The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Description and Sampling Methodology
2.2. Chemicals, Reagents, and Sample Preparation
2.3. HS-GC-MS/MS Conditions
2.4. Evaluation of Odor of Wastewater Sludge Samples
2.5. Data Analysis
2.5.1. Artificial Neural Network
- Input layer (8 neurons);
- Hidden layer (4 neurons);
- Hidden layer (2 neurons);
- Output layer (1 neuron).
2.5.2. Decision Trees Algorithm
3. Results
Concentration of Investigated Compounds in Sludge Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carrera-Chapela, F.; Donoso-Bravo, A.; Souto, J.A.; Ruiz-Filippi, G. Modeling the odor generation in WWTP: An integrated approach review. Water Air Soil Pollut. 2014, 225. [Google Scholar] [CrossRef]
- Gębicki, J.; Dymerski, T.; Namieśnik, J. Monitoring of Odour Nuisance from Landfill Using Electronic Nose. Chem. Eng. Trans. 2014, 40, 85–90. [Google Scholar] [CrossRef]
- Byliński, H.; Gębicki, J.; Namieśnik, J. Evaluation of Health Hazard Due to Emission of Volatile Organic Compounds from Various Processing Units of Wastewater Treatment Plant. Int. J. Environ. Res. Public Health 2019, 16, 1712. [Google Scholar] [CrossRef] [PubMed]
- Sówka, I.; Bezyk, Y.; Grzelka, A.; Miller, U.; Pachurka, Ł. Seasonal odor impact range of selected wastewater treatment plants—Modeling studies using Polish reference model. Water Sci. Technol. 2017, 2017, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Byliński, H.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Complementary use of GCxGC–TOF–MS and statistics for differentiation of variety in biosolid samples. Monatshefte für Chemie 2018, 149, 1587. [Google Scholar]
- Stuetz, R.M.; Frechen, F.B. Odours in Wastewater Treatment: Measurement, Modeling and Control; IWA Publishing: London, UK, 2001. [Google Scholar]
- Cieślik, B.; Konieczka, P. Sewage sludge management methods. Challenges and opportunities. Arch. Waste Manag. Environ. Prot. 2016, 18, 15–32. [Google Scholar]
- Grobelak, A.; Grosser, A.; Kacprzak, M.; Kamizela, T. Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. J. Environ. Manag. 2019, 234, 90–96. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef]
- Lombardi, L.; Nocita, C.; Bettazzi, E.; Fibbi, D.; Carnevale, E. Environmental comparison of alternative treatments for sewage sludge: An Italian case study. Waste Manag. 2017, 69, 365–376. [Google Scholar] [CrossRef]
- Roig, N.; Sierra, J.; Martí, E.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric. Ecosyst. Environ. 2012, 158, 41–48. [Google Scholar] [CrossRef]
- Świerczek, L.; Cieślik, B.M.; Konieczka, P. The potential of raw sewage sludge in construction industry—A review. J. Clean. Prod. 2018, 200, 342–356. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Lee, D.J.; Chang, Y.; Lee, Y.J. Sludge treatment: Current research trends. Bioresour. Technol. 2017, 243, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Kor-Bicakci, G.; Eskicioglu, C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 110, 423–443. [Google Scholar] [CrossRef]
- Cieślik, B.M.; Namieśnik, J.; Konieczka, P. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 2015, 90, 1–15. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic digestion: A review on process monitoring. Renew. Sustain. Energy Rev. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Byliński, H.; Barczak, R.J.; Gębicki, J.; Namieśnik, J. Monitoring of odors emitted from stabilized dewatered sludge subjected to aging using proton transfer reaction–mass spectrometry. Environ. Sci. Pollut. Res. 2019, 26, 5500–5513. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.A.V.; de Morais, M.G. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol. 2011, 102, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Blumensaat, F.; Keller, J. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res. 2005, 39, 171–183. [Google Scholar] [CrossRef]
- Bareha, Y.; Girault, R.; Jimenez, J.; Trémier, A. Characterization and prediction of organic nitrogen biodegradability during anaerobic digestion: A bioaccessibility approach. Bioresour. Technol. 2018, 263, 425–436. [Google Scholar] [CrossRef]
- Hu, C.; Yan, B.; Wang, K.J.; Xiao, X.M. Modeling the performance of anaerobic digestion reactor by the anaerobic digestion system model (ADSM). J. Environ. Chem. Eng. 2018, 6, 2095–2104. [Google Scholar] [CrossRef]
