Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Models of Extreme Value Copulas, the Inference Functions for Margins (IFM) Estimation Method, and the Empirical Combining Function Method
2.1.1. Theory of Extreme Copulas
2.1.2. Galambos’ Copula
2.1.3. The Gumbel Copula
2.1.4. The Husler–Reiss Copula
2.1.5. Tawn Copula
2.1.6. The t-EV Copula
2.1.7. The Empirical Combining Function Method
- —empirical copula,
- —function of the copula from the distinguished set of copulas C.
2.1.8. Kendall’s Correlation Coefficient
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Erbaugha, J.; Bierbaum, R.; Castillejac, G.; da Fonsecad, G.A.B.; Cole, S.; Hansend, B. Toward sustainable agriculture in the tropics. World Dev. 2019, 121, 158–162. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Niemiec, M.; Sikora, J.; Chowaniak, M. Possibilities of designating swards of grasses and small-seed legumes from selected organic farms in Poland for feed. In Proceedings of the IX International Scientific Symposium “Farm Machinery and Processes Management in Sustainable Agriculture”, Lublin, Poland, 22–24 November 2017; pp. 365–370. [Google Scholar] [CrossRef]
- Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; Korenko, M. Prerequisites for the cooperation between enterprises and business supportinstitutions for technological development. Bus. Non-profit Organ. Facing Increased Compet. Grow. Cust. Demands 2017, 16, 427–439. [Google Scholar]
- Gródek-Szostak, Z.; Luc, M.; Szeląg-Sikora, A.; Niemiec, M.; Kajrunajtys, D. Economic Missions and Brokerage Events as an Instrument for Support of International Technological Cooperation between Companies of the Agricultural and Food Sector. Infrastruct. Environ. 2019, 303–308. [Google Scholar] [CrossRef]
- Rigby, D.; Cáceresb, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Skafa, L.; Buonocorea, E.; Dumonteta, S.; Capone, R.; Franzesea, P.P. Food security and sustainable agriculture in Lebanon: An environmental accounting framework. J. Clean. Prod. 2019, 209, 1025–1032. [Google Scholar] [CrossRef]
- Yu, J.; Wu, J. The Sustainability of Agricultural Development in China: The Agriculture–Environment Nexus. Sustainability 2018, 10, 1776. [Google Scholar] [CrossRef]
- USDA. Grain: World Markets and Trade; USDA Office of Global Analysis: Washington, DC, USA, 2019.
- USDA. Oilseeds: Worlds Market and Trade; USDA Office of Global Analysis: Washington, DC, USA, 2019.
- USDA. World Agricultural Production; USDA Office of Global Analysis: Washington, DC, USA, 2019.
- EC. Short-Term Outlook for EU Agricultural Markets in 2018 and 2019. In Agriculture and Rural Development; Spring: Brussels, Belgium, 2019. [Google Scholar]
- Gumbel, E.J.; Goldstein, N. Analysis of empirical bivariate extremal distribution. J. Am. Stat. Assoc. 1964, 59, 794–816. [Google Scholar] [CrossRef]
- Starica, C. Multivariate extremes for models with constant conditional correlations. J. Empir. Financ. 1999, 6, 515–553. [Google Scholar] [CrossRef]
- Longin, F.; Solnik, B. Extreme correlations in international equity markets. J. Financ. 2001, 56, 649–676. [Google Scholar] [CrossRef]
- Hsu, C.P.; Huang, C.W.; Chiou, W.J.P. Effectiveness of copula—Extreme value theory in estimating value-at-risk: Empirical evidence from Asian emerging markets. Rev. Quant. Financ. Account. 2012, 39, 447–468. [Google Scholar] [CrossRef]
- Cebrian, A.; Denuit, M.; Lambert, P. Analysis of bivariate tail dependence using extreme values copulas: An application to the SOA medical large claims database. Belg. Actuar. J. 2003, 3, 33–41. [Google Scholar]
