Evidence from the Abrupt End of the Multifiber Arrangement. Rev. Econ. Stat. 2009, 91, 282–294. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Li, W. Research on the Influence of Industrial Agglomeration on the Quality of Export Products-An Empirical Analysis Based on Chinese Provincial Panel Data. Contemp. Econ. Res. 2016, 7, 84–91. (In Chinese) [Google Scholar]
- O’Sullivan, A. Urban Economics; Irwin McGraw Hill: New York, NY, USA, 2009. [Google Scholar]
- Wu, D. Specialized labor division among enterprises and the organizational development of industrial cluster—On the basis of the view of trading costs. Economist 2006, 6, 89–95. (In Chinese) [Google Scholar]
- Hallak, J.C.; Sivadasan, J. Firms’ Exporting Behavior under Quality Constraints. NBER Working Paper, 2009; 14928. [Google Scholar]
- Shi, B.; Shao, W. Measurement of Chinese Enterprises’ Export Product Quality and Its Determinants: A Microscopic Perspective on Cultivating New Advantages of Export Competition. Manag World 2014, 9, 90–106. (In Chinese) [Google Scholar]
- Ellison, G.; Glaeser, E.L. Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach. Soc. Sci. Electron. Publ. 1997, 105, 889–927. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Oh, D.H.; Zhang, N. Environmentally sensitive productivity growth and its decompositions in China: A metafrontier Malmquist–Luenberger productivity index approach. Empir. Econ. 2015, 49, 1017–1043. [Google Scholar] [CrossRef]
- Li, X.; Shi, B. Diversification of Intermediate Input Imports and the Quality of Chinese Exports. J. Int. Trade 2016, 3, 106–116. (In Chinese) [Google Scholar]
- Li, C. Is there a “productivity paradox” in Chinese export enterprises: A test based on the data of Chinese manufacturing enterprises. J. World Econ. 2010, 7, 64–81. (In Chinese) [Google Scholar]
- Geng, Q.; Hu, R. Impact Factors on the Conditions of Chinese Enterprises Attaining Government Subsidies: An Empirical Investigation Based on Data Base of Industrial Enterprises. J. Audit Econ. 2013, 28, 80–90. [Google Scholar]
- Sultan, N.; Sheng, B.; Shao, C. Industrial Agglomeration and Firms’ Export Product Quality Upgrading. China Ind. Econ. 2018, 11, 117–135. (In Chinese) [Google Scholar]
- Baldwin, R.; Harrigan, J. Zeros, Quality, and Space: Trade Theory and Trade Evidence. Am. Econ. J. Microecon. 2011, 3, 60–88. [Google Scholar] [CrossRef]
- Choi, Y.; Zhang, N.; Chen, S.C.; Luo, C.C. Quantitative Ecological Risk Analysis by Evaluating China’s Eco-Efficiency and Its Determinants. Hum. Ecol. Risk Assess. Int. J. 2013, 19, 1324–1337. [Google Scholar] [CrossRef]
- Song, Z.; Storesletten, K.; Zilibotti, F. Growing like china. Am. Econ. Rev. 2011, 101, 196–233. [Google Scholar] [CrossRef]
- Yu, M.; Jin, Y.; Zhang, R. Capacity Utilization Rate Measurement and Productivity Estimation for Industrial Firms. Econ. Res. J. 2018, 53, 56–71. [Google Scholar]
