Regression Model to Evaluate the Impact of Basic Sanitation Services in Households and Schools on Child Mortality in the Municipalities of the State of Alagoas, Brazil
Abstract
:1. Introduction
2. Methods and Data
Sample Selection
3. Results and Discussion
3.1. Exploratory Data Analysis
3.2. Analysis of the Results of the Regression Model
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
State of Alagoas (N = 295) | ||||||||
Variable | Min. | Max. | Average | SD | Min. | Max. | Average | SD |
1991 to 2010 | 1991 | |||||||
(U5MR) | 23.72 | 141.67 | 64.78 | 29.15 | 63.66 | 141.67 | 99.81 | 16.12 |
(MHDI) | 18.90 | 72.10 | 41.79 | 12.43 | 18.90 | 50.70 | 28.66 | 5.50 |
(DSPS) | 15.05 | 99.31 | 69.16 | 20.71 | 15.05 | 90.47 | 50.53 | 17.58 |
(HPTPW) | 3.35 | 95.41 | 42.33 | 23.92 | 3.46 | 78.01 | 25.73 | 14.95 |
(CUCS) | 0.07 | 97.65 | 49.10 | 24.12 | 0.07 | 77.79 | 28.87 | 17.31 |
(SSCS) | 44.12 | 100.00 | 94.24 | 8.98 | 44.12 | 100.00 | 88.83 | 12.25 |
(URB) | 6.70 | 99.93 | 51.00 | 22.19 | 8.14 | 92.74 | 44.28 | 20.38 |
(POP) | 1.50 | 488.97 | 14.80 | 42.49 | 1.80 | 329.76 | 13.60 | 34.56 |
2000 | 2010 | |||||||
(U5MR) | 38.85 | 96.63 | 62.45 | 11.43 | 23.72 | 50.94 | 34.77 | 7.16 |
(MHDI) | 28.10 | 58.40 | 39.26 | 5.11 | 48.40 | 72.10 | 56.35 | 3.96 |
(DSPS) | 37.12 | 96.55 | 67.14 | 14.59 | 65.94 | 99.31 | 88.30 | 7.80 |
(HPTPW) | 3.35 | 86.13 | 37.38 | 19.20 | 18.20 | 95.41 | 62.44 | 20.31 |
(CUCS) | 15.32 | 93.76 | 51.50 | 19.76 | 24.18 | 97.65 | 65.40 | 19.58 |
(SSCS) | 66.67 | 100.00 | 95.25 | 6.75 | 85.71 | 100.00 | 98.23 | 2.81 |
(URB) | 6.70 | 99.75 | 51.44 | 21.71 | 8.32 | 99.93 | 56.78 | 22.74 |
(POP) | 1.53 | 418.21 | 14.68 | 42.51 | 1.50 | 488.97 | 16.04 | 48.99 |
Northeast (N = 5041) | ||||||||
Variable | Min. | Max. | Average | SD | Min. | Max. | Average | SD |
1991 to 2010 | 1991 | |||||||
(U5MR) | 11.92 | 151.60 | 60.49 | 29.94 | 40.00 | 151.60 | 96.43 | 19.27 |
(MHDI) | 14.90 | 78.80 | 44.90 | 12.76 | 14.90 | 57.60 | 30.84 | 6.07 |
(DSPS) | 4.77 | 99.90 | 65.74 | 24.28 | 4.97 | 96.69 | 46.21 | 20.18 |
(HPTPW) | 0.08 | 98.73 | 41.06 | 24.57 | 0.08 | 90.52 | 24.18 | 16.82 |
(CUCS) | 0.00 | 100.00 | 40.91 | 25.49 | 0.00 | 99.01 | 22.95 | 19.36 |
(SSCS) | 4.35 | 100.00 | 91.63 | 12.02 | 4.35 | 100.00 | 84.78 | 15.41 |
(URB) | 1.54 | 100.00 | 50.48 | 20.54 | 2.52 | 100.00 | 44.89 | 20.20 |
(POP) | 0.66 | 1402.66 | 14.66 | 52.57 | 0.66 | 1088.88 | 14.26 | 47.23 |
2000 | 2010 | |||||||
(U5MR) | 29.50 | 106.29 | 61.81 | 11.21 | 11.92 | 50.94 | 29.33 | 6.45 |
