A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia
Abstract
:1. Introduction
2. Methodology
2.1. Goal and Scope Definition
2.2. Data Collection and Validation
2.3. Systems Definition
3. Process Units and Quantification of Systems Flows
3.1. Cassava Cultivation
3.2. Cassava Chips Production
3.3. Ethanol Production
3.4. Transport
3.5. By-Products Characterization and Treatment Options
3.5.1. Composting
3.5.2. Animal Feed Production
3.5.3. Anaerobic Digestion
4. Systems Performance
4.1. Energy Performance
4.2. GHG Balance
4.3. Water Balance
4.4. Land Use and Soil Quality
4.5. Overall Performance of the Studied Systems
5. Discussion and Concluding Remarks
5.1. Sensitivity Analysis
5.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. FAO ProdStat 2012. Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed on 11 October 2013).
- Balcazar, A.; Mansilla, H. Cassava Crop Development in Colombia; FAO: Bogotá, Colombia, 2004. [Google Scholar]
- Bajes Mora, F. La Yuca: Un Ingrediente Estratégico en la Fabricación de Alimentos Balanceados para Animales; Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 1998.
- Sonder, K.; Muller-Samann, K.; Hilger, T.; Leihner, D. Erosion Control and Prediction in Cassava Based Cropping Systems in the Southern Andean Region of Colombia; Universidad Bonn: Bonn, Germany, 2001. [Google Scholar]
- Gottret, M.V.; Escobar, Z.; Perez, S. El sector yuquero en Colombia: Desarrollo y Competitividad. In La Yuca en el Tercer Milenio. Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización Cali; Ospina, B., Ceballos, H., Eds.; CIAT, CLAYUCA: Cali, Colombia, 2002. [Google Scholar]
- MADR. Apuesta Exportadora Agropecuaria 2006–2020; Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2006; 19p.
- Henao Estrada, J. Potencial de Biocombustibles en Antioquia; BIRD Antioquia: Itagui, Colombia, 2008; 94p. [Google Scholar]
- Enguidanos, M.; Soria, A.; Kavalov, B.; Jensen, P. Techno-Economic Analysis of Bio-Alcohol Production in the EU: A Short Summary for Decision-Makers; European Commission. Institute for Prospective Technological Studies: Seville, Spain, 2002; 34p. [Google Scholar]
- Niven, R. Ethanol in gasoline: Environmental impacts and sustainability review article. Renew. Sustain. Energy Rev. 2005, 9, 535–555. [Google Scholar] [CrossRef]
- Pimentel, D.P.T.; Cecil, G. Ethanol Production: Energy, Economic, and Environmental Losses. J. Environ. Contam. Toxicol. 2007, 189, 25–41. [Google Scholar]
- Pimentel, D. Ethanol Fuels: Energy Balance, Economics and Environmental Impacts are Negative. Nat. Resour. Res. 2003, 12, 127–134. [Google Scholar] [CrossRef]
- Shapouri, H.; Duffield, J.A.; Wang, M. The Energy Balance of Corn Ethanol Revisited. Trans. Am. Soc. Agric. Eng. 2003, 46, 959–968. [Google Scholar]
- Dai, D.; Hu, Z.; Pu, G.; Li, H.; Wang, C. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Convers. Manag. 2006, 4, 1686–1699. [Google Scholar] [CrossRef]
- Leng, R.; Wang, Y.S.; Zhang, C.; Dai, D.; Pu, G. Life cycle inventory and energy analysis of cassava-based fuel ethanol in China. J. Clean. Prod. 2008, 16, 374–384. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Gheewala, S.H.; Garivait, S. Full chain energy analysis of fuel ethanol from cassava in Thailand. Environ. Sci. Technol. 2007, 41, 4135–4142. [Google Scholar] [CrossRef]
- Van Haandel, A.C. Integrated energy production and reduction of the environmental impact at alcohol distillery plants. Water Sci. Technol. 2005, 52, 49–57. [Google Scholar] [CrossRef]
- Wilkie, A.C.; Riedesel, K.J.; Owens, J.M. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy 2000, 19, 63–102. [Google Scholar] [CrossRef]
- Zvinavashe, E.; Elbersen, H.W.; Slingerland, M.; Kolijn, S.; Sanders, J.P. Cassava for food and energy: Exploring potential benefits of processing of cassava into cassava flour and bioenergy at farmstead and community levels in rural Mozambique. Biofuels Bioprod. Biorefining 2011, 5, 151–164. [Google Scholar] [CrossRef]