- Ivanovs, K.; Spalvins, K.; Blumberga, D. Approach for modelling anaerobic digestion processes of fish waste. Energy Procedia 2018, 147, 390–396. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, C.; Dan, J.; Pu, W.; Yang, J. Modeling of expanded granular sludge bed reactor using artificial neural network. J. Environ. Chem. Eng. 2017, 5, 2142–2150. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Bani Hani, K.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359–363. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Turkdogan, F.I.; Temizel, I.; Gunay, A. Development of ann-based models to predict biogas and methane productions in anaerobic treatment of molasses wastewater. Int. J. Green Energy. 2013, 10, 885–907. [Google Scholar] [CrossRef]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Le Roux, S.; Soutrel, I.; Daumoin, M.; Benoist, J.C. Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates. J. Environ. Manag. 2019, 233, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.; De Guardia, A.; Couvert, A.; Wolbert, D.; Le, S.; Soutrel, I.; Nunes, G. Odor concentration (OC) prediction based on odor activity values (OAVs) during composting of solid wastes and digestates. Atmos. Environ. 2019, 201, 1–12. [Google Scholar] [CrossRef]
- Mosteller, F.; Tukey, J.W. Data analysis, including statistics. In Handbook of Social Psychology; Addison-Wesley: Reading, MA, USA, 1968; Volume 2, pp. 1–17. [Google Scholar]
- Gospodarek, M.; Rybarczyk, P.; Szulczyński, B.; Gębicki, J. Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air. Processes 2019, 7, 187. [Google Scholar] [CrossRef]
- Łagód, G.; Duda, S.M.; Majerek, D.; Szutt, A.; Dołhańczuk-Śródka, A. Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP. Processes 2019, 7, 251. [Google Scholar] [CrossRef]
- Cho, J.H.; Kurup, P.U. Decision tree approach for classification and dimensionality reduction of electronic nose data. Sens. Actuators B Chem. 2011, 160, 542–548. [Google Scholar] [CrossRef]
- Fisher, R.M.; Barczak, R.J.; Suffet, I.H.M.; Hayes, J.E.; Stuetz, R.M. Framework for the use of odour wheels to manage odours throughout wastewater biosolids processing. Sci. Total Environ. 2018, 634, 214–223. [Google Scholar] [CrossRef]
- Barczak, R.J.; Fisher, R.M.; Wang, X.; Stuetz, R.M. Variations of odorous VOCs detected by different assessors via gas chromatography coupled with mass spectrometry and olfactory detection port (ODP) system. Water Sci. Technol. 2018, 77, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.Z.; Oakes, S.R.; Hysell, M.; Hay, A. Organic chemicals in sewage sludges. Sci. Total Environ. 2006, 367, 481–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marczak, M.; Wolska, L.; Namiesnik, J. Determination of toluene formed during fermentation of sewage sludge. Int. J. Environ. Stud. 2006, 63, 171–178. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for Regression Models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef]
- Willmott, K.; Matsuura, C.J. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 10, 79–82. [Google Scholar] [CrossRef]
Measured Compound | Concentration Range [ng/g of Sludge] | |||
---|---|---|---|---|
WWTP No. 1 | WWTP No. 2 | |||
Sludge before Fermentation | Sludge after Fermentation | Sludge before Fermentation | Sludge after Fermentation | |
toluene | 1.3–7.0 | 4.1–12.0 | 7.2–16.4 | 15.0–25.3 |
p-xylene | 8.0–18.3 | 4.3–10.0 | 10.2–20.9 | 3.2–15.0 |
p-cresole | 12.9–19.0 | 3.2–9.9 | 7.2–12.9 | 5.1–10.9 |
Parameter | Unit | WWTP No. 1 | WWTP No.2 | ||||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Average | Minimum | Maximum | Average | ||
VFAs | mg CH3COOH/L | 69.3 | 276.1 | 149.6 | 55.0 | 184.0 | 119.5 |
pH | - | 6.1 | 7.7 | 6.9 | 6.1 | 7.5 | 6.9 |
alkalinity | mg CaCO3/L | 900.0 | 2575.0 | 1516.7 | 1274.0 | 3200.0 | 2060.4 |
Parameter | WWTP No. 1 | WWTP No. 2 | ||
---|---|---|---|---|
Sludge before Fermentation | Sludge after Fermentation | Sludge before Fermentation | Sludge after Fermentation | |
odour intensity | 2.7–4.1 | 1.1–2.7 | 1.4–4.4 | 1.1–2.8 |
hedonic tone | −4.1 to −1.2 | −2.6 to 0.3 | −3.9 to −2.1 | −2.9 to −1.4 |
Parameter | WWTP No. 1 | WWTP No. 2 | ||
---|---|---|---|---|
MAE | MAPE | MAE | MAPE | |
odour intensity | 0.57 ± 0.30 | 28.99 ± 13.15% | 0.38 ± 0.32 | 18.34 ± 13.26% |
concentration of toluene | 1.95 ± 0.87 | 26.11 ± 10.77% | 5.01 ± 3.73 | 25.34 ± 18.37% |
concentration of p-xylene | 0.95 ± 0.62 | 12.93 ± 7.95% | 1.11 ± 0.87 | 18.43 ± 14.62% |
concentration of p-cresole | 1.43 ± 0.64 | 21.43 ± 9.56% | 1.07 ± 1.25 | 13.85 ± 14.45% |
hedonic tone | 0.72 ± 0.32 | 64.02 ± 48.37% | 0.57 ± 0.42 | 26.43 ± 19.62% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byliński, H.; Sobecki, A.; Gębicki, J. The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process. Sustainability 2019, 11, 4407. https://doi.org/10.3390/su11164407
Byliński H, Sobecki A, Gębicki J. The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process. Sustainability. 2019; 11(16):4407. https://doi.org/10.3390/su11164407
Chicago/Turabian StyleByliński, Hubert, Andrzej Sobecki, and Jacek Gębicki. 2019. "The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process" Sustainability 11, no. 16: 4407. https://doi.org/10.3390/su11164407
APA StyleByliński, H., Sobecki, A., & Gębicki, J. (2019). The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process. Sustainability, 11(16), 4407. https://doi.org/10.3390/su11164407