Personality Types as Moderators of the Acceptance of Information Technologies in Organizations: A Multi-Group Analysis in PLS-SEM
Abstract
:1. Introduction
2. Literature Review
2.1. ERP Systems and Sustainability
2.2. Unified Theory of Acceptance and Use of Technology (UTAUT)
2.3. Personality Traits (FFM) and UTAUT
2.3.1. Personality Traits as Exogenous Variables
2.3.2. Personality Traits as Moderator Variables
2.3.3. Personality Traits as Observed Categorical Moderator Variables
2.4. Personality Types
3. Research Model and Hypotheses
4. Materials and Methods
5. Results
5.1. Cluster Analysis
5.2. Measurement Model
5.3. Structural Model
5.4. Multi-Group Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pohludka, M.; Stverkova, H. Implementation and unification of the ERP system in a global company as a strategic decision for sustainable entrepreneurship. Sustainability 2018, 10, 2916. [Google Scholar] [CrossRef]
- Shiau, W.L. The intellectual core of enterprise information systems: A co-citation analysis. Enterp. Inf. Syst. 2016, 10, 815–844. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1975; ISBN 0201020890. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Zmud, R.W. Individual differences and MIS success: A review of the empirical literature. Manag. Sci. 1979, 25, 966–979. [Google Scholar] [CrossRef]
- Dehghanzade, H. A Survey of human factors’ impacts on the effectiveness of accounting information systems. Int. J. Bus. Adm. 2011, 2, 166–174. [Google Scholar] [CrossRef]
- Uffen, J.; Guhr, N.; Breitner, M.H. Personality traits and information security management: An empirical study. In Proceedings of the Thirty Third International Conference on Information Systems, Orlando, FL, USA, 16–19 December 2012. [Google Scholar]
- Tkalcic, M.; Quercia, D.; Graf, S. Preface to the special issue on personality in personalized systems. User Model. User-Adapt. Interact. 2016, 103–107. [Google Scholar] [CrossRef]
- Sharp, J.H.; Babb, J.S. Is information systems late to the party? The current state of DevOps research in the Association for Information Systems eLibrary. In Proceedings of the Twenty-Fourth American Conference on Information Systems, Orlando, FL, USA, 16–18 August 2018; pp. 1–8. [Google Scholar]
- Gerlach, M.; Farb, B.; Revelle, W.; Amaral, L.A.N. A robust data-driven approach identifies four personality types across four large data sets. Nat. Hum. Behav. 2018, 2, 735–742. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. Professional manual: Revised NEO personality inventory (NEO-PI-R) and NEO five-factor inventory (NEO-FFI). Odessa FL Psychol. Assess. Resour. 1992. [Google Scholar] [CrossRef]
- Lin, M.Y.; Ong, C. Understanding information systems continuance intention: A five-factor model of personality perspective. Pac. Asia Conf. Inf. Syst. 2009, 1, 367–376. [Google Scholar]
- Li, C.Y. Understanding university students’ system acceptance behavior: The roles of personality trait and subjective norms. Int. J. Technol. Hum. Interact. 2016, 12, 106–125. [Google Scholar] [CrossRef]
- Devolder, P.; Pynoo, B.; Sijnave, B.; Voet, T.; Duyck, P. Framework for user acceptance: Clustering for fine-grained results. Inf. Manag. 2012, 49, 233–239. [Google Scholar] [CrossRef]
- Hair, J.F.J.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE Publishing: New York, NY, USA, 2016; ISBN 9781452217444. [Google Scholar]