(MHDI) | 24.10 | 66.40 | 42.37 | 6.12 | 44.30 | 78.80 | 59.07 | 4.33 |
(DSPS) | 4.77 | 98.88 | 61.83 | 21.01 | 32.85 | 99.90 | 85.79 | 12.32 |
(HPTPW) | 0.13 | 94.55 | 34.00 | 19.35 | 3.26 | 98.73 | 61.99 | 19.27 |
(CUCS) | 0.00 | 97.91 | 39.07 | 23.13 | 0.00 | 100.00 | 57.64 | 20.96 |
(SSCS) | 33.33 | 100.00 | 92.08 | 10.53 | 52.08 | 100.00 | 96.87 | 5.78 |
(URB) | 1.54 | 100.00 | 50.38 | 20.46 | 8.32 | 100.00 | 55.22 | 19.71 |
(POP) | 0.69 | 1280.95 | 14.13 | 51.56 | 0.66 | 1402.66 | 15.51 | 57.54 |
Brazil (N = 15,373) | ||||||||
Variable | Min. | Max. | Average | SD | Min. | Max. | Average | SD |
1991 to 2010 | 1991 | |||||||
(U5MR) | 9.98 | 151.60 | 38.88 | 25.37 | 17.12 | 151.60 | 59.54 | 31.16 |
(MHDI) | 14.90 | 86.20 | 53.68 | 13.97 | 14.90 | 69.70 | 39.63 | 9.79 |
(DSPS) | 4.77 | 100.00 | 83.43 | 21.38 | 4.97 | 100.00 | 72.09 | 25.56 |
(HPTPW) | 0.05 | 100.00 | 66.06 | 30.09 | 0.05 | 100.00 | 51.06 | 29.76 |
(CUCS) | 0.00 | 100.00 | 54.74 | 28.53 | 0.00 | 99.94 | 36.24 | 26.55 |
(SSCS) | 0.00 | 100.00 | 90.29 | 13.00 | 0.00 | 100.00 | 84.85 | 15.35 |
(URB) | 0.00 | 100.00 | 59.64 | 23.05 | 2.52 | 100.00 | 54.85 | 23.08 |
(POP) | 0.39 | 5899.43 | 17.02 | 101.62 | 0.39 | 5060.08 | 16.69 | 99.08 |
2000 | 2010 | |||||||
(U5MR) | 12.99 | 106.29 | 40.00 | 18.19 | 9.98 | 50.94 | 21.53 | 7.32 |
(MHDI) | 24.10 | 82.00 | 52.48 | 10.39 | 41.80 | 86.20 | 65.92 | 7.20 |
(DSPS) | 4.77 | 100.00 | 81.89 | 21.19 | 32.85 | 100.00 | 93.85 | 9.93 |
(HPTPW) | 0.13 | 100.00 | 62.98 | 30.84 | 3.26 | 100.00 | 80.88 | 21.71 |
(CUCS) | 0.00 | 100.00 | 53.74 | 26.90 | 0.00 | 100.00 | 70.26 | 21.85 |
(SSCS) | 15.69 | 100.00 | 90.10 | 12.29 | 23.23 | 100.00 | 94.75 | 9.55 |
(URB) | 0.00 | 100.00 | 59.21 | 23.24 | 4.18 | 100.00 | 63.83 | 22.04 |
(POP) | 0.42 | 5471.50 | 16.30 | 98.50 | 0.42 | 5899.43 | 17.97 | 106.49 |
References
- Hobcraft, J.N.; Mcdonald, J.W.; Rutstein, S.O. Socio-Economic Factors in Infant and Child Mortality: A cross national coparison. Popul. Stud. 1984, 38, 193–223. [Google Scholar] [CrossRef]
- Esrey, S.A.; Potash, J.B.; Roberts, L.; Shiff, C. Effects of improved water supply and sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm infection, schistosomiasis, and trachoma. Bull. World Health Organ. 1991, 69, 609–621. [Google Scholar] [PubMed]
- Derslice, J.; Popkin, B.; Briscoe, J. Drinking-water quality, sanitation, and breastfeeding: Their interactive effects on infant health. Bull. World Health Organ. 1994, 72, 589–601. [Google Scholar]
