Health-Promoting Properties of Fresh and Processed Purple Cauliflower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Analytical Methods
2.3. Statistical Analysis
3. Results
3.1. Basic Composition and Dietary Fiber
3.2. Vitamin C
3.3. Total Polyphenols
3.4. Anthocyanins
3.5. Antioxidant Activity
3.6. Thiocyanates
3.7. Nitrates and Nitrites
4. Discussion
4.1. Basic Composition and Dietary Fiber
4.2. Dry Matter
4.3. Vitamin C
4.4. Total Polyphenols
4.5. Anthocyanins
4.6. Antioxidant Activity
4.7. Thiocynates
4.8. Nitrates and Nitrites
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Šamec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit. Rev. Food Sci. Nutr. 2018, 1–12. [Google Scholar] [CrossRef]
- Dos Reis, L.C.; De Oliveira, V.R.; Hagen, M.E.; Jabloński, A.; Flôres, S.H.; De Oliveira, R.A. Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system. Food Chem. 2015, 172, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods. 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Ali, R.F. Bioactive compounds and antioxidant activity of fresh and processed white cauliflower. Biomed. Res. Int. 2013, 2013, 367819. [Google Scholar] [CrossRef] [PubMed]
- Florkiewicz, A.; Filipiak-Florkiewicz, A.; Topolska, K.; Cieślik, E.; Kostogrys, R.B. The effect of technological processing on the chemical composition of cauliflower. Ital. J. Food Sci. 2014, 26, 275–281. Available online: https://www.researchgate.net/publication/286116360_The_effect_of_technological_processing_on_the_chemical_composition_of_cauliflower (accessed on 9 August 2018).
- Kalisz, A.; Sękara, A.; Smoleń, S.; Grabowska, A.; Gil, J.; Komorowska, M.; Kunicki, E. Survey of 17 elements, including rare earth elements, in chilled and non-chilled cauliflower cultivars. Sci. Rep. 2019, 9, 5416. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Kusznierewicz, B.; Leszczyńska, T.; Borczak, B. Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J. Funct. Foods 2016, 23, 412–422. [Google Scholar] [CrossRef]
- Manchali, A.; Murthy, K.N.Ch.; Patil, B.S. Crucial facts about health benefits of popular cruciferous vegetables. J. Funct. Foods. 2012, 4, 94–106. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; Sanches-Silva, A.; De Melo, N.R. Essential Oils for Food Application: Natural Substances with Established Biological Activities. Food Bioproc. Tech. 2017, 1–29. [Google Scholar] [CrossRef]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef]
- Ghaani, M.; Cozzolino, C.A.; Castelli, G.; Farris, S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 2016, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hussein, Z.; Caleb, O.J.; Opara, U.L. Perforation-mediated modified atmosphere packaging of fresh and minimally processed produce—A review. Food Pack. Shelf Life. 2015, 6, 7–20. [Google Scholar] [CrossRef]