- Venkatesh, V.; Speier, C. Creating an effective training environment for enhancing telework. Int. J. Hum. Comput. Stud. 2000, 52, 991–1005. [Google Scholar] [CrossRef] [Green Version]
- Park, K.O. The relationship between BPR strategy and change management for the sustainable implementation of ERP: An information orientation perspective. Sustainability 2018, 10, 3080. [Google Scholar] [CrossRef]
- Lin, A.J.; Chang, H. Business sustainability performance evaluation for taiwanese banks—A hybrid multiple-criteria decision-making approach. Sustainability 2019, 11, 2236. [Google Scholar] [CrossRef]
- Frazee, K.; Avenue, H. ERP implementation for corporate growth and sustainability northeastern University. Int. J. Bus. Soc. Sci. 2012, 3, 74–82. [Google Scholar]
- Grandón, E.E.; Ramírez-correa, P.E.; Rojas, K.P. Uso de la teoría Business Process Change (BPC) para examinar la adopción de Enterprise Resource Planning (ERP) en Chile. Interciencia 2018, 43, 716–722. [Google Scholar]
- Lee, J.; Kim, K.; Shin, H.; Hwang, J. Acceptance factors of appropriate technology: Case of water purification systems in Binh Dinh, Vietnam. Sustainability 2018, 10, 2255. [Google Scholar] [CrossRef]
- Palau-Saumell, R.; Forgas-Coll, S.; Javier, S. User acceptance of mobile apps for restaurants: An expanded and extended UTAUT-2. Sustainability 2019, 11, 1210. [Google Scholar] [CrossRef]
- Rogers, E. Difussion of Innovations; Free Press: New York, NY, USA, 1962; ISBN 0029266718. [Google Scholar]
- Compeau, D.; Higgins, C.A.; Huff, S. Social cognitive theory and individual reactions to computing technology: A longitudinal. MIS Q. 1999, 23, 145–158. [Google Scholar] [CrossRef]
- Oliver, R.L. A Cognitive Model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Thompson, R.L.; Higgins, C.A.; Howell, J.M. Personal computing: Toward a conceptual model of utilization. MIS Q. 1991, 15, 125–143. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and intrinsic motivation to use computers in the workplace. J. Appl. Soc. Psychol. 1992. [Google Scholar] [CrossRef]
- Ramírez-Correa, P.E.; Rondán-Cataluña, F.J.; Arenas-Gaitán, J. A Posteriori Segmentation of Personal Profiles of Online Video Games’ Players. Games Cult. 2018. [Google Scholar] [CrossRef]
- López-Pérez, V.A.; Ramírez-Correa, P.E.; Grandón, E.E. Innovativeness and factors that affect the information technology adoption in the classroom by primary teachers in Chile. Inform. Educ. 2019, 18, 165–181. [Google Scholar] [CrossRef]
- Grandón, E.E.; Ramírez-Correa, P. Managers/owners’ innovativeness and electronic commerce acceptance in chilean smes: A multi-group analysis based on a structural equation model. J. Theor. Appl. Electron. Commer. Res. 2018. [Google Scholar] [CrossRef]
- Ramírez-Correa, P.E.; Rondán-Cataluña, F.J.; Arenas-Gaitán, J. An Empirical Analysis of Mobile Internet Acceptance in Chile Literature Review Adoption of Mobile Internet. 2014. Available online: http://InformationR.net/ir/19-3/paper635.html (accessed on 5 April 2019).
- Barkhi, R.; Wallace, L. The impact of personality type on purchasing decisions in virtual stores. Inf. Technol. Manag. 2007, 8, 313–330. [Google Scholar] [CrossRef]
- Barnett, T.; Pearson, A.W.; Pearson, R.; Kellermanns, F.W. Five-factor model personality traits as predictors of perceived and actual usage of technology. Eur. J. Inf. Syst. 2015, 24, 374–390. [Google Scholar] [CrossRef]