- Cramer, J.; Wissema, E.; van Bruijne, M.; Lammers, E.; Dijk, D.; Jager, H.; van Bennekom, S.; Breunese, E.; Horster, R.; van Leenders, C.; et al. Testing Frameworks for Sustainable Biomass; Project Group Sustainable Production of Biomass: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Dornburg, V. Multi-Functional Biomass Systems; Utrecht University: Utrecht, The Netherlands, 2004; 216p. [Google Scholar]
- Searchinger, T. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Baldassano, J.M.; Soriano, C. Emission of greenhouse gases from anaerobic digestion processes: comparison with other municipal solid waste treatments. Water Sci. Technol. 2000, 41, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Borjesson, P.; Berglund, M. Environmental systems analysis of biogas systems—Part I: Fuel-cycle emissions. Biomass Bioenergy 2006, 30, 469–485. [Google Scholar] [CrossRef]
- Borjesson, P.; Berglund, M. Environmental systems analysis of biogas systems—Part II: The environmental impact of replacing various reference systems. Biomass Bioenergy 2007, 31, 326–344. [Google Scholar] [CrossRef]
- Cereda, M.P.; Takahashi, M. Cassava wastes: Their characterization, and uses and treatment in Brazil. In Cassava Flour and Starch: Progress in Research and Development; CIAT: Palmira, Colombia, 1996. [Google Scholar]
- Howeler, R.H. Nutrient inputs and losses in cassava-based cropping systems: Examples from Vietnam and Thailand. In Proceedings of the Workshop on Nutrient Balances for Sustainable Agriculture Production and Natural Resource Management in Southeast Asia, Bangkok, Thailand, 20–22 February 2001. [Google Scholar]
- Klinsukont, C.; Ploypatarapinyo, S.; Dararatana, K.; Pingchavalitsophee, J.; Chetthadomdecha, J. Wastewater Treatment System for Cassava Ethanol Distillery; Institute of Scientific and Technological Research: Bangkok, Thailand, 1991. [Google Scholar]
- Nguyen, T.L.T.; Gheewala, S.; Garivait, S. Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Vietnam. Energy Policy 2007, 35, 4585–4596. [Google Scholar] [CrossRef]
- IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. 1996. Available online: http://www.ipcc-nggip.iges.or.jp/public/gl/invs6a.html (accessed on 10 March 2008).
- ACCEFYN. Factores de Emisión de los Combustibles Colombianos- Emission Factors for Colombian Fuels; Academia Colombiana de Ciencias Exactas, Físicas y Naturales: Bogotá, Colombia, 2003. Available online: http://www.siame.gov.co/siame/documentos/documentacion/mdl/DOC/18_FECOC.doc (accessed on 12 May 2007).
- Patzek, T. Thermodynamics of the Corn-Ethanol Biofuel Cycle. Crit. Rev. Plant Sci. 2004, 23, 519–567. [Google Scholar] [CrossRef]
- De Carvalho Macedo, I.; Lima Verde Leal, M.; Azevedo Ramos da Silva, J. Assessment of Greenhouse Gas Emissions in the Production and Use of Ethanol in Brazil; Government of the State of Sao Paulo: Sao Paulo, Brazil, 2004; 37p.
- ACCEFYN. Inventario Preliminar de Gases de Efecto Invernadero, Fuentes y Sumideros: Colombia-1990; Academia Colombiana de Ciencias Exactas, Físicas y Naturales: Bogotá, Colombia, 1990; Available online: http://www.accefyn.org.co/Web_GEI(actualizada)/Archivos_gei/I_Cap00_Generalidades.PDF (accessed on 10 February 2009).
- UPME. Metodología Simplificada Para el Cálculo de la Línea base para Proyectos de Pequeña Escala; Unidad de Planeación Minero Energética: Bogotá, Colombia, 2004; 12p.
- Fluck, R.C. Energy in Farm Production; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Kongshaug, G. Energy consumption and greenhouse gas emissions in fertilizer production. In Proceedings of the IFA Technical Conference, Marrakech, Morocco, 28 September–1 October 1998. [Google Scholar]
- Maraseni, T.; Cockfield, G.; Apan, A. A comparison of greenhouse gas emissions from inputs into farm enterprises in Southeast Queensland, Australia. J. Environ. Sci. Health Part A 2007, 42, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Bastianoni, S.; Marchettini, N. Ethanol production from biomass: Analysis of process efficiency and sustainability. Biomass Bioenergy 1996, 11, 411–418. [Google Scholar] [CrossRef]
- IDEAM. Available online: www.ideam.gov.co (accessed on 10 February 2009).
