Cryosphere Services and Human Well-Being
Abstract
:1. Introduction
2. Cryosphere Services Classification System
2.1. The Formation of Cryosphere Services and Their Links to Human Well-Being
2.2. Principles of Cryosphere Services Classification
2.3. Results of Classification
3. Scientific Facts of Cryosphere Services
3.1. Provisioning Services
3.1.1. Freshwater Provisioning Services
3.1.2. Natural Cold Energy Provisioning Services
3.1.3. Ice and Snow Material Provisioning Services
3.2. Regulating Services
3.2.1. Climate Regulating Services
3.2.2. Runoff Regulating Services
3.2.3. Ecological Regulating Services
3.2.4. Erosion Regulating Services
3.3. Cultural Services
3.3.1. Aesthetic Services
3.3.2. Inspirational Services
3.3.3. Religious and Spiritual Services
3.3.4. Knowledge and Educational Services
3.3.5. Tourism and Recreational Services
3.3.6. Cultural Diversity Services
3.4. Bearing Services
3.4.1. Special Passage Services
3.4.2. Facility-Bearing Services
3.5. Supporting Services
3.5.1. Habitat Supporting Services
3.5.2. Resource Generation Supporting Services
Natural Gas Hydrates
Wind Energy
3.5.3. Geopolitics and Military Supporting Services
4. Discussion
4.1. Spatio-Temporal Scales of Cryosphere Services
4.2. Linkages between Cryosphere Services and Human Well-Being
4.3. Climate-Dependence of Cryosphere Services
5. Conclusions and Prospects
5.1. Conclusion
5.2. Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anisimov, O. The Changing Cryosphere: Impacts of Global Warming in the High Latitudes. In Challenges of a Changing Earth; Springer: Berlin/Heidelberg, Germany, 2002; pp. 113–115. [Google Scholar]
- Huybrechts, P. Cryosphere. In Encyclopedia of Paleoclimatology and Ancient Environments; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- French, H.M.; Slaymaker, O. Changing Cold Environments: A Canadian Perspective; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis; The Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Qin, D.H.; Ding, Y.J.; Xiao, C.D.; Kang, S.C.; Ren, J.W.; Yang, J.P.; Zhang, S.Q. Cryospheric science: Research framework and disciplinary system. Natl. Sci. Rev. 2018, 5, 255–268. [Google Scholar] [CrossRef]
- Xiao, C.D.; Wang, S.J.; Qin, D.H. A preliminary study of cryosphere service function and value evaluation. Adv. Clim. Chang. Res. 2015, 6, 181–187. [Google Scholar] [CrossRef]
- Mukherji, A.; Sinisalo, A.; Nüsser, M.; Garrard, R.; Eriksson, M. Contributions of the cryosphere to mountain communities in the Hindu Kush Himalaya: A review. Reg. Environ. Chang. 2019, 19, 1311–1326. [Google Scholar] [CrossRef]
- Demenocal, P.B. Climate and human evolution. Science 2011, 331, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.H.; Dong, G.H.; Zhang, D.J.; Liu, X.Y.; Jia, X.; An, C.B.; Ma, M.M.; Xie, Y.M.; Barton, L.; Ren, X.Y.; et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science 2015, 347, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Tierney, J.E.; Demenocal, P.B.; Zander, P.D. A climatic context for the out-of-Africa migration. Geology 2017, 45, 1023–1026. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, R.; Akey, J.M.; Jakobsson, M.; Pritchard, J.K.; Tishkoff, S.; Willerslev, E. Tracing the peopling of the world through genomics. Nature 2017, 541, 302–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.J.; Xiao, C.D. Challenges in the study of cryospheric changes and their impacts. Adv. Earth Sci. 2013, 28, 1067–1076. (In Chinese) [Google Scholar]
- Garrard, R.; Kohler, T.; Wiesmann, U.; Price, M.F.; Byers, A.C.; Sherp, A.R. Depicting community perspectives: Repeat photography and participatory research as tools for assessing environmental services in Sagarmatha National Park, Nepal. eco.mont 2012, 4, 21–31. [Google Scholar] [CrossRef]
