A Three-Stage Hierarchical Model for An Earthquake Shelter Location-Allocation Problem: Case Study of Chaoyang District, Beijing, China
Abstract
:1. Introduction
2. Method
- (1)
- The residents of a community will be allocated to the same shelters;
- (2)
- The residents will evacuate with a queue and the occupation of an evacuee is 1 square meter in a queue;
- (3)
- The residents will go to their assigned shelters along the shortest route from their locations.
2.1. IS Stage of the Model
2.2. STS Stage of the Model
2.3. LTS Stage of the Model
3. Case Study
4. Results and Discussion
4.1. Results of the Model’s IS Stage
4.2. Results of the Model’s STS Stage
4.3. Results of the Model’s LTS Stage
4.4. Shelter Location and Evacuee Allocation of Chaoyang District
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Datta, T.K. Seismic Analysis of Structures; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 9780470824610. [Google Scholar]
- Lin, S.; Sun, Y.; Zhu, Z.; Liu, Z. Investigation on seismic and shock absorption experiments of UHV arrester. In Proceedings of the 2016 Joint International Information Technology, Mechanical and Electronic Engineering, Xi’an, China, 4–5 October 2016; pp. 604–610. [Google Scholar]
- Hakimi, S.L. Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 1964, 12, 450–459. [Google Scholar] [CrossRef]
- Hakimi, S.L. Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems. Oper. Res. 1965, 13, 462–475. [Google Scholar] [CrossRef]
- Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The Location of Emergency Service Facilities. Oper. Res. 1970, 19, 1363–1373. [Google Scholar] [CrossRef]
- Sherali, H.D.; Carter, T.B.; Hobeika, A.G. A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions. Transp. Res. Part B 1991, 25, 439–452. [Google Scholar] [CrossRef]
- Gama, M.; Scaparra, M.P.; Santos, B. Optimal location of shelters for mitigating urban floods. In Proceedings of the EURO Working Group on Transportation, Porto, Portugal, 4–6 September 2013. [Google Scholar]
- Kilci, F.; Kara, B.Y.; Bozkaya, B. Locating temporary shelter areas after an earthquake: A case for Turkey. Eur. J. Oper. Res. 2015, 243, 323–332. [Google Scholar] [CrossRef]
- Widener, M.J.; Horner, M.W. A hierarchical approach to modeling hurricane disaster relief goods distribution. J. Transp. Geogr. 2011, 19, 821–828. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Li, Q.; Chen, J. The temporal hierarchy of shelters: A hierarchical location model for earthquake-shelter planning. Int. J. Geogr. Inf. Sci. 2013, 27, 1612–1630. [Google Scholar] [CrossRef]
- Gama, M.; Santos, B.F.; Scaparra, M.P. A multi-period shelter location-allocation model with evacuation orders for flood disasters. EURO J. Comput. Optim. 2015, 4, 299–323. [Google Scholar] [CrossRef]
- Bayram, V.; Tansel, B.T.; Yaman, H. Compromising system and user interests in shelter location and evacuation planning. Transp. Res. Part B Methodol. 2015, 72, 146–163. [Google Scholar] [CrossRef]
- Dalal, J.; Mohapatra, P.K.J.; Mitra, G.C. Locating cyclone shelters: A case. Disaster Prev. Manag. 2007, 16, 235–244. [Google Scholar] [CrossRef]
- Chang, M.S.; Tseng, Y.L.; Chen, J.W. A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 737–754. [Google Scholar] [CrossRef]