- Altanopoulou, P.; Tselios, N. Assessing Acceptance Toward Wiki Technology in the Context of Higher Education. Int. Rev. Res. Open Distrib. Learn. 2017, 18, 127–149. [Google Scholar] [CrossRef]
- Ahmad, N.; Abdulkarim, H. The Impact of Flow Experience and Personality Type on the Intention to Use Virtual World. Int. J. Hum. Comput. Interact. 2018, 1–12. [Google Scholar] [CrossRef]
- Wang, H.-I.; Yang, H.-L. The Role of Personality Traits in UTAUT Model under Online Stocking. Contemp. Manag. Res. 2005, 1, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, S.; Easley, R.E.; Crant, J.M. How does personality matter? Relating the five-factor model to technology acceptance and use. Inf. Syst. Res. 2008, 19, 93–105. [Google Scholar] [CrossRef]
- Lakhal, S.; Khechine, H. Relating personality (Big Five) to the core constructs of the Unified Theory of Acceptance and Use of Technology. J. Comput. Educ. 2017, 4, 251–282. [Google Scholar] [CrossRef]
- Solís-Cámara, P.; Meda Lara, R.M.; Moreno Jiménez, B.; Palomera Chávez, A.; Juárez Rodríguez, P. Comparación de la salud subjetiva entre prototipos de personalidad recuperados en población general de México. Acta Colomb. Psicol. 2018. [Google Scholar] [CrossRef]
- Kövi, Z.; Aluja, A.; Glicksohn, J.; Blanch, A.; Morizot, J.; Wang, W.; Barry, O.; Hansenne, M.; Carvalho, A.; Valdivia, M.; et al. Cross-country analysis of alternative five factor personality trait profiles. Pers. Individ. Dif. 2019. [Google Scholar] [CrossRef]
- Block, J. Lives through Time; Psychology Press: Hove, UK, 1971; ISBN 1317766466. [Google Scholar]
- Donnellan, M.B.; Robins, R.W. Resilient, Overcontrolled, and Undercontrolled Personality Types: Issues and Controversies. Soc. Pers. Psychol. Compass 2010. [Google Scholar] [CrossRef]
- Robins, R.W.; John, O.P.; Caspi, A.; Moffitt, T.E.; Stouthamer-Loeber, M. Resilient, Overcontrolled, and Undercontrolled Boys: Three Replicable Personality Types. J. Pers. Soc. Psychol. 1996. [Google Scholar] [CrossRef]
- Sârbescu, P.; Boncu, A. The resilient, the restraint and the restless: Personality types based on the Alternative Five-Factor Model. Pers. Individ. Dif. 2018. [Google Scholar] [CrossRef]
- Gosling, S.D.; Rentfrow, P.J.; Swann, W.B. A very brief measure of the Big-Five personality domains. J. Res. Pers. 2003. [Google Scholar] [CrossRef]
- Romero, E.; Villar, P.; Gómez-Fraguela, J.A.; López-Romero, L. Measuring personality traits with ultra-short scales: A study of the Ten Item Personality Inventory (TIPI) in a Spanish sample. Pers. Individ. Dif. 2012. [Google Scholar] [CrossRef]
- Cepeda-Carrion, G.; Cegarra-Navarro, J.G.; Cillo, V. Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. J. Knowl. Manag. 2019, 23, 67–89. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Grandón, E.E.; Aravena Ibarra, A.; Araya Guzman, S.; Ramirez-Correa, P.; Alfaro-Perez, J. Internet de las Cosas: Factores que influyen su adopción en Pymes chilenas. In Proceedings of the CISTI 2018—13th Iberian Conference on Information Systems and Technologies, Caceres, Spain, 13–16 June 2018; pp. 1–6. [Google Scholar]
Personality Traits Approach | Research | Adoption Frameworks | IT | Sampling | Personality Measures |
---|---|---|---|---|---|
External Variables | Barkhi and Wallace (2007) [34] | TRA-TAM | CRM System | 257 Undergraduate Students | Myers-Briggs Type Indicator (MBTI) |