- Palomo, I. Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review. Mt. Res. Dev. 2017, 37, 179–187. [Google Scholar] [CrossRef] [Green Version]
- O’Garra, T. Economic value of ecosystem services, minerals and oil in a melting Arctic: A preliminary assessment. Ecosyst. Serv. 2017, 24, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, O.; Kokorev, V.; Zhiltcova, Y. Arctic Ecosystems and their Services Under Changing Climate: Predictive-Modeling Assessment. Geogr. Rev. 2016, 107, 108–124. [Google Scholar] [CrossRef]
- Vincent, W.F.; Callaghan, T.V.; Dahl-Jensen, D.; Johansson, M.; Kovacs, K.M.; Michel, C.; Prowse, T.; Reist, J.; Sharp, M.J. Ecological Implications of Changes in the Arctic Cryosphere. Ambio 2011, 40, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Eicken, H.; Lovecraft, A.L.; Druckenmiller, M.L. Sea-Ice System Services: A Framework to Help Identify and Meet Information Needs Relevant for Arctic Observing Networks. Arctic 2009, 62, 119–136. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- The Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005; Volume 1. [Google Scholar]
- Qin, D.; Wang, X.; Su, B.; Xiao, C. Cascading risks to the deterioration in cryospheric functions and services. Chin. Sci. Bull. 2019, 64, 1975–1984. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, S.W.; Zhang, J.L. A new look at roles of the cryosphere in sustainable development. Adv. Clim. Chang. Res. 2019, 10, 124–131. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhou, L.Y. Integrated impacts of climate change on glacier tourism. Adv. Clim. Chang. Res. 2019, 10, 71–79. [Google Scholar] [CrossRef]
- Lin, H.X.; Huang, J.C.; Fang, C.L.; Qi, X.X.; Chen, Y.Q. A preliminary study on the theory and method of comprehensive regionalization of cryospheric services. Adv. Clim. Chang. Res. 2019, 10, 115–123. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, X.J.; Liu, S.W.; Xiao, C.D.; Wang, X. Valuating service loss of snow cover in Irtysh River Basin. Adv. Clim. Chang. Res. 2019, 10, 109–114. [Google Scholar] [CrossRef]
- Xu, X.M.; Wu, Q.B. Impact of climate change on allowable bearing capacity on the Qinghai-Tibetan Plateau. Adv. Clim. Chang. Res. 2019, 10, 99–108. [Google Scholar] [CrossRef]
- Yi, S.H.; Xiang, B.; Meng, B.P.; Wu, X.D.; Ding, Y.J. Modeling the carbon dynamics of alpine grassland in the Qinghai-Tibetan Plateau under scenarios of 1.5 and 2 °C global warming. Adv. Clim. Chang. Res. 2019, 10, 80–91. [Google Scholar] [CrossRef]
- Deng, J.; Che, T.; Xiao, C.; Wang, S.; Dai, L.; Meerzhan, A. Suitability Analysis of Ski Areas in China: An Integrated Study Based on Natural and Socioeconomic Conditions. Cryosphere Discuss 2019. [Google Scholar] [CrossRef]
- Xu, L.X.; Yang, D.W.; Wu, T.H.; Yi, S.H.; Fang, Y.P.; Xiao, C.D.; Lin, H.X.; Huang, J.C.; Simbi, C.H. An ecosystem services zoning framework for the permafrost regions of China. Adv. Clim. Chang. Res. 2019, 10, 92–98. [Google Scholar] [CrossRef]
- An, H.M.; Xiao, C.D.; Ding, M.H. The Spatial Pattern of Ski Areas and Its Driving Factors in China: A Strategy for Healthy Development of the Ski Industry. Sustainability 2019, 11, 3138. [Google Scholar] [CrossRef]
- Sarvimäki, A. Well-being as being well—A Heideggerian look at well-being. Int. J. Qual. Stud. Health Well-Being 2006, 1, 4–10. [Google Scholar] [CrossRef]
- Costanza, R.; Groot, R.D.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.C.; Gao, Y.; Wang, Y. Ecosystem services and hierarchic human well-being: Concepts and service classification framework. Acta Geogr. Sin. 2013, 68, 1038–1047. (In Chinese) [Google Scholar]