- Renard, B.; Lang, M. Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Adv. Water Resour. 2007, 30, 897–912. [Google Scholar] [CrossRef] [Green Version]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer Verlag: New York, NY, USA, 2006; pp. 97–101. [Google Scholar]
- Joe, H. Multivariate Models and Dependence Concepts; Chapman & Hall: London, UK, 1997; pp. 139–168. [Google Scholar]
- Segers, J. Nonparametric inference for bivariate extreme-value copulas. In Topics in Extreme Values; Ahsanullah, M., Kirmani, S.N.U.A., Eds.; Nova Science Publishers: New York, NY, USA, 2007; pp. 181–203. [Google Scholar]
- Gudendorf, G.; Segers, J. Extreme-value copulas. In Copula Theory and its Applications: Proceedings of the Workshop Held in Warsaw 25–26 September 2009; Jaworski, P., Durante, F., Härdle, W., Rychlik, T., Eds.; Springer Verlag: New York, NY, USA, 2010; pp. 127–145. [Google Scholar]
- Genest, C.; Segers, J. Rank-based inference for bivariate extreme-value copulas. Ann. Stat. 2009, 37, 2597–3097. [Google Scholar] [CrossRef]
- Ribatet, M.; Sedki, M. Extreme value copulas and max-stable processes. J. Société Fr. Stat. 2012, 153, 138–150. [Google Scholar]
- FAO. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Roma, Italy, 2017. [Google Scholar]
- Wrzaszcz, W.; Zegar, J. Challenges for Sustainable Development of Agricultural Holdings. Econ. Environ. Stud. 2016, 16, 377–402. [Google Scholar]
- Sklar, A. Fonctions de répartition á n dimensions et leurs marges. Publ. l’Institut Stat. l’Université Paris 1959, 8, 229–231. [Google Scholar]
- Joe, H.; Xu, J.J. The estimation method of inference function for margins for multivariate models, Department of Statistics, University of British Columbia. Tech. Rep. 1996, 166. [Google Scholar] [CrossRef]
- Ji, Q.; Bouri, E.; Roubaud, D.; Jawad, S.; Shahzad, H. Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model. Energy Econ. 2018, 75, 14–27. [Google Scholar] [CrossRef]
- Lia, R.L.; Wang, D.H.; Tu, J.Q.; Li, S.P. Correlation between agricultural markets in dynamic perspective—Evidence from China and the US futures markets. Phys. A Stat. Mech. Appl. 2016, 464, 83–92. [Google Scholar] [CrossRef]
- Hill, J.; Schneeweis, T.; Yau, J. International trading/non-trading time effects on risk estimation in futures markets. J. Futures Mark. 1990, 10, 407–423. [Google Scholar] [CrossRef]
- Yang, K.; Tian, F.; Chen, L.; Li, S. Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches. Int. Rev. Econ. Financ. 2017, 49, 276–291. [Google Scholar] [CrossRef]
- Cheng, B.; Nikitopoulos, C.S.; Schlögl, E. Pricing of long-dated commodity derivatives: Do stochastic interest rates matter? J. Bank. Financ. 2018, 95, 148–166. [Google Scholar] [CrossRef]
- Greiner, R.; Puig, J.; Huchery, C.; Collier, N.; Garnett, S.T. Scenario modelling to support industry strategic planning and decision making. Environ. Model. Softw. 2014, 55, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Pickands, J. Multivariate extreme value distributions. Bull. Int. Stat. Inst. 1981, 2, 859–878. [Google Scholar]
- Balkema, A.A.; Resnick, S.I. Max-infinite divisibility. J. Appl. Probab. 1977, 14, 309–319. [Google Scholar] [CrossRef]
- De Haan, L.; Resnick, S.I. Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 1977, 40, 317–337. [Google Scholar] [CrossRef]
- Davison, A.C.; Smith, R.L. Models for Exceedances over High Thresholds. J. R. Stat. Soc. Ser. B (Methodological) 1990, 52, 393–442. [Google Scholar] [CrossRef]
- Katz, R.W.; Parlange, M.B.; Naveau, P. Statistics of extremes in hydrology. Adv. Water Resour. 2002, 25, 1287–1304. [Google Scholar] [CrossRef] [Green Version]