- Howeler, R.H.; Cadavid, L.F. Short-and long-term fertility trials in Colombia to determine the nutrient requirements of cassava. Fertil. Res. 1990, 26, 61–80. [Google Scholar] [CrossRef]
- Hogevorst, S. The Sustainability of Cassava Based Bioethanol Production in Colombia: The Added Value of Anaerobic Digestion; Wageningen University: Wageningen, The Netherlands, 2007. [Google Scholar]
- Ceballos, H. La yuca en Colombia y el Mundo: Nuevas Perspectivas para un Cultivo Milenario. In La Yuca en el Tercer Milenio. Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización; Ospina, B., Ceballos, H., Eds.; CIAT, CLAYUCA: Cali, Colombia, 2002. [Google Scholar]
- Arriaga Sierra, H. Economic Benefit and Costs of Ethanol Production from Cssava in Colombia. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2008; 81p. [Google Scholar]
- Ospina, B.; Cadavid, L.F.; Garcia, M.L.; Alcalde, C. Mechanization of Cassava Production in Colombia; Howeler, R.H., Ed.; CIAT: Bangkok, Thailand, 2002. [Google Scholar]
- Caraballo, L.; Velásquez, E. Respuestas de tres cultivares de yuca a diferentes condiciones hídricas y fechas de cosecha. Agronomía Tropical 2000, 50, 267–284. [Google Scholar]
- Cock, J.H. Cassava: New Potential for a Neglected Crop; Westview Press Inc.: Boulder, CO, USA, 1985. [Google Scholar]
- Perez-Crespo. Integrated Cassava Projects; Report nr Working document No. 78; Catholic Relief Services: Baltimore, MD, USA, 1991. [Google Scholar]
- Ospina, B.; García, M.L.; Alcalde, A. Sistemas mecanizados de siembra y cosecha para el cultivo de la yuca. In La Yuca en el Tercer Milenio. Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización; Ospina, B., Ceballos, H., Eds.; CIAT-CLAYUCA: Cali, Colombia, 2002. [Google Scholar]
- Ospina, B.; Best, R.; Alonso, L. Tecnologías para el manejo de la yuca en poscosecha. In La Yuca en el Tercer Milenio. Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización; Ospina, B., Ceballos, H., Eds.; CIAT-CLAYUCA: Cali, Colombia, 2002. [Google Scholar]
- Castaño, H.; Cardona, M.; Mejía, C.; Acosta, A. Ethanol production from cassava flour in simultaneous enzymatic hydrolysis and fermentation system. Dyna 2011, 78, 158–166. [Google Scholar]
- López, J. Semilla vegetativa de yuca. In La Yuca en el Tercer Milenio. Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización; Ospina, B., Ceballos, H., Eds.; CIAT, CLAYUCA: Cali, Colombia, 2002. [Google Scholar]
- Tchobanoglous, G.; Burton, F.; Stensel, D. Wastewater Engineering Treatment and Reuse; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Maroulis, Z.; Zaravacos, G. Food Process Design; CRC Press: Boca Raton, FL, USA, 2003; 536p. [Google Scholar]
- Drosg, B.; Wirthensohn, T.; Konrad, G.; Hornbachner, D.; Loderer, C.; Waltenberger, R.; Kyrchmayr, R.; Braun, R. Comparing central and peripheral anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production. Water Sci. Technol. 2008, 58, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- De Mes, T.Z.D.; Stams, A.J.M.; Reith, J.H.; Zeeman, G. Methane production by anaerobic digestion of wastewater and solid wastes. In Bio-Methane & Bio-Hydrogen. Status and Perspectives of Biological Methane and Hydrogen Production; Reith, J.H., Wijfels, R.H., Barten, H., Eds.; Dutch Biological Hydrogen Foundation: The Hague, The Netherlands, 2003; pp. 58–102. [Google Scholar]