- Wallace, K.J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 2007, 139, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Li, X.; Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Christopherson, R.W. Geosystems: An Introduction to Physical Geography, 7th ed.; Pearson Education: London, UK, 2012. [Google Scholar]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.H. An Introduction to Cryosphere Science; China Science Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Sturm, M.; Goldstein, M.A.; Parr, C. Water and life from snow: A trillion dollar science question. Water Resour. Res. 2017, 53, 3534–3544. [Google Scholar] [CrossRef]
- Yao, T.D.; Chen, F.H.; Cui, P.; Ma, Y.M.; Xu, B.Q.; Zhu, L.P.; Zhang, F.; Wang, W.C.; Ai, L.; Yang, X. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 2017, 32, 924–931. (In Chinese) [Google Scholar]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Ding, Y.J.; Qin, D.H. Cryosphere change and global warming: Impact and challenges in China. China Basic Sci. 2009, 11, 4–10. [Google Scholar]
- Nüsser, M.; Schmidt, S.; Dame, J. Irrigation and Development in the Upper Indus Basin: Characteristics and Recent Changes of a Socio-hydrological System in Central Ladakh, India. Mt. Res. Dev. 2012, 32, 51–61. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer Nature AG: Cham, Switzerland, 2019. [Google Scholar]
- Molden, D.J.; Vaidya, R.A.; Shrestha, A.B.; Rasul, G.; Shrestha, M.S. Water infrastructure for the Hindu Kush Himalayas. Int. J. Water Resour. Dev. 2014, 30, 60–77. [Google Scholar] [CrossRef]
- Vanham, D. The Alps under climate change: Implications for water management in Europe. J. Water Clim. Chang. 2012, 3, 197–206. [Google Scholar] [CrossRef]
- Paul, F.; Frey, H.; Le Bris, R. A new glacier inventory for the European Alps from Landsat TM scenes of 2003: Challenges and results. Ann. Glaciol. 2011, 52, 144–152. [Google Scholar] [CrossRef]
- D’Agata, C.; Bocchiola, D.; Soncini, A.; Maragno, D.; Smiraglia, C.; Diolaiuti, G.A. Recent area and volume loss of Alpine glaciers in the Adda River of Italy and their contribution to hydropower production. Cold Reg. Sci. Technol. 2018, 148, 172–184. [Google Scholar] [CrossRef]
- Engelhardt, M.; Schuler, T.; Andreassen, L.M. Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway. Hydrol. Earth Syst. Sci. 2014, 18, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G.M.; Jacobsen, D.; Hannah, D.M.; et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolin, A.W.; Phillippe, J.; Jefferson, A.; Lewis, S.L. Present-day and future contributions of glacier runoff to summertime flows in a Pacific Northwest watershed: Implications for water resources. Water Resour. Res. 2010, 46, 65–74. [Google Scholar] [CrossRef]
- Carey, M.; Molden, O.C.; Rasmussen, M.B.; Jackson, M.; Nolin, A.W.; Mark, B.G. Impacts of glacier recession and declining meltwater on mountain societies. Ann. Assoc. Am. Geogr. 2017, 107, 350–359. [Google Scholar] [CrossRef]
- Bliss, A.; Hock, R.; Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 2014, 119, 717–730. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Vergara, W.; Deeb, A.; Valencia, A.; Bradley, R.; Francou, B.; Zarzar, A.; Grünwaldt, A.; Haeussling, S.M. Economic impacts of rapid glacier retreat in the Andes. Eos Trans. Am. Geophys. Union 2013, 88, 261–264. [Google Scholar] [CrossRef]
- Hovelsrud, G.K.; Poppel, B.; Oort, B.V.; Reist, J.D. Arctic societies, cultures, and peoples in a changing cryosphere. Ambio 2011, 40, 100–110. [Google Scholar] [CrossRef]
- Li, L.T.; Liu, C.Y.; Gu, W.; Xu, Y.J.; Tao, J. Research progress and problems in desalination and utilization of sea ice in Bohai Sea. Mar. Sci. Bull. 2012, 31, 105–112. (In Chinese) [Google Scholar]
- Gaudard, L.; Gilli, M.; Romerio, F. Climate Change Impacts on Hydropower Management. Water Resour. Manag. 2013, 27, 5143–5156. [Google Scholar] [CrossRef] [Green Version]