- McNeil, A.J. Extreme Value Theory for Risk Managers, Internal Modelling and CAD II; RISK Books: London, UK, 1999. [Google Scholar]
- Demarta, S.; McNeil, A.J. The t copula and related copulas. Int. Stat. Rev. 2005, 73, 111–129. [Google Scholar] [CrossRef]
- Galambos, J. Order statistics of samples from multivariate distributions. J. Am. Stat. Assoc. 1975, 9, 674–680. [Google Scholar]
- Gumbel, E.J. Bivariate exponential distributions. J. Am. Stat. Assoc. 1960, 55, 698–707. [Google Scholar] [CrossRef]
- Husler, J.; Reiss, R.D. Maxima of normal random vectors: Between independence and complete dependence. Stat. Probab. Lett. 1989, 7, 283–286. [Google Scholar] [CrossRef]
- Tawn, J.A. Bivariate extreme value theory: Models and estimation. Biometrika 1988, 75, 397–415. [Google Scholar] [CrossRef]
- Heilpern, S. Funkcje Łączące, Wydawnictwo Akademii Ekonomicznej im; Oskara Langego we Wrocławiu: Wroclaw, Poland, 2007. [Google Scholar]
- Hsieh, J.J. Estimation of Kendall’s tau from censored data. Comput. Stat. Data Anal. 2010, 54, 1613–1621. [Google Scholar] [CrossRef]
- Fisher, J.; Rucki, K. Re-conceptualizing the Science of Sustainability: A Dynamical Systems Approach to Understanding the Nexus of Conflict, Development and the Environment. Sustain. Dev. 2017, 25, 267–275. [Google Scholar] [CrossRef]
- Durrleman, V.; Nikeghbali, A.; Roncalli, T. Which Copula Is the Right One? Working Paper; Groupe de Recherche Opérationnelle, Crédit Lyonnais: Lyon, France, 2000. [Google Scholar]
- Kamnitui, N.; Genest, C.; Jaworski, P.; Trutschnig, W. On the size of the class of bivariate extreme-value copulas with a fixed value of Spearman’s rho or Kendall’s tau. J. Math. Anal. Appl. 2019, 472, 920–936. [Google Scholar] [CrossRef]
- Li, F.; Zhou, J.; Liu, C.h. Statistical modelling of extreme storms using copulas: A comparison study. Coast. Eng. 2018, 142, 52–61. [Google Scholar] [CrossRef]
- Gudendorf, G.; Segers, J. Nonparametric estimation of multivariate extreme-value copulas. J. Stat. Plan. Inference 2012, 142, 3073–3085. [Google Scholar] [CrossRef] [Green Version]
- Sriboonchitta, S.; Nguyen, H.T.; Wiboonpongse, A.; Liu, J. Modeling volatility and dependency of agricultural price and production indices of Thailand: Static versus time-varying copulas. Int. J. Approx. Reason. 2013, 54, 793–808. [Google Scholar] [CrossRef]
- Fousekis, P.; Tzaferi, D. Price returns and trading volume changes in agricultural futures markets: An empirical analysis with quantile regressions. J. Econ. Asymmetries 2019, 19, e00116. [Google Scholar] [CrossRef]
- Sreekumar, S.; Sharma, K.C.; Bhakar, R. Gumbel copula based multi interval ramp product for power system flexibility enhancement. Int. J. Electr. Power Energy Syst. 2019, 112, 417–427. [Google Scholar] [CrossRef]
- Keya, N.; Anowar, S.; Eluru, N. Joint model of freight mode choice and shipment size: A copula-based random regret minimization framework. Transp. Res. Part E Logist. Transp. Rev. 2019, 125, 97–115. [Google Scholar] [CrossRef]
- Niemiec, M.; Komorowska, M.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Gródek-Szostak, Z.; Kapusta-Duch, J. Risk Assessment for Social Practices in Small Vegetable farms in Poland as a Tool for the Optimization of Quality Management Systems. Sustainability 2019, 11, 3913. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kuboń, M.; Leszczyńska, T.; Borczak, B. Health-Promoting Properties of Fresh and Processed Purple Cauliflower. Sustainability 2019, 11, 4008. [Google Scholar] [CrossRef]
Copula | Parameter | Maize-Soy | LLF | Corn-Wheat | LLF | Soybean-Wheat | LLF |
