Fertilizer Use in China: The Role of Agricultural Support Policies
Abstract
:1. Introduction
2. Literature Review
3. Research Framework and Hypotheses
3.1. Hypotheses for Stage One
3.2. Hypotheses for Stage Two
4. Empirical Tests and Results
4.1. Data and Empirical Models
4.1.1. Modeling the Scale Effect of Agricultural Support
4.1.2. Modeling the Structural Effect of Agricultural Support
4.1.3. Modeling the Technological Effect of Agricultural Support
4.2. Influence of Agricultural Support Policies on Farmers’ Decision Making
4.2.1. The Scale Effect of Agriculture Support
4.2.2. The Structural Effect of Agriculture Support
4.2.3. The Technological Effect of Agriculture Support
4.3. Impacts of Farmers’ Production Decisions on Fertilizer Use
5. Conclusions and Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Wen, T.J. Sannong wenti: shijimo de fansi (End-of-century reflections on sannong wenti). Dushu (Readings) 1999, 12, 3–11. [Google Scholar]
- Chinese Communist Party (CCP) Central Committee and the State Council. 2015. Available online: http://www.xinhuanet.com/house/sjz/2015-08-25/c_1116358458.htm (accessed on 1 December 2018).
- Wossink, G.A.A.; Van Kooten, G.C.; Peters, G.H. The Economics of Agro-Chemicals: An. International Overview of Use Patterns, Technical and Institutional Determinants, Policies and Perspectives; Routledge: Abingdon, UK, 2018. [Google Scholar]
- Rasul, G.; Thapa, G.B. Sustainability analysis of ecological and conventional agricultural systems in Bangladesh. World Dev. 2003, 31, 1721–1741. [Google Scholar] [CrossRef]
- Staley, Z.R.; Rohr, J.R.; Senkbeil, J.K.; Harwood, V.J. Agrochemicals Indirectly Increase Survival of E. coli O157: H7 and Indicator Bacteria by Reducing Ecosystem Services. Ecol. Appl. 2014, 24, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. World Development Indicators; The World Bank: Washington, DC, USA, 2017; Available online: http://data.worldbank.org/data-catalog/world-development-indicators (accessed on 30 July 2018).
- FAO (Food and Agriculture Organization of the United Nations). FAOSTAT. 2017. Available online: http://www.fao.org/faostat/en/#data (accessed on 30 July 2018).
- MOA (Ministry of Agriculture). Use Efficiency of Fertilizers and Pesticides Saw Steady Improvement. 2017. Available online: http://jiuban.moa.gov.cn/zwllm/zwdt/201712/t20171221_5985009.htm (accessed on 2 August 2018).
- MEP (Ministry of Environmental Protection). The First National Pollution Source Census Bulletin. 2010. Available online: http://www.stats.gov.cn/tjgb/qttjgb/qgqttjgb/t20100211_402621161.htm (accessed on 2 August 2018).
- Veeck, G.; Shui, W. China’s Quiet Agricultural Revolution: Policy and Programs of the New Millennium. Eurasian Geogr. Econ. 2011, 52, 242–263. [Google Scholar] [CrossRef]
- Sumner, D.A. American Farms Keep Growing: Size, Productivity, and Policy. J. Econ. Perspect. 2014, 28, 147–166. [Google Scholar] [CrossRef] [Green Version]
- Wegren, S.K.; Frode, N.; Elvestad, C. The Impact of Russian Food Security Policy on the Performance of the Food System. Eurasian Geogr. Econ. 2016, 57, 1–29. [Google Scholar] [CrossRef]
- Sckokai, P.; Moro, D. Modeling the Reforms of the Common Agricultural Policy for Arable Crops under Uncertainty. Am. J. Agric. Econ. 2006, 88, 43–56. [Google Scholar] [CrossRef]