- Ting, C.; Chen, C. A multiple ant colony optimization algorithm for the capacitated location routing problem. Int. J. Prod. Econ. 2013, 141, 34–44. [Google Scholar] [CrossRef]
- Xu, W.; Ma, Y.; Zhao, X.; Li, Y.; Qin, L.; Du, J. A comparison of scenario-based hybrid bilevel and multi-objective location-allocation models for earthquake emergency shelters: A case study in the central area of Beijing, China. Int. J. Geogr. Sci. 2017, 32. [Google Scholar] [CrossRef]
- Ng, M.W.; Park, J.; Waller, S.T. A Hybrid Bilevel Model for the Optimal Shelter Assignment in Emergency Evacuations. Comput. Civ. Infrastruct. Eng. 2010, 25, 547–556. [Google Scholar] [CrossRef]
- Doerner, K.F.; Gutjahr, W.J.; Nolz, P.C. Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectr. 2009, 31, 651–678. [Google Scholar] [CrossRef]
- Saadatseresht, M.; Mansourian, A.; Taleai, M. Evacuation planning using multiobjective evolutionary optimization approach. Eur. J. Oper. Res. 2009, 198, 305–314. [Google Scholar] [CrossRef]
- Barzinpour, F.; Esmaeili, V. A multi-objective relief chain location distribution model for urban disaster management. Int. J. Adv. Manuf. Technol. 2014, 70, 1291–1302. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Gaytán, J. Scenario-based preparedness plan for floods. Nat. Hazards 2015, 76, 1241–1262. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, X.; Ma, Y.; Li, Y.; Qin, L.; Wang, Y.; Du, J. A multi-objective optimization based method for evaluating earthquake shelter location-allocation. Geomat. Nat. Hazards Risk 2018, 9, 662–677. [Google Scholar] [CrossRef]
- China Earthquake Administration. GB 21734-2008 Emergency Shelter and Its Facilities for Earthquake Disasters. Available online: http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=8B2E0D7D4505370BA2CAD64253A354F3 (accessed on 1 July 2019).
- Zhao, X.; Coates, G.; Xu, W. A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO-GA. Geomat. Nat. Hazards Risk 2019, 10, 1712–1737. [Google Scholar] [CrossRef]
- Li, H.; Zhao, L.; Huang, R.; Hu, Q. Hierarchical earthquake shelter planning in urban areas: A case for Shanghai in China. Int. J. Disaster Risk Reduct. 2017, 22, 431–446. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, K.; Wang, J. The Theory and Methods for City Emergency Shelter Planning and Building; Science Press: Beijing, China, 2014. [Google Scholar]
- Zhao, L.; Li, H.; Sun, Y.; Huang, R.; Hu, Q.; Wang, J.; Gao, F. Planning emergency shelters for urban disaster resilience: An integrated location-allocation modeling approach. Sustainability 2017, 9, 2098. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 5, pp. 1942–1948. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Kongsomsaksakul, S.; Yang, C.; Chen, A. Shelter location-allocation model for flood evacuation planning. J. East. Asia Soc. Transp. Stud. 2005, 6, 4237–4252. [Google Scholar]
- Hu, F.; Yang, S.; Xu, W. A non-dominated sorting genetic algorithm for the location and districting planning of earthquake shelters. Int. J. Geogr. Inf. Sci. 2014, 28, 1482–1501. [Google Scholar] [CrossRef]
