Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Weather Data
2.3. Input Data, and Model Calibration and Validation
2.4. Simulation of Planting Dates, Temperature Increments, Change in Precipitation and Their Interactions
2.5. Statistical Evaluation of the Model Performance
3. Results
3.1. Calculation of Genetic Coefficients and Model Validation
3.2. Yield Simulation for Different Temperature Incremental Scenarios and Planting Dates
3.3. Impacts of 1.5 versus 2.0 °C on Yield for Different Planting Dates
3.4. Impact of Precipitation Change and Temperature on Yield for Same Planting Date
3.5. Yield Impacts of 1.5 versus 2.0 °C for Different Changes in Precipitation on Same Planting Date
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Hallam, D. International investment in developing country agriculture—Issues and challenges. Food Secur. 2011, 3, 91–98. [Google Scholar] [CrossRef]
- Ahmed, M.; Lorica, M.H. Improving developing country food security through aquaculture development—Lessons from Asia. Food Policy 2002, 27, 125–141. [Google Scholar] [CrossRef]
- Scherr, S.J. Soil Degradation: A Threat to Developing-Country Food Security by 2020? International Food Policy Research Institute: Montpellier, France, 1999; Volume 27. [Google Scholar]
- Cooper, P.J.M.; Dimes, J.; Rao, K.P.C.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef]
- Singh, P.; Wani, S.P.; Pathak, P.; Sahrawat, K.L.; Singh, A.K. Increasing crop productivity and effective use of water in rainfed agriculture. Integr. Watershed Manag. Rainfed Agric. 2011, 315–347. [Google Scholar]
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Silungwe, F.R.; Graef, F.; Bellingrath-Kimura, S.D.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. Analysis of intra and interseasonal rainfall variability and its effects on pearl millet yield in a semiarid agroclimate: Significance of scattered fields and tied ridges. Water 2019, 11, 578. [Google Scholar] [CrossRef]
- Thomas, D.S.; Twyman, C.; Osbahr, H.; Hewitson, B. Adaptation to climate change and variability: Farmer responses to intra-seasonal precipitation trends in South Africa. Clim. Change 2007, 83, 301–322. [Google Scholar] [CrossRef]
- Müller, C.; Cramer, W.; Hare, W.L.; Lotze-Campen, H. Climate change risks for African agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 4313–4315. [Google Scholar] [CrossRef] [Green Version]
- Cassman, K.G.; Grassini, P. Can there be a green revolution in Sub-Saharan Africa without large expansion of irrigated crop production? Glob. Food Secur. 2013, 2, 203–209. [Google Scholar] [CrossRef]
- URT. National Irrigation Policy; Ministry of Water and Irrigation: Dar es Salaam, Tanzania, 2010; p. 70.
- Schindler, J.; Graef, F.; König, H.J.; Mchau, D.; Saidia, P.; Sieber, S. Sustainability impact assessment to improve food security of smallholders in Tanzania. Environ. Impact Assess. Rev. 2016, 60, 52–63. [Google Scholar] [CrossRef]
- Mupangwa, W.; Love, D.; Twomlow, S. Soil–water conservation and rainwater harvesting strategies in the semi-arid Mzingwane Catchment, Limpopo Basin, Zimbabwe. Phys. Chem. Earth Parts A/B/C 2006, 31, 893–900. [Google Scholar] [CrossRef]
- Makurira, H.; Mul, M.L.; Vyagusa, N.F.; Uhlenbrook, S.; Savenije, H.H.G. Evaluation of community-driven smallholder irrigation in dryland South Pare Mountains, Tanzania: A case study of Manoo micro dam. Phys. Chem. Earth Parts A/B/C 2007, 32, 1090–1097. [Google Scholar] [CrossRef]
- Gebregziabher, G.; Namara, R.E.; Holden, S. Poverty reduction with irrigation investment: An empirical case study from Tigray, Ethiopia. Agric. Water Manag. 2009, 96, 1837–1843. [Google Scholar] [CrossRef]
- Lana, M.A.; Vasconcelos, A.C.F.; Gornott, C.; Schaffert, A.; Bonatti, M.; Volk, J.; Graef, F.; Kersebaum, K.C.; Sieber, S. Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania? Food Secur. 2018, 10, 897–910. [Google Scholar] [CrossRef]