- Berglund, M.; Borjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Nandy, T.; Shastry, S.; Kaul, S.N. Wastewater management in a cane molasses distillery involving bioresource recovery. J. Environ. Manag. 2002, 65, 25–38. [Google Scholar] [CrossRef]
- Berglund, M. Biogas Production from a Systems Analytical Perspective. Ph.D. Thesis, Lund University, Lund, Sweden, 2006; 164p. [Google Scholar]
- Lehtomaki, A.; Bjornsson, L. Two-stage anaerobic digestion of energy crops: Methane production, nitrogen mineralization and heavy metal mobilization. Environ. Technol. 2006, 27, 209–218. [Google Scholar] [CrossRef] [PubMed]
- De Vries, J.W. Closing Material Cycles through Reincorporation of Digested Crop Material into the Farming Environment: Agricultural and Environmental Implications; Wageningen University: Wageningen, The Netherlands, 2007; 107p. [Google Scholar]
- Cuzin, N.; Farinet, J.L.; Segretain, C.; Labat, M. Methanogenic fermentation of cassava peel using a pilot plug flow digester. Bioresour. Technol. 1992, 41, 259–264. [Google Scholar] [CrossRef]
- Mai, H.N.P. Integrated Treatment of Tapioca Processing Industrial Wastewater. Based on Environmental Biotechnology. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2006; 177p. [Google Scholar]
- Angelidaki, I.; Sanders, W. Assessment of the anaerobic biodegradability of macropollutants. Re/Views Environ. Sci. Bio/Technol. 2004, 3, 1–13. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency—EPA. Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks, 3rd ed.; EPA: Washington, DC, USA, 2006; p. 170.
- IICA. Observatorio Agrocadenas de Colombia; Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2006. Available online: www.agrocadenas.gov.co (accessed on 10 February 2009).
- Nguyen, T.L.T.; Gheewala, S.H. Life cycle assessment of fuel ethanol from Cassava in Thailand. Int. J. Life Cycle Assess. 2008, 13, 147–154. [Google Scholar] [CrossRef]
- Von Blottnitz, H.; Curran, M.A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. Clean. Prod. 2007, 15, 607–619. [Google Scholar] [CrossRef]
System | CS | CS + AD | DS | DS + AD |
---|---|---|---|---|
Location | Meta | Bolivar, Atlantic coast | ||
Average production size | 6–8 ha | 2 ha | ||
Soil quality | Sandy/clay loam. Extreme acid Low nutrient content | Sandy/clay loam. Rich in P and K | ||
Temperature | 30 °C | 27 °C | ||
Rainfall | 2652 mm | 1057 mm | ||
Cassava variety | Roja (CM 4574-7) | MTAI8 (Rayong 60) | ||
Ethanol production | Centralized Single facility | Decentralized Separate facilities | ||
Type of energy used ethanol | Diesel (electricity) Fuel oil (distillation) | Hydropower (electricity) Coal (distillation) | ||
Byproducts treatment | Composting | Anaerobic digestion | Feed production | Anaerobic digestion |
Labor | Mostly mechanized | Mainly manual |
By-product | Roja | MTAI8 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amount | TS | COD | N | P | K | Amount | TS | COD | N | P | K | |
[ton ton EtOH−1] | [g g−1] | [g g−1] | [mg g−1] | [mg g−1] | [mg g−1] | [ton ton EtOH−1] | [g g−1] | [g g−1] | [mg g−1] | [mg g−1] | [mg g−1] | |