- Chowdhury, S.; Nath, S.; Biswas, S.; Dora, K.C. Effect of vacuum packaging on extension of shelf life of Asian Sea-Bass fillet at 5 ± 1 °C. J. Exp. Zool. India 2017, 20, 1241–1245. [Google Scholar]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domesticus (L.). the quantity of analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Medic. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pellegrini, N.; Del Rio, D.; Colombi, B.; Bianchi, M.; Brighenti, F. Application of the 2’2-azobis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay to flow injection system for the evaluation of antioxidant activity of some pure compounds and bevereges. J. Agric. Food Chem. 2003, 51, 164–260. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, S.; Pellati, F.; Melegani, M.; Beertelli, D. Polyphenols, Anthocyanins, Ascorbic Acid and Radical Scavenging Activity of Rubus, Ribes and Aronia. J. Food Sci. 2004, 69, 164–169. [Google Scholar] [CrossRef]
- Polish Standard. PN-90/A-75101/03. Fruit and Vegetable Products. Preparation of Samples for Physico-Chemical Studies. Determination of Dry Matter Content by Gravimetric Method; Polish Committee for Standardization: Warsaw, Poland, 1990. (In Polish) [Google Scholar]
- Polish Standard. PN-A-04019:1998. Food products—Determination of Vitamin C; Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish) [Google Scholar]
- Polish Standard. PN-92/A-75112. Fruit and Vegetable Products. Determination of Nitrates and Nitrites; Polish Committee for Standardization: Warsaw, Poland, 1992. (In Polish) [Google Scholar]
- Polish Standard. PN-A-79011-8:1998. Dry Food Mixes. Test Methods. Determination of Total Ash And Ash Insoluble In 10 Percent (m/m) Hydrochloric Acid; Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish) [Google Scholar]
- Polish Standard. PN-EN ISO 8968-1:2004. Milk—Determination of Nitrogen Content—Part 1: Determination of Nitrogen by the Kjeldahl Method; Polish Committee for Standardization: Warsaw, Poland, 2004. (In Polish) [Google Scholar]
- Polish Standard. PN-A-79011-4:1998. Dry Food Mixes. Test Methods. Determination of Fat Content; Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish) [Google Scholar]
- Polish Standard. PN-A-79011-15:1998P. Dry Food Mixes. Test Methods. Determination of Dietary Fiber Contents; Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish) [Google Scholar]
- Rumpel, J. Cultivation of Cauliflower, 1st ed.; Publisher Hortpress: Warszawa, Poland, 2002; pp. 6–13. (In Polish) [Google Scholar]
- Kunachowicz, H.; Nadolna, I.; Iwanow, K.; Przygoda, B. The Nutritional Value of Selected Foods and Typical Dishes, 6th ed.; PZWL: Warszawa, Poland, 2014. (In Polish) [Google Scholar]
- Kahlon, T.; Chin, M.; Chapman, M. Steam cooking significantly improve in vitro bile acid binding of beets, eggplant, asparagus, carrots, green beans and cauliflower. Nutr. Res. 2007, 27, 750–755. [Google Scholar] [CrossRef]
- Schonhof, I.; Krumbein, A.; Bruckner, B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahr. Food 2004, 48, 25–33. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Häkkinen, S.T.; Aarni, M.; Suortti, T.; Lampi, A.-M.; Eurola, M.; Piironen, V.; Nuutila, A.M.; Oksman-Caldentey, K.-M. Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. J. Sci. Food Agric. 2003, 83, 1389–1402. [Google Scholar] [CrossRef]
- Ali, A.M. Effect of food processing methods on the bioactive compound of cauliflower. Egypt. J. Agric. Res. 2015, 93, 117–131. Available online: http://www.arc.sci.eg/ejar/UploadFiles/Publications/1043314%D8%A7%D9%84%D8%A8%D8%AD%D8%AB%20%D8%A7%D9%84%D8%AB%D8%A7%D9%86%D9%89%20%D8%AA%D9%83%D9%86%D9%88%D9%84%D9%88%D8%AC%D9%8A%D8%A7.pdf (accessed on 25 August 2018).