- Cherry, J.E.; Knapp, C.; Trainor, S.; Ray, A.J.; Tedesche, M.; Walker, S. Planning for climate change impacts on hydropower in the Far North. Hydrol. Earth Syst. Sci. 2017, 21, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.C. China’s ancient conventions of storing ice and ice use. Sichuan Univ. Arts Sci. J. 2006, 16, 78–80. (In Chinese) [Google Scholar]
- Fowler, C. The Svalbard Seed Vault and Crop Security. Bioscience 2008, 58, 190–191. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, S.; Zhao, L.; Li, Z.; Kang, S. Global warming weakening the inherent stability of glaciers and permafrost. Sci. Bull. 2019, 64, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Huangpu, S.J.; Li, X. Research on the influence of shape and material on heat preservation of energy-efficient buildings—Take the theory of heat preservation of Igloo for example. Archit. Cult. 2015, 11, 139–140. (In Chinese) [Google Scholar]
- Stouffer, R.J.; Seidov, D.; Haupt, B.J. Climate Response to External Sources of Freshwater: North Atlantic versus the Southern Ocean. J. Clim. 2007, 20, 436–448. [Google Scholar] [CrossRef] [Green Version]
- Palter, J.B. The Role of the Gulf Stream in European Climate. Annu. Rev. Mar. Sci. 2015, 7, 113–137. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Box, J.E.; Feulner, G.; Mann, M.E.; Robinson, A.; Rutherford, S.; Schaffernicht, E.J. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 2017, 5, 475–480. [Google Scholar] [CrossRef]
- Nummelin, A.; Ilicak, M.; Li, C.; Smedsrud, L.H. Consequences of future increased arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Ocean. 2015, 121, 617–637. [Google Scholar] [CrossRef]
- Euskirchen, E.S.; Goodstein, E.S.; Huntington, H.P. An estimated cost of lost climate regulation services caused by thawing of the Arctic cryosphere. Ecol. Appl. 2013, 23, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Kaser, G.; Großhauser, M.; Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaner, N.; Voisin, N.; Nijssen, B.; Lettenmaier, D.P. The contribution of glacier melt to streamflow. Environ. Res. Lett. 2012, 7, 034029. [Google Scholar] [CrossRef]
- Wang, J.Y. Study of Mechanism and Process of Water Transmission on Water Resource Conservation Forests Ecosystem in Qianlian Mountains. Ph.D. Thesis, Central South University of Forestry and Technology, Changsha, China, 2006. (In Chinese). [Google Scholar]
- Kaplan, J.O.; New, M. Arctic climate change with a 2 ℃ global warming: Timing, climate patterns and vegetation change. Clim. Chang. 2006, 79, 213–241. [Google Scholar] [CrossRef]
- Lemay, M.; Allard, M.; Vincent, W.F. Arctic permafrost landscapes in transition: Towards an integrated Earth system approach. Arct. Sci. 2017, 3, 39–64. [Google Scholar]
- Walker, D.A.; Halfpenny, J.C.; Walker, M.D.; Wessman, C.A. Long-term Studies of Snow-Vegetation Interactions: A hierarchic geographic information system helps examine links between species distributions and regional patterns of greenness. BioScience 1993, 43, 287–301. [Google Scholar] [CrossRef]
- Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Normand, S.; Rüger, N.; Beck, P.S.A.; Blach-Overgaard, A.; Blok, D.; Cornelissen, J.H.C.; Forbes, B.C.; et al. Plant functional trait change across a warming tundra biome. Nature 2018, 562, 57–62. [Google Scholar] [CrossRef]
- Ford, J.D.; McDowell, G.; Pearce, T. The adaptation challenge in the Arctic. Nat. Clim. Chang. 2015, 5, 1046–1053. [Google Scholar] [CrossRef]
- Gibbs, A.E.; Richmond, B.M. National Assessment of Shoreline Change: Historical Shoreline Change along the North Coast of Alaska, U.S.-Canadian Border to Icy Cape; U.S. Geological Survey: Reston, VA, USA, 2015.