- Nyakudya, I.W.; Stroosnijder, L. Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop. Agric. Water Manag. 2014, 146, 280–296. [Google Scholar] [CrossRef]
- Hadebe, S.; Modi, A.; Mabhaudhi, T. Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in sub-Saharan Africa. J. Agron. Crop Sci. 2017, 203, 177–191. [Google Scholar] [CrossRef]
- Bagayoko, M.; Maman, N.; Palé, S.; Sirifi, S.; Taonda, S.; Traore, S.; Mason, S. Microdose and N and P fertilizer application rates for pearl millet in West Africa. Afr. J. Agric. Res. 2011, 6, 1141–1150. [Google Scholar]
- Bielders, C.L.; Gérard, B. Millet response to microdose fertilization in south–western Niger: Effect of antecedent fertility management and environmental factors. Field Crops Res. 2015, 171, 165–175. [Google Scholar] [CrossRef]
- Kimaro, A.A.; Timmer, V.R.; Chamshama, S.A.O.; Ngaga, Y.N.; Kimaro, D.A. Competition between maize and pigeonpea in semi-arid Tanzania: Effect on yields and nutrition of crops. Agric. Ecosyst. Environ. 2009, 134, 115–125. [Google Scholar] [CrossRef]
- Chataway, R.G.; Doogan, V.J.; Strong, W.M. Fertilizer Microdosing: Boosting Production in Unproductive Lands; ICRISAT: Hajderabad, India, 2009. [Google Scholar]
- Habtemariam, L.T.; Mgeni, C.P.; Mutabazi, K.D.; Sieber, S. The farm income and food security implications of adopting fertilizer micro-dosing and tied-ridge technologies under semi-arid environments in central Tanzania. J. Arid Environ. 2019, 166, 60–67. [Google Scholar] [CrossRef]
- Corbeels, M.; Chirat, G.; Messad, S.; Thierfelder, C. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. Eur. J. Agron. 2016, 76, 41–53. [Google Scholar] [CrossRef]
- Lana, M.A.; Eulenstein, F.; Schlindwein, S.L.; Graef, F.; Sieber, S.; Bittencourt, H.V. Yield stability and lower susceptibility to abiotic stresses of improved open-pollinated and hybrid maize cultivars. Agron. Sustain. Dev. 2017, 37, 30. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Adoption of the Paris agreement. In Proceedings of the Conference of the Parties, Geneva, Switzerland, 11 December 2015. [Google Scholar]
- Smith, K.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.; Honda, Y.; Liu, Q.; Olwoch, J.; Revich, B.; Sauerborn, R. Human health: Impacts, adaptation, and co-benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Silungwe, F.R.; Graef, F.; Bellingrath-Kimura, S.D.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. Crop upgrading strategies and modelling for rainfed cereals in a semi-arid climate—A review. Water 2018, 10, 356. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Faye, B.; Webber, H.; Naab, J.B.; MacCarthy, D.S.; Adam, M.; Ewert, F.; Lamers, J.P.; Schleussner, C.-F.; Ruane, A.; Gessner, U. Impacts of 1.5 versus 2.0 C on cereal yields in the West African Sudan Savanna. Environ. Res. Lett. 2018, 13, 034014. [Google Scholar] [CrossRef]
- Soler, C.M.T.; Maman, N.; Zhang, X.; Mason, S.C.; Hoogenboom, G. Determining optimum planting dates for pearl millet for two contrasting environments using a modelling approach. J. Agric. Sci. 2008, 146, 445–459. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Gaiser, T.; Siebert, S.; Sultan, B.; Ewert, F. Combined impacts of climate and nutrient fertilization on yields of pearl millet in Niger. Eur. J. Agron. 2014, 55, 77–88. [Google Scholar] [CrossRef]
- Singh, P.; Boote, K.; Kadiyala, M.; Nedumaran, S.; Gupta, S.; Srinivas, K.; Bantilan, M. An assessment of yield gains under climate change due to genetic modification of pearl millet. Sci. Total Environ. 2017, 601, 1226–1237. [Google Scholar] [CrossRef]
- Mkonda, M.; He, X. Yields of the major food crops: Implications to food security and policy in Tanzania’s semi-arid agro-ecological zone. Sustainability 2017, 9, 1490. [Google Scholar] [CrossRef]
- Silungwe, F.R.; Graef, F.; Bellingrath-Kimura, S.D.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. The management strategies of pearl millet farmers to cope with seasonal rainfall variability in a semi-arid agroclimate. Agronomy 2019, 9, 400. [Google Scholar] [CrossRef]