- Yi, F.J.; Sun, D.Q.; Zhou, E.H. Grain Subsidy, Liquidity Constraints and Food Security Impact of the Grain Subsidy Program on the Grain-Sown Areas in China. Food Policy 2015, 50, 114–124. [Google Scholar] [CrossRef]
- Antón, J.; Chantal, L.M. Do Counter-cyclical Payments in the 2002 US Farm Act Create Incentives to Produce? Agric. Econ. 2004, 31, 277–284. [Google Scholar] [CrossRef]
- Kirwan, B.E.; Roberts, M.J. Who Really Benefits from Agricultural Subsidies? Evidence from Field-Level Data. Am. J. Agric. Econ. 2016, 98, 1095–1113. [Google Scholar] [CrossRef]
- Mayrand, K.; Marc, D.; Ortega, G.A.; Marrón, L.F.G. The Economic and Environmental Impacts of Agricultural Subsidies: A Look at Mexico and Other OECD Countries; Unisféra International Centre: Montreal, QC, Canada, 2013. [Google Scholar]
- Mayrand, K.; Dionne, S.; Paquin, M.; Pageot-LeBel, I. The Economic and Environmental Impacts of Agricultural Subsidies: An Assessment of the 2002 US Farm Bill & Doha Round; Unisféra International Centre: Montreal, QC, Canada, 2013. [Google Scholar]
- Lewandrowski, J.; Tobey, J.; Cook, Z. The Interface between Agricultural Assistance and the Environment: Chemical Fertilizer Consumption and Area Expansion. Land Econ. 1997, 73, 404–427. [Google Scholar] [CrossRef]
- Lubowski, R.N.; Bucholtz, S.; Claassen, R.; Roberts, M.J.; Cooper, J.C.; Gueorguieva, A.; Johansson, R.C. Environmental Effects of Agricultural Land-use Change: The role of economics and policy. Econ. Res. Rep. 2006, 25, 1–75. [Google Scholar]
- OECD (Organization for Economic Co-Operation and Development). Improving the Environmental Performance of Agriculture: Policy Options and Market. Approaches; Organization for Economic Cooperation and Development: Paris, France, 2001. [Google Scholar]
- Rude, J.; Eagle, A.; Boxall, P. Agricultural Support Policy in Canada: What Are the Environmental Consequences? Environ. Rev. 2015, 24, 13–24. [Google Scholar]
- Runge, C.F. Environmental Effects of Trade in the Agricultural Sector: A Case Study. Working Paper. 1992. Available online: https://ageconsearch.umn.edu/record/14449/ (accessed on 1 May 2019).
- Adams, G.; Patrick, W.; Brian, W.; Robert, E.Y. Do “Decoupled” Payments Affect, U.S. Crop Area? Preliminary Evidence from 1997–2000. Am. J. Agric. Econ. 2001, 83, 1190–1195. [Google Scholar] [CrossRef]
- Anderson, J.D.; Parkhurst, G.M. Economic Comparison of Commodity and Conservation Program Benefits: An Example from the Mississippi Delta. J. Agric. Appl. Econ. 2004, 36, 425–434. [Google Scholar] [CrossRef]
- O’Donoghue, E.J.; Whitaker, J.B. Do Direct Payments Distort Producers’ Decisions? An Examination of the Farm Security and Rural Investment Act of 2002. Appl. Econ. Perspect. Policy 2010, 32, 170–193. [Google Scholar] [CrossRef]
- Gardner, B.; Hardie, L.; Parks, P.J. United States Farm Commodity Programs and Land use. Am. J. Agric. Econ. 2010, 92, 803–820. [Google Scholar] [CrossRef]
- Faber, S.; Rundquist, S.; Male, T. Plowed under: How Crop Subsidies Contribute to Massive Habitat Losses. Environmental Working Group Report. 2012. Available online: https://defenders.org/sites/default/files/publications/plowed-under-how-crop-subsidies-contribute-to-massive-habitat-loss.pdf (accessed on 1 March 2019).