- The Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Bender, M.; Sowers, T.; Brook, E. Gases in ice cores. Proc. Natl. Acad. Sci. USA 1997, 94, 8343–8349. [Google Scholar] [CrossRef] [Green Version]
- Bernbaum, E. Sacred Mountains: Themes and Teachings. Mt. Res. Dev. 2006, 26, 304–309. [Google Scholar] [CrossRef]
- Yan, H.X. Understanding the pilgrimage phenomenon of Tibetan religious mountains in the view of ecological anthropology. Guizhou Ethn. Stud. 2014, 35, 83–90. (In Chinese) [Google Scholar]
- Price, M. Darkening peaks: Glacier retreat, science and society. Clim. Chang. 2009, 94, 517–520. [Google Scholar] [CrossRef]
- Gagné, K.; Rasmussen, M.B.; Orlove, B. Glaciers and society: Attributions, perceptions, and valuations. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 793–808. [Google Scholar] [CrossRef]
- Allison, E.A. The spiritual significance of glaciers in an age of climate change. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 493–508. [Google Scholar] [CrossRef]
- Arctic Issues Research Group. The Arctic Issues Research; China Ocean Press: Beijing, China, 2011. [Google Scholar]
- Zhao, M.Y.; Dong, S.C.; Su, T.W.; Li, Y.; Zhu, S.Q.; Wu, M. Spatial-temporal pattern and development tendency of the world ski tourism industry. China Winter Sports 2016, 38, 58–64. (In Chinese) [Google Scholar]
- Kaján, E. Arctic Tourism and Sustainable Adaptation: Community Perspectives to Vulnerability and Climate Change. Scand. J. Hosp. Tour. 2014, 14, 60–79. [Google Scholar] [CrossRef]
- Dawson, J.; Johnston, M.; Stewart, E. Governance of Arctic expedition cruise ships in a time of rapid environmental and economic change. Ocean Coast. Manag. 2014, 89, 88–99. [Google Scholar] [CrossRef]
- Larsen, J.N.; Fondahl, G. Arctic Human Development Report; Nordic Council of Ministers: Copenhagen, Denmark, 2014. [Google Scholar]
- Bokhorst, S.; Pedersen, S.H.; Brucker, L.; Anisimov, O.; Bjerke, J.W.; Brown, R.D.; Ehrich, D.; Essery, R.L.H.; Heilig, A.; Ingvander, S.; et al. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 2016, 45, 516–537. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eicken, H.; Mahoney, A.R.; Meyer, F.J.; Betcher, S. Assessing Sea Ice Trafficability in a Changing Arctic. Arctic 2018, 71, 59–75. [Google Scholar] [CrossRef]
- ACIA. Arctic Climate Impact Assessment; Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Yu, Q.H.; Fan, K.; Qian, J.; Guo, L.; You, Y.J. Key problems study for construction of expressway in permafrost regions. Sci. China Technol. Sci. 2014, 44, 425–432. (In Chinese) [Google Scholar]
- Wu, Q.B.; Cheng, G.D. Research summarization on natural gas hydrate in permafrost regions. Adv. Earth Sci. 2008, 23, 111–119. (In Chinese) [Google Scholar]
- Jin, H.; Hao, J.; Chang, X.; Zhang, J.; Yu, Q.; Qi, J.; Lü, L.; Wang, S. Zonation and assessment of frozen-ground conditions for engineering geology along the China–Russia crude oil pipeline route from Mo’he to Daqing, Northeastern China. Cold Reg. Sci. Technol. 2010, 64, 213–225. [Google Scholar] [CrossRef]
- Bibi, S.; Wang, L.; Li, X.; Zhou, J.; Chen, D.; Yao, T. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Clim. 2018, 38, e1–e17. [Google Scholar] [CrossRef]
- Crépin, A.-S.; Karcher, M.; Gascard, J.-C. Arctic Climate Change, Economy and Society (ACCESS): Integrated perspectives. Ambio 2017, 46, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Makogon, Y.; Holditch, S.; Makogon, T. Natural gas-hydrates—A potential energy source for the 21st Century. J. Pet. Sci. Eng. 2007, 56, 14–31. [Google Scholar] [CrossRef]
- Zhang, H.T.; Zhu, Y.H. Survey and research on gas hydrate in permafrost region of China. Geol. Bull. China 2011, 30, 1809–1815. (In Chinese) [Google Scholar]
- Wang, L.; Deng, X.; Sha, Z.; Wu, L.; Yang, Y. Research on heat flow distribution and gas hydrate economic potential in Antarctic margins. Chin. J. Polar Res. 2013, 25, 241–248. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, Y.H.; Zhang, Y.Q.; Wen, H.J.; Lu, Z.Q.; Wang, P.K. Gas hydrates in the Qilian Mountain permafrost and their basic characteristics. Acta Geosci. Sin. 2010, 31, 7–16. (In Chinese) [Google Scholar]
- Ruppel, C.D.; Kessler, J.D. The interaction of climate change and methane hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl. Acad. Sci. USA 2011, 108, 8167–8171. [Google Scholar] [CrossRef] [Green Version]
- Barthelmie, R.J.; Pryor, S.C. Potential contribution of wind energy to climate change mitigation. Nat. Clim. Chang. 2014, 4, 684–688. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, L.L.; Xin, Y. The formation mechanism of wind energy resources in China. Wind Energy 2012, 3, 60–64. (In Chinese) [Google Scholar]
- Nie, J.; Pullen, A.; Garzione, C.N.; Peng, W.; Wang, Z. Pre-quaternary decoupling between Asian acidification and high dust accumulation rates. Sci. Adv. 2018, 4, eaao6977. [Google Scholar] [CrossRef]