- Reinhardt, N. Improvement of innovation testing in a research for development framework based on soil information. Ph.D. Thesis, submitted to the Faculty of Agricultural Sciences, Universität Hohenheim, Hohenheim, Germany, 2018; pp. 70–83. [Google Scholar]
- Monyo, E.; Mgonja, M.; Ngereza, J.; Rohrbach, D. Adoption of improved sorghum and pearl millet varieties in Tanzania. Int. Sorghum Millets Newslett. 2002, 43, 12–14. [Google Scholar]
- Kahimba, F.C.; Mutabazi, K.D.; Tumbo, S.D.; Masuki, K.F.; Mbungu, W.B. Adoption and scaling-up of conservation agriculture in Tanzania: Case of Arusha and Dodoma regions. Nat. Res. 2014, 5, 161–176. [Google Scholar] [CrossRef]
- Mgeni, C.; Müller, K.; Sieber, S. Sunflower value chain enhancements for the rural economy in Tanzania: A village computable general equilibrium-CGE approach. Sustainability 2019, 11, 75. [Google Scholar] [CrossRef]
- Jones, J.W.; He, J.; Boote, K.J.; Wilkens, P.; Porter, C.; Hu, Z. Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques. Methods Introd. Syst. Models Agric. Res. 2011, 365–394. [Google Scholar] [CrossRef]
- Tovihoudji, P.G.; Akponikpè, I.P.; Agbossou, E.K.; Bielders, C.L. Using the DSSAT model to support decision making regarding fertilizer microdosing for maize production in the sub-humid region of Benin. Front. Environ. Sci. 2019, 7, 13. [Google Scholar] [CrossRef]
- Graef, H.; Kiobia, D.; Saidia, P.; Kahimba, F.; Graef, F.; Eichler-Löbermann, B. Combined effects of biochar and fertilizer application on maize production in dependence on the cultivation method in a sub-humid climate. Commun. Soil Sci. Plant Anal. 2018, 49, 2905–2917. [Google Scholar] [CrossRef]
- Saidia, P.S.; Rweyemamu, C.L.; Asch, F.; Semoka, J.M.; Kimaro, A.A.; Germer, J.; Graef, F.; Lagweni, P.; Kahimba, F.; Chilagane, E.A. Effects of nitrogen and phosphorus micro-doses on maize growth and yield in a sub-humid tropical climate. Ann. Biol. Res. 2018, 9, 20–35. [Google Scholar]
- Wallach, D.; Makowski, D.; Jones, J.; Brun, F. Evaluation, analysis, parameterization, and applications. In Working with Dynamic Crop Models, 1st ed.; Academic Press: San Diego, CA, USA, 2014; pp. 345–406. [Google Scholar]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Ong, C.; Monteith, J. Response of pearl millet to light and temperature. Field Crops Res. 1985, 11, 141–160. [Google Scholar] [CrossRef] [Green Version]
- Adnan, A.A.; Jibrin, J.M.; Abdulrahman, B.L.; Shaibu, A.S.; Garba, I.I. CERES–Maize model for determining the optimum planting dates of early maturing maize varieties in Northern Nigeria. Front. Plant Sci. 2017, 8, 1118. [Google Scholar] [CrossRef]
- Lana, M.A.; Eulenstein, F.; Schlindwein, S.; Guevara, E.; Meira, S.; Wurbs, A.; Sieber, S.; Svoboda, N.; Bonatti, M. Regionalization of climate scenarios impacts on maize production and the role of cultivar and planting date as an adaptation strategy. Reg. Environ. Chang. 2016, 16, 1319–1331. [Google Scholar] [CrossRef]
- Cooksey, B. The comprehensive africa agriculture development programme (CAADP) and agricultural policies in Tanzania: Going with or against the grain? In Future Agricultures; Sera: Heinsberg, Germany, 2013. [Google Scholar]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 228. [Google Scholar] [CrossRef]
- Wright, J.P.; Posner, J.L.; Doll, J.D. The effect of tied ridge cultivation on the yield of maize and a maize cowpea relay in the gambia. Exp. Agric. 1991, 27, 269–279. [Google Scholar] [CrossRef]
- Belay, A.; Gebrekidan, H.; Uloro, Y. Effect of tied ridges on grain yield response of Maize (Zea mays L.) to application of crop residue and residual N and P on two soil types at Alemaya, Ethiopia. S. Afr. J. Plant Soil 1998, 15, 123–129. [Google Scholar] [CrossRef]