- Hu, F.; Xu, W.; Li, X. A modified particle swarm optimization algorithm for optimal allocation of earthquake emergency shelters. Int. J. Geogr. Inf. Sci. 2012, 26, 1643–1666. [Google Scholar] [CrossRef]
- Qin, L.; Xu, W.; Zhao, X.; Ma, Y. Typhoon track change-based emergency shelter location-allocation model: A case study of Wenchang in Hainan province, China. Inj. Prev. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Coates, G.; Xu, W. Solving the earthquake disaster shelter location-allocation problem using optimization heuristics. In Proceedings of the 14th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2017), Albi, France, 21–24 May 2017. [Google Scholar]
- Zhao, X.; Chen, J.; Du, P.; Xu, W.; Liu, R.; Yuan, H. Location-allocation model for earthquake shelter solved using MPSO algorithm. In Proceedings of the ISCRAM 2019, Valencia, Spain, 19–22 May 2019; pp. 105–115. [Google Scholar]
Shelter ID of STS Stage | Shelter ID of LTS Stage (Number of Evacuees) |
---|---|
2 | 1 (86,394) |
4 | 69 (45,510) |
6 | 13 (26,147) |
7 | 69 (3202) |
8 | 9 (9794); 69 (12,798) |
10 | 9 (10,375) |
11 | 9 (3099) |
15 | 3 (63,905); 16 (7691) |
16 | 69 (48,716) |
17 | 13 (29,563) |
18 | 69 (113,688) |
19 | 20 (98,204); 21 (48,046) |
20 | 21 (70,103) |
21 | 26 (13,784); 65 (11,001) |
22 | 65 (21,581) |
23 | 26 (37,214) |
24 | 26 (55,865) |
25 | 26 (53,653) |
27 | 26 (16,489) |
28 | 26 (5426) |
29 | 26 (37,513) |
30 | 22 (35,333); 65 (35,586) |
31 | 13 (43,349) |
32 | 13 (17,081) |
33 | 34 (4685) |
35 | 39 (46,109) |
36 | 39 (23,582) |
37 | 39 (18,179) |
38 | 39 (14,497) |
39 | 62 (14,415) |
40 | 62 (100,961) |
41 | 62 (56,118) |
42 | 39 (35,268) |
43 | 7 (117,749) |
44 | 39 (37,154) |
45 | 39 (12,024); 61 (32,820) |
46 | 39 (125,945); 61 (31,903) |
47 | 39 (27,076); 61 (177,726) |
48 | 34 (39,155) |
49 | 9 (16,039) |
50 | 1 (60,908) |
51 | 1 (80,668) |
52 | 1 (120,275) |
53 | 1 (225,893) |
55 | 20 (210,987) |
56 | 26 (49,811) |
57 | 19 (31,317) |
59 | 13 (23,896) |
61 | 62 (122,307) |
63 | 62 (33,473) |
64 | 21 (1764); 65 (9916) |
66 | 69 (14,491) |
67 | 1 (66,585) |
68 | 13 (8449) |
70 | 13 (13,757) |
71 | 21 (4308); 26 (25,916) |
72 | 1 (46,425) |
Shelter ID of STS Stage | Shelter ID of LTS Stage (Number of Evacuees) |
---|---|
2 | 68 (30,230); 72 (22,330) |
7 | 68 (3202) |
16 | 14 (23,307) |
30 | 22 (4607) |
42 | 38 (3835) |
43 | 42 (7462); 44 (11,583); 45 (29,997); 46 (8416); |
44 | 46 (10,718) |
45 | 44 (29,486) |
47 | 46 (28,819) |
52 | 50 (57,188) |
53 | 3 (91,056) |
67 | 68 (29,181) |
69 | 6 (8564) |
Shelter ID of STS Stage | Shelter ID of LTS Stage (Number of Evacuees) |
---|---|
2 | 1 (37,560); 3 (7792); 7 (22,330); 69 (18,712) |
4 | 69 (45,510) |
6 | 13 (7147); 69 (19,000) |
8 | 7 (9794); 69 (12,798) |
10 | 9 (10,375) |
11 | 9 (3099) |
15 | 3 (55,078); 16 (4759); 59 (11,759) |
16 | 3 (2281); 4 (10,748); 69 (35,687) |
17 | 16 (22,890); 69 (6673) |
18 | 3 (23,082); 21 (23,909); 65 (57,957); 69 (8740) |
19 | 20 (104,144); 21 (10,237) |
20 | 21 (65,524) |
22 | 65 (21,581) |
23 | 21 (6188); 26 (31,026) |
24 | 21 (19,666); 26 (36,199) |
25 | 26 (52,653) |
27 | 26 (2011); 28 (14,478) |
29 | 26 (37,513) |
30 | 65 (1860) |
31 | 13 (43,349) |
32 | 9 (2388); 13 (5095); 59 (1646) |
33 | 34 (4685) |
35 | 39 (46,109) |
36 | 39 (23,582) |