Peels a | 1.8 | 0.300 | 0.252 | 0.00 | 0.02 | 0.13 | 1.5 | 0.300 | 0.252 | 0.00 | 0.02 | 0.13 |
Bagasse b | 1.3 | 0.250 | 0.278 | 1.11 | 0.18 | 1.44 | 1.3 | 0.250 | 0.224 | 1.11 | 0.18 | 1.44 |
Vinasse c | 17.5 | 0.027 | 0.029 | 17.5 | 0.027 | 0.025 | ||||||
WWt d | 11.5 | 0.001 | 0.001 | 0 | 0 | 0 | 9.4 | 0.001 | 0.001 | 0 | 0 | 0 |
Leaves, petioles, stalks e | 4.3 | 0.20 | 0.26 | 7.2 | 0.7 | 4.4 | 3.09 | 0.20 | 0.26 | 7.2 | 0.7 | 4.4 |
CS + AD | ||||||
---|---|---|---|---|---|---|
Alt 1 | Alt 2 | Alt 3 | Alt 4 | |||
Input | All | Bg, Pls, AeBio | Vi, WWt | Vi, Bg, Pls, AeBio | WWt | All excl. AeBio |
AD treatm | PF/CSTR | PF | UASB + TF | PF/CSTR | TF | PF |
Digestate end use | Fld | Fld | Et. plt | Fld | Et.plt | Fld |
Digestate handling | Dw | Dw | n.a. | Dw | n.a. | Dw |
End product | Lq.Fr, Sl.A | Lq.Fr, Sl.A | Wr | Lq.Fr, Sl.A | Wr | Lq.Fr, Sl.A |
Q [m3 d−1] | 2865 | 579 | 1377 | 1956 | 909 | 2526 |
COD [ton COD d−1] | 193 | 152 | 39 | 191 | 1.0 | 104 |
BEO-AD [TJ yr−1] a | 633 | 629 | 629 | 340 | ||
NEO-AD [TJ yr−1] b | 492 | 539 | 458 | 227 | ||
E Eff [%Brut energy] | 78% | 86% | 73% | 67% |
DS + AD | ||||||||
---|---|---|---|---|---|---|---|---|
Alt 1 | Alt 2 | Alt 3 | ||||||
Input | Vm, Bg, Pls,WWt | Vd | Vi, WWt | Bg, Pls | Vd | Vi, WWt | Bg, Pls, AeBio | Vd |
AD treatm | PF | UASB + TF | UASB+ TF | PF | UASB+ TF | UASB + TF | PF | UASB + TF |
Digestate end use | Fld | Dch | Et.plt | Fld | Dch | Et.plt | Fld | Dch |
Digestate handling | Dw | n.a. | n.a. | Dw | n.a. | n.a. | Dw | n.a. |
End product | Lq.Fr, Sl.A | W | Wr | Lq.Fr, Sl.A | W | Wr | Lq.Fr, Sl.A | W |
Q [m3 d−1] | 2237 | 100 | 4980 | 1277 | 100 | 466 | 1277 | 100 |
COD [ton COD d−1] | 86 | 2.5 | 125 | 32 | 1.7 | 117 | 32 | 1.7 |
BEO-AD [TJ yr−1] a | 291 | 288 | 498 | |||||
NEO-AD [TJ yr−1] b | 226 | 198 | 364 | |||||
E Eff [%Brut energy] | 78% | 69% | 73% |
CS | CS + AD | DS | DS + AD | ||
---|---|---|---|---|---|
TJ yr−1 | TJ yr−1 | TJ yr−1 | TJ yr−1 | ||
Cassava cultivation | Direct | 44 | 59 | 3 | 12 |
Indirect | 120 | 117 | 141 | 43 | |
Total | 163 | 166 | 144 | 55 | |
Ethanol conversion | Direct | 1515 | 403 | 550 | 39 |
Indirect | 300 | 80 | 19 | 2 | |
Total | 1816 | 482 | 569 | 40 | |
Transport (cassava and ethanol) | Direct | 15 | 15 | 29 | 29 |
Indirect | 3 | 3 | 6 | 6 | |
Total | 18 | 18 | 35 | 35 | |
Byproduct conversion | Direct | 470 | 0 | 52 | 0 |
Indirect | 111 | 0 | 49 | 0 | |
Total | 581 | 0 | 101 | 0 | |
Byproduct transport | Direct | 0 | 11 | 1 | 2 |
Indirect | 0 | 2 | 0 | 0 | |
Total | 0 | 13 | 2 | 1 | |
Total Direct Energy In | 2044 | 488 | 637 | 81 | |
Total Indirect Energy In | 534 | 210 | 214 | 50 | |
TOTAL ENERGY INPUT | 2578 | 698 | 851 | 131 | |
Ethanol | 769 | 769 | 769 | 769 | |
Extra electricity (from AD) | 0 | 0 | 0 | 0 | |
Extra heat (from AD) | 0 | 0 | 0 | 0 | |
TOTAL ENERGY OUTPUT | 769 | 769 | 769 | 769 | |
Ebalance | TJ yr−1 | −1809 | 90 | −82 | 637 |
NER | −0.70 | 0.13 | −0.10 | 4.85 | |
NRER | −0.69 | 0.13 | 0.05 | 4.85 |
CS | CS + AD | DS | DS + AD | |
---|---|---|---|---|
tCO2eq yr −1 | tCO2eq yr −1 | tCO2eq yr −1 | tCO2eq yr −1 | |
Uptake of atmospheric carbon a | –196,733 | –196,733 | –167,469 | –167,469 |