---|---|---|---|---|---|---|---|
Galambos | 0.897 *** (0.013) | 1831 | 0.674 *** (0.011) | 1031 | 0.571 *** (0.010) | 693.3 | |
Gumbel | 1.628 *** (0.013) | 1871 | 1.411 *** (0.011) | 1050 | 1.316 *** (0.010) | 710.2 | |
Hüsler–Reiss | 1.268 *** (0.018) | 1711 | 1.039 *** (0.012) | 981.9 | 0.924 *** (0.011) | 660.9 | |
Tawn | 0.928 *** (0.009) | 1883 | 0.758 *** (0.013) | 1033 | 0.633 *** (0.015) | 686.4 | |
t-EV | 0.786 *** (0.012) | 1885 | 0.672 *** (0.018) | 1053 | 0.589 *** (0.016) | 711.8 | |
4.000 ** (1.876) | 4.000 ** (1.882) | 4.000 ** (1.843) |
Copula | Parameter | Corn–Soybean | LLF | Corn–Wheat | LLF | Soybean–Wheat | LLF |
---|---|---|---|---|---|---|---|
Galambos | 0.895 *** (0.013) | 1824 | 0.673 *** (0.011) | 1028 | 0.570 *** (0.010) | 691.9 | |
Gumbel | 1.626 *** (0.013) | 1864 | 1.411 *** (0.011) | 1047 | 1.315 ** (0.010) | 708.9 | |
Hüsler-Reiss | 1.267 *** (0.018) | 1706 | 1.038 *** (0.012) | 977.1 | 0.923 *** (0.011) | 658.8 | |
Tawn | 0.927 *** (0.009) | 1875 | 0.757 *** (0.013) | 1032 | 0.633 *** (0.015) | 685.5 | |
t-EV | 0.785 *** (0.012) | 1878 | 0.671 *** (0.018) | 1051 | 0.588 *** (0.016) | 710.9 | |
4.000 ** (1.876) | 4.000 ** (1.882) | 4.000 ** (1.843) |
Type of Copula | Corn–Soybean | Corn–Wheat | Soybean–Wheat |
---|---|---|---|
The Galambos’ copula | 0.382 | 0.289 | 0.236 |
The Gumbel copula | 0.386 | 0.291 | 0.240 |
The Husler–Reiss copula | 0.357 | 0.271 | 0.223 |
The Tawn copula | 0.387 | 0.290 | 0.239 |
The t-EV copula | 0.390 | 0.293 | 0.242 |
Type of Copula | Corn–Soybean | Corn–Wheat | Soybean–Wheat |
---|---|---|---|
The Galambos’ copula | 0.381 | 0.288 | 0.235 |
The Gumbel copula | 0.385 | 0.291 | 0.239 |
The Husler-Reiss copula | 0.356 | 0.270 | 0.222 |
The Tawn copula | 0.386 | 0.289 | 0.239 |
The t-EV copula | 0.388 | 0.293 | 0.241 |
Corn | Soybean | Wheat | |
---|---|---|---|
Corn | 1.000 | 0.417 | 0.332 |
Soybean | 1.000 | 0.270 | |
Wheat | 1.000 |
Corn–Soybean | Corn–Wheat | Soybean–Wheat | |
---|---|---|---|
The Galambos’ copula | 0.221 | 0.211 | 0.188 |
The Gumbel copula | 0.209 | 0.197 | 0.174 |
The Husler–Reiss copula | 0.285 | 0.252 | 0.219 |
The Tawn copula | 0.218 | 0.180 | 0.163 |
The t-EV copula | 0.203 | 0.195 | 0.174 |
Corn–Soybean | Corn–Wheat | Soybean–Wheat | |
---|---|---|---|
The Galambos’ copula | 0.222 | 0.211 | 0.188 |
The Gumbel copula | 0.210 | 0.197 | 0.174 |
The Husler–Reiss copula | 0.286 | 0.252 | 0.219 |
The Tawn copula | 0.218 | 0.179 | 0.162 |
The t-EV copula | 0.203 | 0.195 | 0.173 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gródek-Szostak, Z.; Malik, G.; Kajrunajtys, D.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Niemiec, M.; Kapusta-Duch, J. Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function. Sustainability 2019, 11, 4144. https://doi.org/10.3390/su11154144
Gródek-Szostak Z, Malik G, Kajrunajtys D, Szeląg-Sikora A, Sikora J, Kuboń M, Niemiec M, Kapusta-Duch J. Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function. Sustainability. 2019; 11(15):4144. https://doi.org/10.3390/su11154144
Chicago/Turabian StyleGródek-Szostak, Zofia, Gabriela Malik, Danuta Kajrunajtys, Anna Szeląg-Sikora, Jakub Sikora, Maciej Kuboń, Marcin Niemiec, and Joanna Kapusta-Duch. 2019. "Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function" Sustainability 11, no. 15: 4144. https://doi.org/10.3390/su11154144
APA StyleGródek-Szostak, Z., Malik, G., Kajrunajtys, D., Szeląg-Sikora, A., Sikora, J., Kuboń, M., Niemiec, M., & Kapusta-Duch, J. (2019). Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function. Sustainability, 11(15), 4144. https://doi.org/10.3390/su11154144