- Chen, F.; Qing, Q.F.; Gao, T.M. Agricultural Policies, Food Production and Food Production adjustment Ability. Econ. Res. J. 2010, 11, 101–114. [Google Scholar]
- Abler, D. Multifunctionality, Agricultural Policy, and Environmental Policy. Agric. Res. Econ. Rev. 2004, 33, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Wang, Y.; Ridoutt, B.G.; Lal, R.; Wang, D.; Wu, W.; Wang, L.; Zhao, G. Agricultural Subsidies Assessment of Cropping System From Environmental and Economic Perspectives in North China Based on LCA. Ecol. Indic. 2019, 96, 351–360. [Google Scholar] [CrossRef]
- Liu, Q.P. Regional Difference and Environmental Risk Analysis of Chemical Fertilizer Input in China. Sci. Agric. Sin. 2014, 47, 3596–3605. [Google Scholar]
- Harold, C.; Runge, C.F. GATT and the Environment: Policy Research Needs. Am. J. Agric. Econ. 1993, 75, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Ervin, D.E. Agriculture, Trade and the Environment: Anticipating the Policy Challenges; Organization for Economic Co-Operation and Development: Paris, France, 1997. [Google Scholar]
- Taheripour, F.; Khanna, M.; Nelson, H.C. Welfare Impacts of Alternative Public Policies for Agricultural Pollution Control in An Open Economy: A General Equilibrium Framework. Am. J. Agric. Econ. 2010, 90, 701–718. [Google Scholar] [CrossRef]
- Mariyono, J.; Kuntariningsih, A.; Dewi, H.A.; Latifah, E. Pathway Analysis of Vegetable Farming Commercialization. Econ. J. Emerg. Mark. 2017, 9, 115–124. [Google Scholar] [CrossRef]
- Mussema, R.; Kassa, B.; Alemu, D.; Shahidur, R. Determinants of crop diversification in Ethiopia: Evidence from Oromia region. Ethiop. J. Agric. Sci. 2015, 25, 65–76. [Google Scholar]
- Couzens, E.; Paterson, A.; Riley, S.; Fristikawati, Y. Protecting Forest and Marine Biodiversity: The Role of Law; Edward Elgar Publishing: Northampton, UK, 2017. [Google Scholar]
- Koundouri, P.; Laukkanen, M.; Myyrä, S.; Nauges, C. The Effects of EU Agricultural Policy Changes on Farmers’ Risk Attitudes. Eur. Rev. Agric. Econ. 2009, 36, 53–77. [Google Scholar] [CrossRef]
- Liebman, M.Z.; Schulte-Moore, L.A. Enhancing Agroecosystem Performance and Resilience through Increased Diversification of Landscapes and Cropping systems. Elementa (Wash DC) 2015, 3, 41. [Google Scholar] [CrossRef]
- Goodwin, B.K.; Mishra, A.K. Are “Decoupled” Farm Program Payments Really Decoupled? An Empirical Evaluation. Am. J. Agric. Econ. 2006, 88, 73–89. [Google Scholar] [CrossRef]
- Demirdöğen, A.; Olhan, E.; Chavas, P. Food vs. Fiber: An Analysis of Agricultural Support Policy in Turkey. Food Policy 2016, 61, 1–8. [Google Scholar] [CrossRef]
- Houck, J.P.; Ryan, M.E. Supply analysis for corn in the United States: the impact of changing government programs. Am. J. Agric. Econ. 1972, 54, 184–191. [Google Scholar] [CrossRef]
- Coleman, J.A.; Shaik, S. Time-Varying Estimation of Crop Insurance Program in Altering North Dakota Farm Economic Structure. In Proceedings of the Agricultural & Applied Economics Association 2009 AAEA & ACCI Joint Annual Meeting, Milwaukee, WI, USA, 26–29 July 2009. [Google Scholar]
- Primdahl, J.; Peco, B.; Schramek, J.; Anderse, E.; Oñate, J. Environmental Effects of Agri-Environmental Schemes in Western Europe. J. Environ. Manag. 2003, 67, 129–138. [Google Scholar] [CrossRef]
- Primdahl, J.; Vesterager, J.P.; Finn, J.A.; Vlahos, G.; Kristensen, L.; Vejre, H. Current use of impact models for agri-environment schemes and potential for improvements of policy design and assessment. J. Environ. Manag. 2010, 91, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.K.; Wang, X.B.; Zhi, H.Y.; Huang, Z.R.; Rozelle, S. Subsidies and Distortions in China’s Agriculture: Evidence from Producer-Level Data. Aust. J. Agri. Resour. Econ. 2011, 55, 53–71. [Google Scholar] [CrossRef]
- Zhang, W.F.; Cao, G.X.; Li, X.L.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Brady, M.V.; Christoph, S.; Konrad, K.; Kathrin, H. An Agent-based Approach to Modeling Impacts of Agricultural Policy on Land Use, Biodiversity and Ecosystem Services. Landsc. Ecol. 2009, 27, 1363–1381. [Google Scholar] [CrossRef]
- Devadoss, S.; Gibson, M.J.; Luckstead, J. The Impact of Agricultural Subsidies on the Corn Market with Farm Heterogeneity and Endogenous Entry and Exit. J. Agric. Res. Econ. 2016, 41, 112–139. [Google Scholar]
- Lankes, H.P. Market access for developing countries. Financ. Dev. 2002, 39, 8–15. [Google Scholar]
- Watts, M.J.; Nölke, A.; Schmidt, A. Impact of the United States’ and the European Unions’ Agricultural Subsidies on African Countries. Working Paper. 2016. Available online: http://www.wiwi-frankfurt.de/DkA/02-06-Alice_Schmidt-web.pdf (accessed on 1 May 2019).