- Desai, S.; Alva, S. Maternal education and child health: Is there a strong causal relationship? Demography 1998, 35, 71–81. [Google Scholar] [CrossRef]
- Heller, L. Relação entre saúde e saneamento na perspectiva do desenvolvimento. Ciência Saúde Coletiva 1998, 3, 73–84. [Google Scholar] [CrossRef]
- Rutstein, S.O. Factors associated with trends in infant and child mortality in developing countries during the 1990s. Bull. World Health Organ. 2000, 78, 1256–1270. [Google Scholar]
- França, E.; Souza, J.M.D.; Guimarães, M.D.C.; Goulart, E.M.A.; Colosimo, E.; Antunes, C.M.D.F. Associação entre fatores sócio-econômicos e mortalidade infantil por diarreia, pneumonia e desnutrição em região metropolitana do Sudeste do Brasil: Um estudo caso-controle. Cadernos de Saúde Pública 2001, 17, 1437–1447. [Google Scholar] [CrossRef]
- Alves, D.; Belluzzo, W. Infant mortality and child health in Brazil. Econ. Hum. Biol. 2004, 2, 391–410. [Google Scholar] [CrossRef]
- Hosseinpoor, A.R.; Van Doorslaer, E.; Speybroeck, N.; Naghavi, M.; Mohammad, K.; Majdzadeh, R.; Vega, J. Decomposing socioeconomic inequality in infant mortality in Iran. Int. J. Epidemiol. 2006, 35, 1211–1219. [Google Scholar] [CrossRef]
- Hutton, G.; Haller, L.; Bartram, J. Global cost-benefit analysis of water supply and sanitation interventions. J. Water Health 2007, 5, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Cairncross, S.; Hunt, C.; Boisson, S.; Bostoen, K.; Curtis, V.; Fung, I.C.; Schmidt, W.P. Water, sanitation and hygiene for the prevention of diarrhoea. Int. J. Epidemiol. 2010, 39, 193–205. [Google Scholar] [CrossRef]
- Fink, G.; Günther, I.; Hill, K. The effect of water and sanitation on child health: Evidence from the demographic and health surveys 1986–2007. Int. J. Epidemiol. 2011, 40, 1196–1204. [Google Scholar] [CrossRef]
- Adams, E.A.; Boateng, G.O.; Amoyaw, J.A. Socioeconomic and demographic predictors of potable water and sanitation access in Ghana. Soc. Indic. Res. 2016, 126, 673–687. [Google Scholar] [CrossRef]
- Jamison, D.T.; Murphy, S.M.; Sandbu, M.E. Why has under-5 mortality decreased at such different rates in different countries? J. Health Econ. 2016, 48, 16–25. [Google Scholar] [CrossRef]
- Herrera, D.; Ellis, A.; Fisher, B.; Golden, C.D.; Johnson, K.; Mulligan, M.; Ricketts, T.H. Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Anand, S.; Sen, A.K. Human Development Index: Methodology and Measurement; Human Development Report Office: New York, NY, USA, 1994; Available online: http://hdr.undp.org/en/media/HDI_methodology.pdf (accessed on 28 May 2016).