- Tan, Y.; Tan, Z.; Huang, Y.; Woo, W.T. The Crowding-out Effect of Zombie Firms: Evidence from China’s Industrial Firms. Econ. Res. J. 2017, 52, 175–188. [Google Scholar]
- Dong, X.; Xiao, X. Does the “Revitalization of the Old Industrial Base in Northeast of China” Benefit the Firm’s Output Value or its Profit? Evidence from the Chinese Industrial Enterprises Database. Manag. World 2017, 7, 24–34, 187–188. [Google Scholar]
- Yu, M.J. Processing Trade, Tariff Reductions and Firm Productivity: Evidence from Chinese Firms. Econ. J. 2015, 125, 943–988. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, R. How Does Export Quality Respond to Home Currency Appreciation: Micro-level Evidence from China. Manag. World 2017, 5, 28–40, 187. (In Chinese) [Google Scholar]
- Geng, Y.; Zhang, S. Has Industrial Agglomeration Improved the Quality of Export Products?—Empirical Evidence from China’s Manufacturing Enterprises. J. Shandong Univ. Philos. Soc. Sci. 2018, 1, 92–101. (In Chinese) [Google Scholar]
- Meng, Q. Product Quality Effect of Agglomeration Economy: An Empirical Analysis Based on Firm Level Data. J. Cent. Univ. Financ. Econ. 2017, 6, 101–109. (In Chinese) [Google Scholar]
- Mosha, O.P. Can the Agglomeration of Producer Services Improve the Export Product Quality? —Evidence from 275 Cities of China. Int. Bus. 2016, 5, 17–27. (In Chinese) [Google Scholar]
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
EG | 0.009 *** | 0.008 ** | 0.026 *** | −0.022 *** |
(3.15) | (2.53) | (3.04) | (−3.49) | |
EG*OSTG | −0.029 ** | |||
(−2.56) | ||||
EG*OSTP | 0.034 *** | |||
(3.19) | ||||
EG*MOTG | −0.011 | |||
−(1.33) | ||||
EG*MOTP | −0.014 | |||
−(1.13) | ||||
EG*IND201 | 0.088 *** | |||
(4.01) | ||||
EG*IND202 | 0.037 *** | |||
(4.43) | ||||
EG*IND203 | 0.063 *** | |||
(8.44) | ||||
TFP | 0.005 *** | 0.005 *** | 0.004 *** | 0.005 *** |
(9.18) | (7.51) | (7.47) | (6.78) | |
sub | −0.004 ** | −0.002 * | −0.001 | −0.003 ** |
(−3.27) | (−1.66) | (0.95) | (−2.28) | |
scale | −0.018 *** | −0.018 *** | −0.021 *** | −0.018 *** |
(−33.02) | (−18.94) | (−23.53) | (−17.83) | |
age | −0.006 *** | −0.006 *** | −0.004 *** | −0.006 *** |
(−45.34) | (−8.04) | (−7.15) | (−7.97) | |
OSTG | 0.057 *** | |||
(3.52) | ||||
OSTP | 0.031 *** | |||
(13.34) | ||||
MOTG | 0.052 *** | |||
(29.58) | ||||
MOTP | 0.059 *** | |||
(24.77) | ||||
IND201 | −0.004 | |||
(−0.93) | ||||
IND202 | 0.009 *** | |||
(3.22) | ||||
IND203 | −0.009 *** | |||
(−4.82) | ||||
lngdp | 0.020 *** | 0.036 *** | 0.077 *** | 0.018 *** |
(7.16) | (7.50) | (20.46) | (3.34) | |
ddft | −0.0003 *** | −0.0002 | 0.0001 | −0.0003 |
(−7.20) | (−3.67) | (2.93) | (−4.83) | |
FCS | −0.043 *** | −0.042 *** | −0.030 *** | −0.042 *** |
(−10.06) | (−8.93) | (−7.18) | (−9.00) | |
cons | 0.656 *** | 0.533 *** | 0.210 *** | 0.661 *** |
(35.65) | (15.56) | (7.91) | (16.75) |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|