- Mary, S. Hungry for free trade? Food trade and extreme hunger in developing countries. Food Secur. 2019, 11, 461–477. [Google Scholar] [CrossRef]
- Schultz, T.W. Transforming Traditional Agriculture; Yale University Press: New Haven, CT, USA, 1964. [Google Scholar]
- Ellis, F.; Biggs, S. Evolving Themes in Rural Development 1950s–2000s. Dev. Policy Rev. 2001, 19, 437–448. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement. Soc. Sci. Electron. Publ. 1993, 8, 223–250. [Google Scholar]
- Vilas-Ghiso, S.J.; Liverman, D.M. Scale, Technique and Composition Effects in the Mexican Agricultural Sector: The Influence of NAFTA and the Institutional Environment. Int. Environ. Agreem. Politics Law Econ. 2007, 7, 137–169. [Google Scholar] [CrossRef]
- Chand, R. The global food crisis: causes, severity and outlook. Econ. Political Wkly. 2008, 43, 115–122. [Google Scholar]
- Zuleta, H. Variable factor shares, measurement and growth accounting. Econ. Lett. 2012, 114, 91–93. [Google Scholar] [CrossRef]
- Zuleta, H.; Sturgill, B. Getting Growth Accounting Right. Documento CEDE No. 2015-29. 2015. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2677385 (accessed on 1 May 2019).
- Sturgill, B. Back to the Basics revisiting the development accounting methodology. J. Macroecon. 2014, 42, 52–68. [Google Scholar] [CrossRef]
- Kako, T. Decomposition Analysis of Derived Demand for Factor Inputs: The Case of Rice Production in Japan. Am. J. Agric. Econ. 1978, 60, 628–635. [Google Scholar] [CrossRef]
- Grabowski, R. Induced Innovation, Green Revolution, and Income Distribution: Reply. Econ. Dev. Cult. Chang. 2008, 30, 177–181. [Google Scholar] [CrossRef]
- Wang, O.; Yang, J. The Influence of Agricultural Subsidies on the Grain Production of Chinese Farmers. Chin. Rural Econ. 2014, 5, 20–28. [Google Scholar]
- Zhang, H.T.; Ren, J.M. Impacts of agricultural policies on non-point source pollution in planting. J. Ecol. Rural Environ. 2016, 32, 914–922. [Google Scholar]
- Ge, J.H.; Zhou, S.D. Analysis on the Economic Factors of Agricultural Non-point Source Pollution. Chin. Rural Econ. 2010, 5, 15–23. [Google Scholar]
- Qian, J.J.; Mu, Y.Y. Research on China’s Agricultural Technology Subsidy Policy and Its Optimization; Agriculture Press: Beijing, China, 2017. [Google Scholar]
- Gu, H.J.; Ji, Y.Q. The Influence of Agricultural Tax Reduction and Exemption Policy on Farmers’ Factor Input Behavior: An Empirical Study Based on Jurong City, Jiangsu Province. J. Agrotech. Econ. 2008, 3, 37–42. [Google Scholar]
- Ke, B.S. What Are Agricultural Subsidies? Farmers Daily. 2017. Available online: http://szb.farmer.com.cn/2017/20171104/20171104_003/news-nmrb-00000-20171104-m-003-300.pdf (accessed on 1 October 2018).