- WHO/UNICEF. World Health Organization and UNICEF 2010. In Progress on Sanitation and Drinking-Water; WHO Press: Geneva, Switzerland, 2010; Volume 1, p. 60. [Google Scholar]
- Fewtrell, L.; Kaufmann, R.; Kay, D. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis. Lancet Infect. Dis. 2005, 5, 42–52. [Google Scholar] [CrossRef]
- Poppel, F.V.; Heijden, C.V. The effects of water supply on infant and childhood mortality: A review of historical evidence. Health Transit. Rev. 1997, 7, 113–148. [Google Scholar]
- WHO—World Health Organization. Our Planet, Our Health: Report of the WHO Commission on Health and Environment; WHO: Geneva, Switzerland, 1992. [Google Scholar]
- Briscoe, J. Evaluating water supply and other health programs: Short-run vs. long-run mortality effects. J. Public Health 1985, 99, 142–145. [Google Scholar] [CrossRef]
- Watson, T. Public health investments and the infant mortality gap: Evidence from federal sanitation interventions on U.S. Indian reservations. J. Public Econ. 2006, 90, 1537–1560. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, I.R. Access to sanitation facilities among Nigerian households: Determinants and sustainability implications. Sustainability 2017, 9, 547. [Google Scholar] [CrossRef]
- Ramos, S.B.; de Paula Silva, J.; Bolela, C.A.; de Andrade, M. Prediction of human development from environmental indicators. Soc. Indic. Res. 2018, 138, 467–477. [Google Scholar] [CrossRef]
- Merrick, T.W. The Effect of Piped Water on Early Childhood Mortality in Urban Brazil, 1970–1976; TWB: Washington, DC, USA, 1984. [Google Scholar]
- Lima, A.A.M.; Moore, S.R.; Barboza, M.S., Jr.; Soares, A.M.; Schleupner, M.A.; Newman, R.D.; Schorling, J.B. Persistent diarrhea signals a critical period of increased diarrhea burdens and nutritional shortfalls: A prospective cohort study among children in northeastern Brazil. J. Infect. Dis. 2000, 181, 1643–1651. [Google Scholar] [CrossRef]
- Bezerra-Filho, J.G.; Kerr, L.R.F.S.; Miná, D.D.L.; Barreto, M.L. Distribuição espacial da taxa de mortalidade infantil e principais determinantes no Ceará, Brasil, no período 2000–2002. Cadernos de Saúde Pública 2007, 23, 1173–1185. [Google Scholar] [CrossRef]
- Maia, L.T.D.S.; Souza, W.V.; Mendes, A.D.C.G. Differences in risk factors for infant mortality in five brazilian cities: A case-control study based on the mortality information system and information system on live births. Cadernos de Saúde Pública 2012, 28, 2163–2176. [Google Scholar] [CrossRef]
- Scriptore, J.S. Impactos do Saneamento Sobre Saúde e Educação: Uma Análise Especial. Ph.D. Thesis, University of São Paulo, São Paulo, Brasil, 2016. [Google Scholar]
- Leivas, P.H.S.; Dos Santos, A.M.A.; Da Rocha Gonçalves, R.; De Souza, O.T. Sustentabilidade, saneamento e saúde infantil no Brasil: Uma análise a partir de macro e microdados. Espacios 2016, 37, 1–20. [Google Scholar]
- Guerrant, D.I.; Moore, S.R.; Lima, A.A.; Patrick, P.D.; Schorling, J.B.; Guerrant, R.L. Association of early childhood diarrhoea and cryptosporidiosis with impaired physical fitness and cognitive function four-seven years later in a poor urban community in northeast Brazil. Am. J. Trop. Med. Hyg. 1999, 61, 707–713. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Características da População e dos Domicílios: Resultados do Universo; Relatório Técnico do Censo Demográfico 2010; IBGE: Rio de Janeiro, Brasil, 2011. Available online: http://www.ibge.gov.br (accessed on 5 June 2017).
- BRASIL. Plano Nacional de Saneamento Básico—Plansab, 2013; Ministério das Cidades, Secretaria Nacional de Saneamento Ambiental; MC: Brasília, Brasil, 2013; p. 173. [Google Scholar]
- Freeman, J.M.; Pellegrino, E.D. Management at the End of Life: A Dialogue About Intending Death. Arch. Fam. Med. 1993, 2, 1078–1080. [Google Scholar] [CrossRef]
- Currie, J.; Almond, D. Human capital development before age five. In Handbook of Labor Economics; Elsevier: San Diego, CA, USA, 2011; Volume 4, pp. 1315–1486. [Google Scholar]
- Gerolomo, M.; Penna, M. Cólera e Condições de Vida da População. Revista de Saúde Pública 2000, 34, 342–347. [Google Scholar] [CrossRef]