- Karnauskas, K.B.; Lundquist, J.K.; Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 2018, 11, 38–43. [Google Scholar] [CrossRef]
- Molloy, A.E. Commentary: Arctic Science and the Nuclear Submarine. Arctic 1962, 15, 87–91. [Google Scholar] [CrossRef]
- Baghel, R.; Nusser, M. Securing the heights: The vertical dimension of the Siachen conflict between India and Pakistan in the Eastern Karakoram. Political-Geogr. 2015, 48, 24–36. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Special Report on Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Su, B.; Gao, X.J.; Xiao, C.D. Interpretation of IPCC SR1.5 on cryosphere change and its impacts. Clim. Chang. Res. 2019, 15, 395–404. (In Chinese) [Google Scholar]
Cryosphere Services | Functional Basis | Human Benefits (Examples) |
---|---|---|
1 Provisioning services | ||
1.1 Freshwater provisioning services | Freshwater storage (natural “reservoirs”) and supply | Uses in agricultural irrigation, public systems, industrial activities, livestock husbandry, ecosystem integrity, etc. |
1.2 Natural “cold energy” provisioning services | Huge natural reserve and source of cold substances | Historically used for cooling houses, making cold drinks and food, refrigerating food, treating ailments, etc. Current uses in thermal difference power plants, freezing plant seed banks, etc. |
1.3 Ice and snow material provisioning services | Physical properties (solidity, transparency, etc.) | Building igloos, creating fire, etc. |
2 Regulating services | ||
2.1 Climate-regulating services | Weather and climate regulation | Creation of pleasant climatic regimes for human habitation |
2.2 Runoff-regulating services | Regulation of water flows | Reduction of water resources’ management costs |
2.3 Ecological regulating services | Water conservation, and water and thermal regulation | Improvements in land productivity in frozen ground |
2.4 Erosion-regulating services | Terrestrial surface-erosion and suppression of the erosion (surface protection) | Provision of material and nutrients for formation of environments in lower reaches of mountains, protection of coastal facilities and property, etc. |
3 Cultural services | ||
3.1 Aesthetic services | Attractive landscape features | Aesthetic value and pleasure, alleviation of stress, etc. |
3.2 Inspirational services | Distinctive natural features with inspirational value | Artistic creations (such as literature, photographs and paintings) and technological innovations etc. |
3.3 Religious and spiritual services | Distinctive natural features with religious and spiritual value | Sense of belonging and cultural identity, emotional and spiritual sustenance |
3.4 Knowledge and educational services | Distinctive natural features with scientific and educational value | Scientific research, popular science education, etc. |
3.5 Tourism and recreational services | Distinctive landscapes with recreational uses | Sightseeing, skiing and skating, adventure tourism, etc. |
3.6 Cultural diversity services | Distinctive landscapes supporting cultural diversity | Enrichment of human cultural diversity |
4 Bearing services | ||
4.1 Passage services | Formation of “land bridges” after freezing | Early human migration across continents, passage of people, livestock and vehicles in cold regions, etc. |
4.2 Facility-bearing services | Load-bearing capacity of solid ice | Infrastructural installations such as residential buildings, drilling rigs, research stations, oil pipelines and roads in cold regions |
5 Supporting services | ||
5.1 Habitat-supporting services | Dominant environmental factor for endemic biota of cold regions | Provision of biological resources such as foods, medicinal materials, pasture, aquatic products and germplasm resources |
5.2 Resource generation-supporting services | Important environmental conditions for the formation of distinctive natural resources | Provision of natural resources such as natural gas hydrate and wind energy |
5.3 Geopolitics and military-supporting services | Distinctive physical properties create concealed environments, etc. | Provision of environmental defenses for specific political and military purposes |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, B.; Xiao, C.; Chen, D.; Qin, D.; Ding, Y. Cryosphere Services and Human Well-Being. Sustainability 2019, 11, 4365. https://doi.org/10.3390/su11164365
Su B, Xiao C, Chen D, Qin D, Ding Y. Cryosphere Services and Human Well-Being. Sustainability. 2019; 11(16):4365. https://doi.org/10.3390/su11164365
Chicago/Turabian StyleSu, Bo, Cunde Xiao, Deliang Chen, Dahe Qin, and Yongjian Ding. 2019. "Cryosphere Services and Human Well-Being" Sustainability 11, no. 16: 4365. https://doi.org/10.3390/su11164365
APA StyleSu, B., Xiao, C., Chen, D., Qin, D., & Ding, Y. (2019). Cryosphere Services and Human Well-Being. Sustainability, 11(16), 4365. https://doi.org/10.3390/su11164365