37 | 34 (4340); 39 (13,839) |
38 | 39 (14,497) |
39 | 62 (6380) |
40 | 39 (31,565); 61 (27,205); 62 (42,191) |
41 | 39 (26,442); 46 (9194); 62 (20,482) |
42 | 39 (17,527); 45 (4423); 46 (7385) |
43 | 7 (25,924); 39 (24,903); 42 (2276); 44 (4056); 45 (2154); 46 (58,436) |
44 | 39 (3364); 46 (25,172) |
45 | 39 (12,024); 46 (18,218); 61 (4016) |
46 | 45 (16,490); 61 (16,079) |
47 | 39 (7759); 44 (9761); 61 (187,282) |
48 | 34 (18,232) |
49 | 9 (16,039) |
50 | 1 (55,273); 51 (5635) |
51 | 1 (32,597); 55 (1762) |
52 | 1 (18,579); 51 (34,363); 55 (67, 315) |
53 | 1 (209,948); 3 (15,945) |
54 | 51 (13,074); 55 (69,356) |
55 | 20 (134,257) |
56 | 19 (1944); 20 (10,492); 26 (17,654); 28 (4723); 58 (4112) |
57 | 19 (2387): 28 (25,750); 58 (3180) |
58 | 28 (10,859) |
59 | 13 (12,067); 32 (6074) |
61 | 62 (15,712) |
63 | 62 (33,473) |
64 | 21 (8809); 65 (2871) |
66 | 69 (14,491) |
67 | 1 (52,817); 7 (2640); 69 (11,128) |
68 | 7 (5037); 69 (3412) |
70 | 9 (14,689) |
71 | 20 (14,081); 21 (16,143) |
72 | 7 (14,536); 69 (31,889) |
Shelter ID of STS Stage | Shelter ID of LTS Stage (Number of Evacuees) |
---|---|
1 | 50 (16,351) |
2 | 68 (30,230); 72 (22,330) |
4 | 17 (11,422) |
7 | 68 (3202) |
13 | 31 (9847) |
16 | 17 (23,307) |
18 | 4 (4892) |
21 | 64 (33,108) |
30 | 22 (4607) |
33 | 34 (4685) |
36 | 38 (983) |
42 | 38 (3835) |
43 | 42 (7462); 44 (11,583); 45 (29,997); 46 (8416) |
44 | 46 (10,718) |
45 | 44 (29,486) |
47 | 46 (28,819) |
52 | 50 (57,188) |
53 | 17 (15,945); 20 (43,167); 50 (31,944) |
62 | 63 (13,193) |
67 | 68 (29,181); 72 (8672) |
69 | 6 (13,757) |
72 | 67 (11,816) |
Solution | Total Number of ISs, STSs, and LTSs | Number of ISs | Number of STSs That Also Serve Evacuees in IS Stage | Number of STSs That Only Serve Evacuees in STS Stage | Number of LTSs That Also Serve Evacuees in IS and STS Stages | Number of LTSs That Only Serve Evacuees in LTS Stage |
---|---|---|---|---|---|---|
A | 69 | 0 | 49 | 0 | 19 | 1 |
B | 69 | 0 | 38 | 0 | 30 | 1 |
C | 68 | 0 | 7 | 0 | 61 | 0 |
D | 70 | 0 | 1 | 0 | 67 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Chen, J.; Xu, W.; Lou, S.; Du, P.; Yuan, H.; Ip, K.P. A Three-Stage Hierarchical Model for An Earthquake Shelter Location-Allocation Problem: Case Study of Chaoyang District, Beijing, China. Sustainability 2019, 11, 4561. https://doi.org/10.3390/su11174561
Zhao X, Chen J, Xu W, Lou S, Du P, Yuan H, Ip KP. A Three-Stage Hierarchical Model for An Earthquake Shelter Location-Allocation Problem: Case Study of Chaoyang District, Beijing, China. Sustainability. 2019; 11(17):4561. https://doi.org/10.3390/su11174561
Chicago/Turabian StyleZhao, Xiujuan, Jianguo Chen, Wei Xu, Shiyan Lou, Peng Du, Hongyong Yuan, and Kuai Peng Ip. 2019. "A Three-Stage Hierarchical Model for An Earthquake Shelter Location-Allocation Problem: Case Study of Chaoyang District, Beijing, China" Sustainability 11, no. 17: 4561. https://doi.org/10.3390/su11174561
APA StyleZhao, X., Chen, J., Xu, W., Lou, S., Du, P., Yuan, H., & Ip, K. P. (2019). A Three-Stage Hierarchical Model for An Earthquake Shelter Location-Allocation Problem: Case Study of Chaoyang District, Beijing, China. Sustainability, 11(17), 4561. https://doi.org/10.3390/su11174561