- Gouveia, N. Saúde e meio ambiente nas cidades: Os desafios da saúde ambiental. Saúde e sociedade 1999, 8, 49–61. [Google Scholar] [CrossRef]
- Tambellini, A.T.; Sisinno, C.L.; Moreira, J.C. Avaliação da contaminação e poluição ambiental na área de influência do aterro controlado do Morro do Céu, Niterói, Brasil. Cadernos de Saúde Pública 1999, 12, 31–48. [Google Scholar]
- Eide, E.R.; Showalter, M.H.; Goldhaber, D.D. The relation between children’s health and academic achievement. Child. Youth Serv. Rev. 2010, 32, 231–238. [Google Scholar] [CrossRef]
- Wolf, J.; Bonjour, S.; Prüss-Ustün, A. An exploration of multilevel modeling for estimating access to drinking-water and sanitation. J. Water Health 2013, 11, 64–77. [Google Scholar] [CrossRef]
- Baquero, O.F.; Gallego-Ayala, J.; Giné-Garriga, R.; De Palencia, A.J.F.; Pérez-Foguet, A. The influence of the human rights to water and sanitation normative content in measuring the level of service. Soc. Indic. Res. 2017, 133, 763–786. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Z.; Uddin, S.M.N.; Mang, H.P.; Zhou, X.; Zhang, J.; Zhang, L. Toilet revolution in China. J. Environ. Manag. 2018, 216, 347–356. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Global Water Supply and Sanitation Assessment 2000 Report; WHO Library Cataloguing-in-Publication Data: New York, NY, USA, 2000. [Google Scholar]
- Neri, M. Trata Brasil: Saneamento, Saúde, Educação, Trabalho e Turismo: O Caso Santa Catarina; FGV/IBRE/CPS: Rio de Janeiro, Brasil, 2008. [Google Scholar]
- Machado, D.C. Efeitos da saúde na idade de entrada à escola. Pesquisa e Planejamento Econômico. 2008, 38, 67–96. [Google Scholar]
- Soares, J.F.; Andrade, R.J. Nível socioeconômico, qualidade e equidade das escolas de Belo Horizonte. Ensaio Avaliação e Políticas Públicas em Educação 2006, 14, 107–126. [Google Scholar] [CrossRef]
- Schwartzman, S. As Causas da Pobreza; FGV: Rio de Janeiro, Brasil, 2004. [Google Scholar]
- Alves, M.T.G.; Soares, J.F. Contexto escolar e indicadores educacionais: Condições desiguais para a efetivação de uma política de avaliação educacional. Educação e pesquisa 2013, 39, 177–194. [Google Scholar] [CrossRef]
- Gomes-Neto, J.B.; Hanushek, E.A.; Leite, R.H.; Frota-Bezzera, R.C. Health and schooling: Evidence and policy implications for developing countries. Econ. Educ. Rev. 1997, 16, 271–282. [Google Scholar] [CrossRef]
- Esty, D.C.; Kim, C.; Srebotnjak, T.; Levy, M.A.; Sherbinin, A.; Mara, V. Environmental Performance Index; Yale Center for Environmental Law and Policy: New Haven, CT, USA, 2008; Volume 2, p. 78. [Google Scholar]
- Marôco, J. Análise de Equações Estruturais: Fundamentos Teóricos, Software e Aplicações, 2nd ed.; Report Number: Pêro Pinheiro, Portugal, 2014. [Google Scholar]
- Hox, J.J.; Bechger, T.M. An introduction to structural equation modeling. Family Sci. Rev. 1998, 11, 354–373. [Google Scholar]
- Mcdonald, R.P.; Ho, M.R. Principles and practice in reporting structural equation analyses. Psychol. Methods 2002, 7, 64–82. [Google Scholar] [CrossRef]
- Codes, A.L.M. Modelagem de equações estruturais: Um método para a análise de fenômenos complexos. Caderno CRH 2005, 18, 471–484. [Google Scholar]
- BUHSITD—Brazilian Unified Health System Information Technology Department. Tabnet System Health Information. Available online: http://tabnet.datasus.gov.br (accessed on 15 February 2017).
- UNDP—United Nations Development Programme. Stratified report by Brazilian municipality of the Municipal Human Development Index (MHDI) from 1991 to 2010. Available online: http://www.br.undp.org/content/brazil/pt/home/idh0/rankings/idhm-municipios-2010.html (accessed on 28 March 2017).
- BIGS—Brazilian Institute of Geography and Statistics. Population Census Database 2010. Available online: ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2010 (accessed on 12 February 2017).
- BIGS—Brazilian Institute of Geography and Statistics. Population Census Database 2000. Available online: ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2000 (accessed on 19 February 2017).