- Bayu, W.; Rethman, N.F.G.; Hammes, P.S. Effects of tied-ridge, nitrogen fertilizer and cultivar on the yield and nitrogen use efficiency of sorghum in semi-arid Ethiopia. Arch. Agron. Soil Sci. 2012, 58, 547–560. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Change 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Cameron, A.; Derlagen, C.; Pauw, K. Options for Reducing Fertilizer Prices for Smallholder Farmers in Tanzania; FAO: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences; The Royal Society: London, UK, 2007. [Google Scholar] [CrossRef]
Site Name: Idifu, Dodoma, Tanzania Type: Haplic Acrisol Loamic Coordinates (WGS84) EPSG 4326: Long 35°59′10.32″ E, Lat. 6°26′26.88″ S | |||||||
---|---|---|---|---|---|---|---|
Physical Properties | |||||||
Horizon | BD | Depth | Color | EC | pH (H2O) | ||
[kg dm−3] | [cm] | (Munsell) | [µS cm−1] | - | |||
Ap1 | 1.619 | 4 | 10yr 3–3 | 51.2 | 5.935 | ||
Ap2 | 1.650 | 20 | 10yr 4–3 | 61.1 | 5.570 | ||
Bt | 1.589 | 42 | 10yr 5–6 | 37.5 | 4.950 | ||
Bg | 1.616 | >35 | 10yr 5–6 | 39.4 | 4.845 | ||
Chemical Characteristics | |||||||
P Bray | K Bray | Ct | Corg | Humus | Nt | C/N | |
[mg kg−1] | [mg kg−1] | [%] | [%] | [%] | [%] | ||
Ap1 | 24.90 | 63.05 | 0.40 | 0.40 | 0.69 | 0.03 | 15.29 |
Ap2 | 0.31 | 73.02 | 0.31 | 0.31 | 0.53 | 0.03 | 12.02 |
Bt | 0.20 | 27.58 | 0.20 | 0.20 | 0.35 | 0.02 | 12.55 |
Bg | 0.69 | 23.54 | 0.20 | 0.20 | 0.34 | 0.02 | 10.13 |
Exchangeable Cations | |||||||
CEC Pot | CEC Clay | Na+ | K+ | Ca2+ | Mg2+ | BS | |
[mmolc+ kg−1] | [cmolc+ kg−1] | [mmolc+ kg−1] | [mmolc+ kg−1] | [mmolc+ kg−1] | [mmolc+ kg−1] | [%] | |
Ap1 | 22.90 | 14.238 | 0.40 | 3.75 | 5.70 | 1.075 | 47.71 |
Ap2 | 24.75 | 25.808 | 0.90 | 4.20 | 4.30 | 0.760 | 41.05 |
Bt | 55.55 | 21.902 | 1.15 | 2.75 | 3.45 | 0.880 | 14.82 |
Bg | 58.70 | 20.619 | 1.20 | 2.75 | 5.60 | 4.300 | 23.60 |
Textural Characteristics | |||||||
Sand | Silt | Clay | Texture | ||||
[%] | [%] | [%] | Texture | ||||
Ap1 | 87.43 | 6.11 | 5.76 | LS | |||
Ap2 | 88.87 | 5.28 | 4.92 | LS | |||
Bt | 72.50 | 6.97 | 19.98 | SCL | |||
Bg | 68.78 | 6.72 | 22.70 | SCL |
Fertilizer Type/Treatments | NF | MD |
---|---|---|
DAP (kg ha−1) | 0 | 21.7 |
UREA (kg ha−1) | 0 | 24.1 |
Okoa Pearl Millet Cultivar Coefficients Calculated by GLUE Using Field Measurements (Calibration), Followed by Model Validation Outcomes for Anthesis, Physiological Maturity, Tops Weight and Grain Yield | ||||||||
---|---|---|---|---|---|---|---|---|
P1 | P2O | P2R | P5 | G1 | G4 | PHINT | GT | G5 |
271.9 | 11.87 | 126.5 | 251.5 | 1.498 | 1.225 | 43 | 1 | 10 |
Calibration (2016) | Validation (2017) | |||||||
Variable Name | Observed | Simulated | RRMSE (%) | CRM (%) | Observed | Simulated | RRMSE (%) | CRM (%) |
Anthesis day | 71 | 71 | 0.0 | 0.00 | 70 | 68 | 2.0 | 1.45 |
Maturity day | 100 | 101 | 0.8 | −0.60 | 100 | 101 | 1.2 | −0.20 |
Tops weight (kg DW ha−1) | 4198 | 4084 | 7.3 | 2.72 | 4629 | 4582 | 3.5 | 1.02 |
Grain Yield (kg DW ha−1) | 1078 | 1037 | 6.4 | 3.84 | 890 | 851 | 11.8 | 4.54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silungwe, F.R.; Graef, F.; Dorothea Bellingrath-Kimura, S.; Chilagane, E.A.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa. Sustainability 2019, 11, 4330. https://doi.org/10.3390/su11164330
Silungwe FR, Graef F, Dorothea Bellingrath-Kimura S, Chilagane EA, Tumbo SD, Kahimba FC, Lana MA. Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa. Sustainability. 2019; 11(16):4330. https://doi.org/10.3390/su11164330
Chicago/Turabian StyleSilungwe, Festo Richard, Frieder Graef, Sonoko Dorothea Bellingrath-Kimura, Emmanuel A Chilagane, Siza Donald Tumbo, Fredrick Cassian Kahimba, and Marcos Alberto Lana. 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa" Sustainability 11, no. 16: 4330. https://doi.org/10.3390/su11164330
APA StyleSilungwe, F. R., Graef, F., Dorothea Bellingrath-Kimura, S., Chilagane, E. A., Tumbo, S. D., Kahimba, F. C., & Lana, M. A. (2019). Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa. Sustainability, 11(16), 4330. https://doi.org/10.3390/su11164330