- Filipiak-Florkiewicz, A. Effect of Hydrothermal Treatment on Selected Health-Promoting Properties of Cauliflower (Brassica oleracea var. Botrytis L.); Scientific Papers; University of Agriculture in Krakow: Kraków, Poland, 2011; p. 347. (In Polish) [Google Scholar]
- Florkiewicz, A. Sous-vide method as alternative to traditional cooking of cruciferous vegetables in the context of reducing losses of nutrients and dietary fibre. Ż.N.T.J. 2018, 25, 45–57. [Google Scholar] [CrossRef]
- Gębczyński, P.; Kmiecik, W. Effects of traditional and modified technology, in the production of frozen cauliflower, on the contents of selected antioxidative compounds. Food Chem. 2007, 1, 229–235. [Google Scholar] [CrossRef]
- Ramesh, M.N. The performance evaluation of a continuous vegetable cooker. Int. J. Food Sci. Technol. 2000, 2, 377–384. [Google Scholar] [CrossRef]
- Cebula, S.; Kunicki, E.; Kalisz, A. Quality changes in curds of white, green an Romanesco cauliflower during storage. Pol. J. Food Nutr. Sci. 2006, 56, 155–160. [Google Scholar]
- Evans, J. Emerging Refrigeration and Freezing Technologies for Food Preservation. In Innovation and Future Trends in Food Manufacturing and Supply Chain Technologies; Woodhead Publishing: Sawston, UK; Cambridge, UK, 2016; pp. 175–201. [Google Scholar] [CrossRef]
- Kaulman, A.; Jonville, M.; Schneider, Y.; Hoffmann, L. Carotenoids, polyphenols and micronutrient profiles of Brassica oleraceae and plum varieties and their contribution to measures of total antioxidant capacity. Food Chem. 2014, 155, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Volden, J.; Bengtsson, B.G.; Wicklund, T. Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. Botrytis); effect of long-term freezer storage. Food Chem. 2009, 112, 967–976. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Kwak, J.H. Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef]
- Picchi, V.; Migliori, C.; Scalzo, R.L.; Campanelli, G.; Ferrari, V.; Di Cesare, L.F. Phytochemical content in organic and conventionally grown Italian cauliflower. Food Chem. 2012, 130, 501–509. [Google Scholar] [CrossRef]
- Davey, M.; Montagu, M.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, M.; Benzie, J.; Strain, J.; Favell, D.; Fletcher, J. Review: Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of different cooking methods on colour, phytochemical concentration and antioxidant capacity of raw and frozen Brassica vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar] [CrossRef] [PubMed]
- Abushita, A.A.; Daood, H.G.; Biacs, P.A. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technologicals factors. J. Agric. Food Chem. 2000, 48, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- İncedayi, B.; Suna, S. Effects of modified atmosphere packaging on the quality of minimally processed cauliflower. Acta Aliment. 2012, 41, 401–413. [Google Scholar] [CrossRef]
- Van Ooijen, I.; Fransen, M.L.; Verlegh, P.W.J.; Smit, E.G. Atypical food packaging affects the persuasive impact of product claims. Food Qual. Prefer. 2016, 48, 33–40. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Niemiec, M.; Sikora, J.; Chowaniak, M. Possibilities of designating swards of grasses and small-seed legumes from selected organic farms in Poland for feed. In Proceedings of the IX International Scientific Symposium “Farm Machinery and Processes Management in Sustainable Agriculture, Lublin, Poland, 22–24 November 2017; pp. 365–370. [Google Scholar] [CrossRef]
- Bahorun, T.; Luximon-Ramma, A.; Crozier, A.; Aruoma, O. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J. Sci. Food Agric. 2004, 4, 1553–1561. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Tech. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Mazzeo, T.; N’Dri, D.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effect of two cooking procedures on phytochemical compounds, total antioxidant, capacity and colour of selected frozen vegetables. Food Chem. 2011, 28, 617–633. [Google Scholar] [CrossRef]
- Chassagne-Berces, S.; Fonseca, F.; Citeau, M.; Marin, M. Freezing protocol effect on quality properties of fruit tissue according to the fruit, the variety and the stage of maturity. LWT Food Sci. Technol. 2010, 43, 1441–1449. [Google Scholar] [CrossRef]
- Lo Scalzo, R.; Genna, A.; Branca, F.; Chedin, M.; Chassaigne, H. Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem. 2008, 107, 136–144. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Zhu, H.; Hu, C.; Liu, R.; Young, J.; Tsao, R. Highly pigmented vegetables: Anthocyanin composition and their role in antioxidant activities. Food Res. Int. 2012, 46, 250–259. [Google Scholar] [CrossRef]
- Beecher, G.R.; Gebhardt, S.E.; Haytowitz, D.B.; Holden, J.M.; Wu, X.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Murcia, M.A.; Lopez-Ayerra, B.; Garcia-Carmona, F. Effect of processing and different blanching times on broccoli: Proximate composition and fatty acids. LWT Food Sci. Technol. 2009, 32, 238–243. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2011, 16, 251–280. [Google Scholar] [CrossRef] [PubMed]
- Drużyńska, B.; Stępień, K.; Piecyk, M. The influence of cooking and freezing on contents of bioactive components and their antioxidant activity in broccoli. Bromat. Chemia Toksykol. 2009, 42, 169–176. Available online: http://ptfarm.pl/pub/File/bromatologia_2009/bromatologia_2_2009/Bromat%202,2009%20s.%20169-176.pdf (accessed on 24 July 2010). (In Polish).