Barnett et al. (2015) [35] | Adapted UTAUT | Custom LMS | 382 Undergraduate Students | International Personality Item Pool | |
Altanopoulou and Tselios (2017) [36] | TAM-UTAUT | Wiki System | Pretest 85; Post-test 86 Undergraduate Students | International Personality Item Pool | |
Ahmad and Abdulkarim (2018) [37] | TRA-TAM | VR Second Life System | 183 Undergraduate Students | Myers-Briggs Type Indicator (MBTI) | |
Moderations | Wang and Yang (2005) [38] | UTAUT | Online Stocking System | 196 Investors | NEO-PI(Form S) |
Devaraj, Easley, and Crant (2008) [39] | TRA-TAM | Collaborative System | 180 MBA Students | Neo-five-factor inventory (NEO-FFI) | |
Li 2016 [15] | TAM | ERP System | 331 Undergradute Students | FFM | |
Observed Categorical Moderation | Devolder et al., 2012 [16] | UTAUT-TRIMulti-level framework | EPR System | 204 Nursing Personnel | Ten Item Personality Inventory-TIPI |
Lakhal and Khechine (2017) [40] | UTAUT | Desktop Video conference | 413 Undergraduate Students | Neo-five-factor inventory (NEO-FFI) |
FFM | Clusters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Type 1 (23.2%) | Type 2 (36.1%) | Type 3 (40.7%) | |||||||
Z-score | Mean | SD | Z-score | Mean | SD | Z-score | Mean | SD | |
Emotional stability | 0.684 | 4.056 | 0.977 | −0.948 | 1.938 | 0.701 | 0.452 | 3.754 | 1.031 |
Extraversion | 0.895 | 4.750 | 1.099 | −0.119 | 3.554 | 0.928 | −0.406 | 3.214 | 1.069 |
Openness | 0.750 | 6.278 | 0.779 | 0.211 | 5.661 | 0.843 | −0.616 | 4.714 | 1.149 |
Agreeableness | −0.513 | 3.986 | 0.797 | 0.621 | 5.009 | 0.834 | −0.260 | 4.214 | 0.771 |
Conscientiousness | 0.795 | 6.569 | 0.523 | 0.485 | 6.205 | 0.673 | −0.886 | 4.595 | 0.995 |
Latent Variables | Global | Type 1 | Type 2 | Type 3 |
---|---|---|---|---|
Behavioral intention to use the ERP | ||||
Cronbach’s Alpha | 0.939 | 0.951 | 0.935 | 0.935 |
Composite Reliability | 0.961 | 0.969 | 0.959 | 0.959 |
AVE | 0.891 | 0.912 | 0.886 | 0.886 |
I intend to use the ERP in the next months | 0.928 | 0.937 | 0.945 | 0.900 |
I predict I would use the ERP in the next months | 0.948 | 0.949 | 0.931 | 0.955 |
I plan to use the ERP in the next months | 0.956 | 0.978 | 0.947 | 0.940 |
Effort expectancy | ||||
Cronbach’s Alpha | 0.912 | 0.940 | 0.894 | 0.900 |
Composite Reliability | 0.938 | 0.957 | 0.925 | 0.930 |
AVE | 0.792 | 0.848 | 0.757 | 0.768 |
I would find the ERP easy to use | 0.862 | 0.921 | 0.765 | 0.879 |
Learning to operate the ERP is easy for me | 0.907 | 0.896 | 0.927 | 0.896 |
My interaction with the ERP would be clear and understandable | 0.916 | 0.942 | 0.922 | 0.880 |
It would be easy for me to become skillful at using the ERP | 0.873 | 0.925 | 0.856 | 0.849 |
Facilitating conditions | ||||
Cronbach’s Alpha | 0.739 | 0.667 | 0.751 | 0.773 |
Composite Reliability | 0.851 | 0.769 | 0.856 | 0.867 |
AVE | 0.656 | 0.539 | 0.671 | 0.685 |
I have the resources necessary to use the ERP | 0.794 | 0.522 | 0.908 | 0.768 |
I have the knowledge necessary to use the ERP | 0.858 | 0.695 | 0.908 | 0.871 |
The ERP is compatible with other systems I use | 0.777 | 0.928 | 0.604 | 0.840 |
Performance expectancy | ||||
Cronbach’s Alpha | 0.951 | 0.968 | 0.937 | 0.948 |
Composite Reliability | 0.963 | 0.975 | 0.952 | 0.960 |
AVE | 0.838 | 0.886 | 0.798 | 0.829 |
Using the ERP increases my productivity | 0.920 | 0.947 | 0.903 | 0.906 |