- BIGS—Brazilian Institute of Geography and Statistics. Population Census Database 1991. Available online: ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_1991 (accessed on 26 February 2017).
- NISERAT—National Institute of Studies and Educational Research Anísio Teixeira. School Census Microdata. Available online: http://portal.inep.gov.br/web/guest/microdados (accessed on 14 March 2017).
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: Harlow, UK, 2014. [Google Scholar]
- UN—United Nations. IGME Report. Source Data of Under-Five Mortality Rate (U5MR) and Number of Under-Five Deaths. Last Update: September 2018. Available online: http://www.childmortality.org/files_v22/download/UNIGME%20Rates%20&%20Deaths_Under5.xlsx (accessed on 14 December 2018).
- BRASIL. Diagnóstico Anual dos Serviços de Água e Esgoto e do Manejo de Resíduos Sólidos Urbanos em 2010. Ministério das Cidades. Planilhas de coleta de dados do SNIS. 2010. Available online: http://www.snis.gov.br (accessed on 12 June 2017).
Variables | Description | Acronym | Scale | Source |
---|---|---|---|---|
Mortality rate under five years of age per 1000 born alive (BA) | U5MR | BA | BUHSITD [55] | |
Municipal Human Development Index according to the longevity, education and income normalized to percentage | MHDI | % | UNDP [56] | |
Rate of houses having primary individual treatment systems of domestic sewage or public sewage services | DSPS | % | BIGS [57,58,59] | |
Rate of home populations having toilet and piped water | HPTPW | % | BIGS [57,58,59] | |
Rate of coverage of urban cleaning services including regular collection of household waste | CUCS | % | BIGS [57,58,59] | |
Quality index of sanitation services in child schools | SSCS | % | NISERAT [60] | |
Urbanization rate | URB | % | BIGS [57,58,59] | |
Size of population per 100,000 residents | POP | 0–100,000 | BIGS [57,58,59] |
Case 1 | Case2 | Case1 | Case2 | |||||
S.E. | S.E. | S.E. | S.E. | |||||
150.704 | 11.105 | 150.865 | 11.137 | 6.033 | 3.777 | 6.062 * | 3.775 | |
−0.570 | 0.087 | −0.566 | 0.087 | 0.246 | 0.030 | 0.247 | 0.030 | |
−0.384 | 0.087 | −0.375 | 0.087 | 0.218 | 0.030 | 0.220 | 0.030 | |
−0.378 | 0.099 | −0.381 | 0.099 | 0.115 | 0.034 | 0.115 | 0.034 | |
−0.382 | 0.118 | −0.392 | 0.119 | 0.110 | 0.040 | 0.108 | 0.040 | |
0.466 | 0.074 | 0.481 | 0.073 | −0.130 | 0.025 | −0.127 | 0.025 | |
0.040 * | 0.024 | 0.007 * | 0.008 | |||||
0.667 | 0.790 | |||||||
= 289) | = 289) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalcanti, A.; Teixeira, A.; Pontes, K. Regression Model to Evaluate the Impact of Basic Sanitation Services in Households and Schools on Child Mortality in the Municipalities of the State of Alagoas, Brazil. Sustainability 2019, 11, 4150. https://doi.org/10.3390/su11154150
Cavalcanti A, Teixeira A, Pontes K. Regression Model to Evaluate the Impact of Basic Sanitation Services in Households and Schools on Child Mortality in the Municipalities of the State of Alagoas, Brazil. Sustainability. 2019; 11(15):4150. https://doi.org/10.3390/su11154150
Chicago/Turabian StyleCavalcanti, Alvaro, Arthur Teixeira, and Karen Pontes. 2019. "Regression Model to Evaluate the Impact of Basic Sanitation Services in Households and Schools on Child Mortality in the Municipalities of the State of Alagoas, Brazil" Sustainability 11, no. 15: 4150. https://doi.org/10.3390/su11154150
APA StyleCavalcanti, A., Teixeira, A., & Pontes, K. (2019). Regression Model to Evaluate the Impact of Basic Sanitation Services in Households and Schools on Child Mortality in the Municipalities of the State of Alagoas, Brazil. Sustainability, 11(15), 4150. https://doi.org/10.3390/su11154150