- Sindelar, J.J.; Milkowski, A.L. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 2012, 26, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Bahadoran, Z.; Mirmiran, P.; Jeddi, S.; Azizi, F.; Ghasemi, A.; Hadaegh, F. Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. J. Food Comp. Anal. 2016, 51, 93–105. [Google Scholar] [CrossRef]
- Samantaria, P. Nitrate in vegetables: Toxity, content, intake and EC regulation. J. Sci. Food and Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Gajewska, M.; Czajkowska, A.; Bartodziejska, B. The content of nitrates and nitrites in selected vegetables on detail sale in Lodz region. Ochr Śr. Zasobów Nat. 2009, 40, 388–395. (In Polish) [Google Scholar]
- Filipiak-Florkiewicz, A.; Cieślik, E.; Florkiewicz, A. Effect of technological processing on contents of nitrates and nitrites in cauliflower. Żyw. Człow. Metab. 2007, 34, 1197–1201. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-e3ebf1f1-dd46-4dad-8ed5-c9d0526fceac?q=bwmeta1.element.agro-number-fcf445e1-46f5-442d-a933-e0d38017adce;75&qt=CHILDREN-STATELESS (accessed on 18 April 2008). (In Polish).
- Leszczyńska, T.; Filipiak-Florkiewicz, A.; Cieślik, E.; Sikora, E.; Pisulewski, P. Effects of some processing methods on nitrate and nitrite changes in cruciferous vegetables. J. Food Comp. Anal. 2009, 22, 315–321. [Google Scholar] [CrossRef]
- Shimada, Y.; Ko, S. Nitrate in vegetables. Chugoku Gakuen J. 2004, 3, 7–10. Available online: https://pdfs.semanticscholar.org/5cbe/9ce8f74a9c1c334008cd295ccd5a1553b9da.pdf (accessed on 15 May 2005).
- Ranasinghe, R.A.S.N.; Marapana, R.A.U.J. Nitrate and nitrite content of vegetables: A review. J. Pharmacogn. Phytochem. 2018, 7, 322–328. Available online: https://www.researchgate.net/publication/326533977_Nitrate_and_nitrite_content_of_vegetables_A_review_RASN_Ranasinghe_and_RAUJ_Marapana (accessed on 13 January 2019).
Component | Unit | Mean |
---|---|---|
Dry Mass | g/100 g | 9.18 ± 0.04 |
Vitamin C | mg/100 g d.m. | 689.54 ± 1.54 |
Total Polyphenols | mg CGA/100 g d.m. | 1376.36 ± 3.85 |
Antioxidant Activity | μmol Trolox/g d.m. | 79.85 ± 0.46 |
Thiocyanates | (SCN) mg/100 g d.m. | 26.25 ± 1.69 |
Anthocyanins | µmol/g d.m. | 78.21 ± 5.85 |
Total Protein | g/100 g d.m. | 25.70 ± 1.56 |
Fat | g/100 g d.m. | 1.55 ± 0.21 |
Ash | g/100 g d.m. | 5.73 ± 0.29 |
Total Carbohydrates | g/100 g d.m. | 66.72 ± 1.16 |
Dietary Fiber | g/100 g d.m. | 25.67 ± 1.63 |
Nitrates | mg NaNO3/kg d.m. | 605.23 ± 23.72 |
Nitrites | mg NaNO2/kg d.m. | 17.97 ± 0.31 |