EG | 0.006 * | 0.007 ** | 0.008 ** | 0.011 *** | 0.010 *** | 0.010 *** | 0.026 *** | −0.004 | 0.011 *** |
(1.83) | (2.17) | (2.27) | (3.14) | (2.91) | (3.01) | (4.68) | (−1.27) | (3.47) | |
TFP | 0.006 *** | 0.005 *** | 0.004 *** | 0.005 *** | 0.005 *** | 0.005 *** | 0.005 *** | 0.004 *** | 0.004 *** |
(8.44) | (6.98) | (4.52) | (7.45) | (7.60) | (6.47) | (5.72) | (6.17) | (5.81) | |
sub | −0.002 | −0.004 ** | −0.003 | −0.005 *** | −0.005 *** | −0.004 *** | −0.003 | −0.006 *** | −0.005 *** |
(−1.19) | (−2.36) | (−1.66) | (−3.20) | (−3.16) | (−2.64) | (−1.31) | (−3.33) | (−2.89) | |
scale | −0.018 *** | −0.018 *** | −0.016 *** | −0.016 *** | −0.016 *** | −0.018 *** | −0.017 *** | −0.018 *** | −0.018 *** |
(−18.10) | (−17.95) | (−13.29) | (−16.08) | (−16.25) | (−18.01) | (−10.57) | (−16.34) | (−19.53) | |
age | −0.006 *** | −0.006 *** | −0.006 *** | −0.008 *** | −0.008 *** | −0.006 *** | −0.008 *** | −0.006 *** | −0.005 *** |
(−7.88) | (−7.99) | (−6.57) | (−9.97) | (−9.90) | (−7.44) | (−6.31) | (−7.12) | (−7.00) | |
lngdp | 0.016 *** | 0.020 *** | 0.047 *** | 0.028 *** | 0.028 ** | 0.015 *** | 0.001 | 0.000 | 0.016 *** |
(2.77) | (3.51) | (6.76) | (4.68) | (4.84) | (2.53) | (0.18) | (0.04) | (3.12) | |
ddft | −0.0003 *** | −0.0003 *** | −0.0002 *** | −0.0002 *** | −0.0002 *** | −0.0002 *** | −0.0004 *** | −0.0003 *** | −0.0002 *** |
(−4.45) | (−4.71) | (−3.01) | (−4.05) | (−4.06) | (−4.62) | (−7.30) | (−5.78) | (−4.45) | |
FCS | −0.044 *** | −0.042 *** | −0.047 *** | −0.039 *** | −0.040 *** | −0.045 *** | −0.035 *** | −0.039 *** | −0.048 *** |
(−9.17) | (−8.74) | (−8.35) | (−8.24) | (−8.46) | (−9.15) | (−5.36) | (−7.69) | (−9.91) | |
cons | 0.679 *** | 0.659 *** | 0.453 *** | 0.596 *** | 0.591 *** | 0.687 *** | 0.794 *** | 0.797 *** | 0.682 *** |
(16.76) | (16.38) | (8.71) | (14.10) | (14.03) | (15.90) | (15.50) | (18.48) | (18.31) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, C.; Zhang, J.; Cheng, B.; Liu, Y. An Assessment of the Impact of Spatial Agglomeration on the Quality of China’s Wood Processing Industry Products. Sustainability 2019, 11, 3961. https://doi.org/10.3390/su11143961
Tao C, Zhang J, Cheng B, Liu Y. An Assessment of the Impact of Spatial Agglomeration on the Quality of China’s Wood Processing Industry Products. Sustainability. 2019; 11(14):3961. https://doi.org/10.3390/su11143961
Chicago/Turabian StyleTao, Chenlu, Jinzhu Zhang, Baodong Cheng, and Yu Liu. 2019. "An Assessment of the Impact of Spatial Agglomeration on the Quality of China’s Wood Processing Industry Products" Sustainability 11, no. 14: 3961. https://doi.org/10.3390/su11143961
APA StyleTao, C., Zhang, J., Cheng, B., & Liu, Y. (2019). An Assessment of the Impact of Spatial Agglomeration on the Quality of China’s Wood Processing Industry Products. Sustainability, 11(14), 3961. https://doi.org/10.3390/su11143961