Released during ethanol production b | 55,093 | 55,093 | 55,093 | 55,093 |
Released during composting c | 25,760 | 0 | 0 | 0 |
Remaining in compost d | 25,760 | 0 | 8201 | 0 |
Released from WWT e | 566 | 566 | 4163 | 648 |
Released from biodigestion and burning f | 0 | 62,835 | 0 | 50,061 |
Released during biogas production g | 0 | 10,291 | 0 | 8008 |
Remaining in digestate d | 0 | 6845 | 1 | 5395 |
Release during ethanol combustion h | 54,593 | 54,593 | 54,593 | 54,593 |
Remaining in leaves and stalks i | 32,279 | 3431 | 2468 | 2468 |
Remaining in animal feed e | 0 | 0 | 65,502 | 0 |
N2O fertilizer j | 16,191 | 15,786 | 34,788 | 10,535 |
N2O and CH4 compost k | 12,065 | 0 | 0 | 0 |
N2O digestate j | 7934 | 20,639 | 0 | 25,162 |
N2O leaves and stalks j | 18,877 | 0 | 0 | 18,877 |
Total Category 1 | 52,383 | 33,345 | 57,339 | 63,372 |
Use of fossil fuels in cassava cultivation | 7733 | 8580 | 495 | 495 |
Use of fossil fuels cassava transport | 1362 | 2017 | 2100 | 2100 |
Use of fossil fuels ethanol production | 155,764 | 41,379 | 55,726 | 3704 |
Use of fossil fuels for crude ethanol transport | 0 | 0 | 564 | 564 |
Use of fossil fuels for dig. handling | 0 | 1487 | 0 | 814 |
Use of fossil fuels for compost | 46,055 | 0 | 0 | 0 |
Use of fossil fuels for animal feed production | 0 | 0 | 516 | 0 |
Use of fossil fuels for WWT | 5817 | 2968 | 12,470 | 0 |
Use of fossil fuels in inputs for cassava production (fertilizer, pesticides, herbicides) | 7077 | 7305 | 6419 | 1983 |
Use of fossil fuels in inputs for animal feed production l | 0 | 0 | 41 | 0 |
Total Category 2 m | 223,808 | 63,375 | 78,330 | 9659 |
Total Category 3: Emissions from change in land use n | 10,551 | 10,551 | 8201 | 8201 |
Avoided emissions from gasoline | 91,992 | 91,992 | 91,992 | 91,992 |
Avoided emissions from electricity (extra AD) p | 0 | 0 | 0 | 0 |
Avoided emissions from heat (extra AD) p | 0 | 0 | 0 | 0 |
Total Category 4 | 91,992 | 91,992 | 91,992 | 91,992 |
TOTAL | 194,751 | 15,639 | 51,878 | 10,760 |
Total (kgCO2eq L EtOH−1) | 5.3 | 0.4 | 1.4 | –0.3 |
CS | CS + AD | DS | DS + AD | ||
---|---|---|---|---|---|
Energy balance | TJ yr−1 | −1809 | 90 | −82 | 637 |
GHG a | kg CO2eq L EtOH−1 | 5.3 | 0.4 | 1.4 | −0.3 |
Water b | ton yr−1 | 505,502 | −19,193 | 55,784 | 53,756 |
Land | ha yr−1 | 16,844 | 16,844 | 13,123 | 13,123 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pabon-Pereira, C.; Slingerland, M.; Hogervorst, S.; van Lier, J.; Rabbinge, R. A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability 2019, 11, 3968. https://doi.org/10.3390/su11143968
Pabon-Pereira C, Slingerland M, Hogervorst S, van Lier J, Rabbinge R. A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability. 2019; 11(14):3968. https://doi.org/10.3390/su11143968
Chicago/Turabian StylePabon-Pereira, Claudia, Maja Slingerland, Sanna Hogervorst, Jules van Lier, and Rudy Rabbinge. 2019. "A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia" Sustainability 11, no. 14: 3968. https://doi.org/10.3390/su11143968
APA StylePabon-Pereira, C., Slingerland, M., Hogervorst, S., van Lier, J., & Rabbinge, R. (2019). A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability, 11(14), 3968. https://doi.org/10.3390/su11143968