The Kind of Processing | Dry Mass g/100 g | Vitamin C mg/100 g d.m. | Total Polyphenols mg CGA/100 g d.m. | Antioxidant Activity μmol Trolox/g d.m. | Thiocyanates (SCN) mg/100 g d.m. | Anthocyanins µmol/g d.m. | Nitrates mg NaNO3/kg d.m. | Nitrites mg NaNO2/kg d.m. |
---|---|---|---|---|---|---|---|---|
fresh | 9.18a ± 0.04 | 689.54f ± 1.54 | 1376.36f ± 3.85 | 79.85d ± 0.46 | 26.25d ± 1.69 | 78.21c ± 5.85 | 605.23e ± 23.72 | 17.97c ± 0.31 |
blanched | 8.85a ± 0.07 | 683.62f ± 7.99 | 1358.76f ± 13.58 | 80.79d ± 0.80 | 26.89d ± 0.31 | 80.34c ± 8.15 | 580.79e ± 33.56 | 17.29bc ± 0.48 |
cooked | 10.75b ± 0.35 | 305.30d ± 0.26 | 493.40a ± 1.84 | 47.53a ± 2.76 | 12.27a ± 1.18 | 28.47a ± 5.92 | 219.16b ± 7.10 | 11.26a ± 1.18 |
steamed | 10.35b ± 0.21 | 362.42e ± 4.24 | 1143.77e ± 15.30 | 61.55c ± 1.78 | 19.13bc ± 0.96 | 67.73bc ± 8.20 | 470.53d ± 4.10 | 14.11ab ± 1.50 |
after 2 months of frozen storage (zipper bags) | 11.60c ± 0.14 | 245.69b ± 19.51 | 968.97c ± 6.10 | 52.76b ± 0.98 | 19.39bc ± 1.10 | 52.76b ± 11.83 | 211.81b ± 2.80 | 13.62a ± 1.10 |
after 2 months of frozen storage (vacuum) | 11.50c ± 0.14 | 280.87c ± 2.46 | 1013.04d ± 7.38 | 59.39c ± 0.37 | 20.09c ± 1.23 | 60.43bc ± 17.09 | 291.39c ± 7.26 | 14.61abc ± 0.86 |
after 4 months of frozen storage (zipper bags) | 11.70c ± 0.14 | 197.43a ± 1.21 | 899.23b ± 15.59 | 44.87a ± 1.21 | 13.08a ± 1.33 | 43.68ab ± 8.70 | 148.03a ± 6.41 | 22.99d ± 1.45 |
after 4 months of frozen storage (vacuum) | 11.70c ± 0.28 | 232.48b ± 8.46 | 976.32c ± 11.72 | 53.08b ± 2.05 | 16.50b ± 2.05 | 53.85b ± 8.46 | 234.02b ± 8.70 | 33.16e ± 2.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapusta-Duch, J.; Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kuboń, M.; Leszczyńska, T.; Borczak, B. Health-Promoting Properties of Fresh and Processed Purple Cauliflower. Sustainability 2019, 11, 4008. https://doi.org/10.3390/su11154008
Kapusta-Duch J, Szeląg-Sikora A, Sikora J, Niemiec M, Gródek-Szostak Z, Kuboń M, Leszczyńska T, Borczak B. Health-Promoting Properties of Fresh and Processed Purple Cauliflower. Sustainability. 2019; 11(15):4008. https://doi.org/10.3390/su11154008
Chicago/Turabian StyleKapusta-Duch, Joanna, Anna Szeląg-Sikora, Jakub Sikora, Marcin Niemiec, Zofia Gródek-Szostak, Maciej Kuboń, Teresa Leszczyńska, and Barbara Borczak. 2019. "Health-Promoting Properties of Fresh and Processed Purple Cauliflower" Sustainability 11, no. 15: 4008. https://doi.org/10.3390/su11154008
APA StyleKapusta-Duch, J., Szeląg-Sikora, A., Sikora, J., Niemiec, M., Gródek-Szostak, Z., Kuboń, M., Leszczyńska, T., & Borczak, B. (2019). Health-Promoting Properties of Fresh and Processed Purple Cauliflower. Sustainability, 11(15), 4008. https://doi.org/10.3390/su11154008