Using the ERP enables me to accomplish tasks more quickly | 0.912 | 0.946 | 0.894 | 0.908 |
I would find the ERP useful in my job | 0.872 | 0.906 | 0.846 | 0.859 |
Using the ERP would improve my job performance | 0.942 | 0.965 | 0.913 | 0.942 |
Using the ERP would enhance my effectiveness on the job | 0.930 | 0.941 | 0.908 | .936 |
Social influence | ||||
Cronbach’s Alpha | 0.948 | 0.954 | 0.939 | 0.954 |
Composite Reliability | 0.967 | 0.970 | 0.961 | 0.971 |
AVE | 0.906 | 0.916 | 0.891 | 0.917 |
People who are important to me think that I should use the ERP | 0.950 | 0.962 | 0.943 | 0.946 |
People who influence my behavior think that I should use the ERP | 0.950 | 0.957 | 0.927 | 0.971 |
People whose opinions I value prefer that I use the ERP | 0.956 | 0.952 | 0.961 | 0.955 |
Latent Variable | BI | EE | FC | PE | SI |
---|---|---|---|---|---|
Fornell-Larcker criterion | |||||
BI | 0.944 | ||||
EE | 0.684 | 0.890 | |||
FC | 0.447 | 0.610 | 0.810 | ||
PE | 0.698 | 0.707 | 0.498 | 0.915 | |
SI | 0.595 | 0.431 | 0.226 | 0.604 | 0.952 |
Heterotrait-Monotrait Ratio | |||||
EE | 0.738 | ||||
FC | 0.531 | 0.735 | |||
PE | 0.735 | 0.759 | 0.582 | ||
SI | 0.630 | 0.461 | 0.264 | 0.633 |
Relationships/Indexes | Global | Type 1 | Type 2 | Type 3 |
---|---|---|---|---|
EE→BI | 0.361 *** | 0.380 ns | 0.403 * | 0.128 ns |
FC→BI | 0.036 ns | −0.024 ns | 0.387 ** | 0.009 ns |
PE→BI | 0.259 ** | 0.185 ns | −0.066 ns | 0.523 *** |
SI→ BI | 0.276 *** | 0.357 * | 0.259 ** | 0.242 * |
R2 of BI | 0.607 | 0.695 | 0.602 | 0.657 |
R2 Adjusted of BI | 0.596 | 0.656 | 0.571 | 0.633 |
Q2 of BI | 0.505 | 0.574 | 0.416 | 0.486 |
SRMR | 0.065 | 0.084 | 0.100 | 0.074 |
Latent Variable | Type 1 | Type 2 | Type 3 |
---|---|---|---|
BI * | −0.279 | 0.298 | −0.106 |
EE | −0.209 | 0.160 | −0.023 |
FC | −0.061 | 0.042 | −0.002 |
PE | −0.184 | 0.162 | −0.039 |
SI | 0.013 | 0.113 | −0.107 |
Relationships | Diff Type 1 vs. Type 2 | Diff Type 1 vs. Type 3 | Diff Type 2 vs. Type 3 |
---|---|---|---|
EE → BI | 0.023 ns | 0.253 ns | 0.275 ns |
FC → BI | 0.411 * | 0.033 ns | 0.378 * |
PE → BI | 0.252 ns | 0.338 ns | 0.590 *** |
SI → BI | 0.098 ns | 0.115 ns | 0.017 ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Correa, P.; Grandón, E.E.; Alfaro-Pérez, J.; Painén-Aravena, G. Personality Types as Moderators of the Acceptance of Information Technologies in Organizations: A Multi-Group Analysis in PLS-SEM. Sustainability 2019, 11, 3987. https://doi.org/10.3390/su11143987
Ramírez-Correa P, Grandón EE, Alfaro-Pérez J, Painén-Aravena G. Personality Types as Moderators of the Acceptance of Information Technologies in Organizations: A Multi-Group Analysis in PLS-SEM. Sustainability. 2019; 11(14):3987. https://doi.org/10.3390/su11143987
Chicago/Turabian StyleRamírez-Correa, Patricio, Elizabeth E. Grandón, Jorge Alfaro-Pérez, and Giselle Painén-Aravena. 2019. "Personality Types as Moderators of the Acceptance of Information Technologies in Organizations: A Multi-Group Analysis in PLS-SEM" Sustainability 11, no. 14: 3987. https://doi.org/10.3390/su11143987
APA StyleRamírez-Correa, P., Grandón, E. E., Alfaro-Pérez, J., & Painén-Aravena, G. (2019). Personality Types as Moderators of the Acceptance of Information Technologies in Organizations: A Multi-Group Analysis in PLS-SEM. Sustainability, 11(14), 3987. https://doi.org/10.3390/su11143987