- Huang, J.K.; Wang, X.B.; Rozelle, S. The Subsidization of Farming Households in China’s Agriculture. Food Policy 2013, 41, 124–132. [Google Scholar] [CrossRef]
- Balmann, A. Path Dependence and the Structural Evolution of Family Farm Dominated Regions; IX European Congress of Agricultural Economists: Warsaw, Poland, 1999. [Google Scholar]
- Yesuf, M.; Bluffstone, R.A. Poverty, Risk Aversion, and Path Dependence in Low-Income Countries: Experimental Evidence from Ethiopia. Am. J. Agric. Econ. 2009, 91, 1022–1037. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Meng, J.; Bi, X.N. An Empirical Analysis of Growers’ Willingness to Change Grain into Soybean and Its Influencing Factors: Based on Micro-Samples from Heilongjiang and Inner Mongolia. Res. Agric. Mod. 2017, 38, 696–704. [Google Scholar]
- Serra, T.; Zilberman, D.; Goodwin, B.K.; Featherstone, A. Effects of Decoupling on the Mean and Variability of Output. Eur. Rev. Agric. Econ. 2006, 33, 269–288. [Google Scholar] [CrossRef]
- McCloud, N.; Kumbhakar, S.C. Do subsidies drive productivity? A cross-country analysis of Nordic dairy farms. Bayesian Econom. 2008, 6, 245–274. [Google Scholar]
- Zhu, D.M.; Li, X.Y.; Cheng, G.Q. An Analysis of the Impacts of Comprehensive Subsidies on Total Factor Production of Corn in China: A DEA-Tobit Two-Stage Method Using Panel Data. China Rural Econ. 2015, 11, 4–14. [Google Scholar]
- Gao, M.; Song, H.Y.; Carter, M. The Impacts of Direct Grain Subsidies on Wheat Productivity of Operations of Different Sizes: A Research Based on Data from National Rural Fixed-Point Survey. China Rural Econ. 2016, 3, 56–69. [Google Scholar]
- Xu, S.X. Grain Sown Area Decreased and Fertilizer Application Decreased. Available online: http://www.sohu.com/a/211544622_99899070 (accessed on 15 November 2019).
- Ma, W.Q.; Mao, D.R.; Zhang, F.S. A Study of the Impacts of Crop Structure Change on Fertilizer Consumption. Phosphate Compd. Fertil. 2010, 16, 1–3. [Google Scholar]
- Ju, X.T.; Gu, B.J.; Wu, Y.Y.; Galloway, J.N. Reducing China’s Fertilizer Use by Increasing Farm Size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, A.; Rosenzweig, M.R. Microeconomics of technology adoption. Annu. Rev. Econ. 2010, 2, 395–424. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.L.; Zhang, H.Y.; Chen, X.P.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J. Public investment and China’s long-term food security under WTO. Food Policy 2004, 29, 99–111. [Google Scholar] [CrossRef]
- Yu, W.S.; Jensen, H.G. China’s agricultural policy transition: impacts of recent reforms and future scenarios. J. Agric. Econ. 2010, 61, 343–368. [Google Scholar] [CrossRef]
- Gale, F. Growth and Evolution in China’s Agricultural Support Policies; USDA-ERS Economic Research Report, 153; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2013.
- Wu, H.X.; Ge, Y. Excessive Application of Fertilizer, Agricultural Non-Point Source Pollution, and Farmers’ Policy Choice. Sustainability 2019, 4, 1165. [Google Scholar] [CrossRef]
- Chen, X.P.; Cui, Z.L.; Fan, M.S. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xie, H.L.; Chen, Q.R.; Jiang, J.F. Impact of Agricultural Labor Transfer and Structural Adjustment on Chemical Application: Comparison of Past Developments in the Ecological Civilization Pilot Zones of China and Their Future Implications. Sustainability 2018, 10, 1909. [Google Scholar] [CrossRef]
OECD PSE Classification | Policy Grouping in China | Agricultural Support Policies * |
---|---|---|
Indirect Agricultural Subsidies | Price Protection |
|
Agricultural Tax Reduction |
| |
Direct Agricultural Subsidies | “Four Agricultural Subsidies” |
|
Unit | N | Min | Max | Mean | Std. | |
---|---|---|---|---|---|---|
AFUt | Million tons | 14 | 4339.39 | 6022.60 | 5276.27 | 589.82 |
IDASt | Million yuan | 14 | −188,212.75 | 537,979.02 | 183,626.92 | 192,450.75 |
DASt | Million yuan | 14 | 101.94 | 97,984.86 | 56,993.02 | 38,121.54 |
St | 1000 hectares | 14 | 152,149.00 | 166,374.00 | 158,528.93 | 5167.92 |
PIAPt | dimensionless number | 14 | 100.00 | 226.23 | 157.69 | 45.63 |
AFPIt | dimensionless number | 14 | 80.78 | 158.84 | 124.00 | 27.66 |
CIt | % | 14 | 1589.82 | 3434.87 | 2346.93 | 611.80 |
Variable | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
DASt−1 | ASt−1 | 0.0471 * (1.786) | 0.0018 (1.265) | |
IDASt−1 | 0.0626 ** (2.453) | |||
St−1 | 0.8013 *** (14.867) | 0.9262 *** (3.431) | 0.8405 *** (3.137) | |
Ln (PIAPt−1) | 17.3046 (0.761) | 25.3335 * (1.964) | 19.2081 * (1.822) | |
CI%t | 101.0058 ** (2.614) | 168.020 ** (2.847) | 149.0710 ** (2.473) | |
C | 113.7206 ** (2.874) | 169.1352 ** (2.812) | 87.4048 ** (2.512) | |
R2 = 0.871 | R2 = 0.791 | R2 = 0.825 |
Variable | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
DASt−1 | ASt−1 | 0.0020 * (1.856) | 0.0000 (0.413) | |
IDASt−1 | 0.0028 ** (2.224) | |||
PARTt−1 | 0.8143 *** (3.616) | 0.8751 *** (4.131) | 0.9090 *** (5.370) | |
VAPIt−1 | 0.0094 ** (2.235) | 0.0111 *** (2.456) | 0.0267 *** (2.962) | |
YPUt | 0.0373 (0.011) | 0.0504 (0.178) | 0.0408 (0.151) | |
VCt−1 | −0.0282 * (−1.762) | −0.0341 ** (−2.145) | −0.0610 *** (−2.715) | |
C | 0.9792 * (1.816) | 0.5461 ** (2.441) | 0.4066 ** (2.114) | |
R2 = 0.713 | R2 = 0.648 | R2 = 0.552 |
Variable | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
DASt−1 | ASt−1 | 0.0017 (1.142) | 0.0006 (0.261) | |
IDASt−1 | 0.0022 * (1.776) | |||
RATPt−1 | 0.7294 *** (5.501) | 0.8456 *** (6.002) | 0.797 *** (5.426) | |
C | 2.2153 ** (2.441) | 4.5661 *** (3.267) | 6.0207 *** (2.810) | |
R2 = 0.400 | R2 = 0.307 | R2 = 0.335 |
Variable | AFUt |
---|---|
St | 0.0486 *** (10.612) |
PCAPt | −0.4415 ** (−2.135) |
RATPt | −0.0002 (−0.323) |
AFPIt | −0.0664 * (−1.798) |
CPAPIt | 0.5930 *** (8.012) |
Dt | −0.0583 ** (−3.144) |
C | 23.1622 * (1.966) |
R2 = 0.715 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, E.; Miao, C. Fertilizer Use in China: The Role of Agricultural Support Policies. Sustainability 2019, 11, 4391. https://doi.org/10.3390/su11164391
Wu Y, Wang E, Miao C. Fertilizer Use in China: The Role of Agricultural Support Policies. Sustainability. 2019; 11(16):4391. https://doi.org/10.3390/su11164391
Chicago/Turabian StyleWu, Yinhao, Enru Wang, and Changhong Miao. 2019. "Fertilizer Use in China: The Role of Agricultural Support Policies" Sustainability 11, no. 16: 4391. https://doi.org/10.3390/su11164391
APA StyleWu, Y., Wang, E., & Miao, C. (2019). Fertilizer Use in China: The Role of Agricultural Support Policies. Sustainability, 11(16), 4391. https://doi.org/10.3390/su11164391