Evidence of Green Areas, Cycle Infrastructure and Attractive Destinations Working Together in Development on Urban Cycling
Abstract
:1. Introduction
1.1. The Relationship between Cycling and the Urban Built Environment
1.2. Objective Measures of Cycling in Medium-Sized Cities
Some Limits and Intentions
1.3. Starting Point
2. Materials and Methods
2.1. Influential Environmental Factors and Variables
2.2. Case Study
Survey Plan
2.3. Data Sources and Processing
3. Results
3.1. Spatial Analysis
3.2. Statistical Analysis
4. Discussion
4.1. Influencing Factors of the Built Environment
4.2. Cycling Routes and Green Areas
4.3. Traffic Infrastructure
4.4. Bicycle Lanes
4.5. Other Environmental Characteristics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aultman-Hall, L.; Hall, F.; Baetz, B.W. Analysis of bicycle commuter routes using geographic information systems. Implications for bicycle planning. Transp. Res. Board 1997, 1578, 102–110. [Google Scholar] [CrossRef]
- Krenn, P.J.; Oja, P.; Titze, S. Route choice of transport bicyclists: A comparision of actually used and shortest routes. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 1–7. [Google Scholar] [CrossRef]
- Nunes, I.C.; Penha-Sanchez, S. Fatores influentes na escolha de rota dos ciclistas. EURE 2019, 45, 31–52. [Google Scholar] [Green Version]
- Castillo-Manzano, J.I.; Sánchez-Braza, A. Managing a smart bicycle system when demand outstrips supply: The case of the university community in Seville. Transportation 2013, 40, 459–477. [Google Scholar] [CrossRef]
- Cervero, R. Influences of built environments on walking and cycling: Lessons from Bogotá. Int. J. Sustain. Transp. 2009, 3, 203–226. [Google Scholar] [CrossRef]
- Titze, S.; Stronegger, W.J.; Janschitz, S.; Oja, P. Environmental, social, and personal correlates of cycling for transportation in a student population. J. Phys. Act. Health 2007, 4, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Peer, S. To bike or not to bike? – Evidence from a university relocation. Transp. Res. Part D Transp. Environ. 2019, 70, 49–69. [Google Scholar] [CrossRef]
- Krenn, P.J.; Titze, S.; Oja, P.; Jones, A.; Ogilvie, D. Use of Global Positioning Systems to study physical activity and the environment. Am. J. Prev. Med. 2011, 41, 508–515. [Google Scholar] [CrossRef]
- Guerreiro, T.D.M.; Providelo, J.K.; Pitombo, C.S.; Ramos, R.A.R.; Antonio, N.R.D. Data-mining, GIS and multicriteria analysis in a comprehensive method for bicycle network planning and design. Int. J. Sustain. Transp. 2018, 12, 1–13. [Google Scholar] [CrossRef]
- Winters, M.; Brauer, M.; Setton, E.M.; Teschke, K. Mapping bikeability: A spatial tool to support sustainable travel. Environ. Plan. B Plan. Des. 2013, 40, 865–883. [Google Scholar] [CrossRef]
- Broach, J.; Dill, J.; Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A 2012, 46, 1730–1740. [Google Scholar] [CrossRef]
- Pereira, A.B.; Penha-Sanches, S. Analysis of bicycle commuter routes using GPSs and GIS. Procedia Soc. Behav. Sci. 2014, 162, 198–207. [Google Scholar]
- Rietveld, P.; Daniel, V. Determinants of bicycle use: Do municipal policies matter? Transp. Res. Board A 2004, 38, 531–550. [Google Scholar] [CrossRef]
- Karanikola, P.; Panagopoulos, T.; Tampakis, S.; Tsantopoulos, G. Cycling as a smart and green mode of transport in small touristic cities. Sustainability 2018, 10, 1–18. [Google Scholar] [CrossRef]
- Molina-García, J.; Castillo, I.; Queralt, A.; Sallis, J.F. Bicycling to university: Evaluation of a bicycle-sharing program in Spain. Health Promot. Int. 2015, 30, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Marqués, R.; Hernández-Herrador, V.; Calvo-Salazar, M.; García-Cebrián, J.A. How infrastructure can promote cycling in cities: Lessons from Seville. Res. Transp. Econ. 2015, 53, 31–44. [Google Scholar] [CrossRef]
- Handy, S.; van Wee, B.; Kroesen, M. Promoting Cycling for Transport: Research Needs and Challenges. Transp. Rev. 2014, 34, 4–24. [Google Scholar] [CrossRef]
- Sarjala, S. Built environment determinants of pedestrians’ and bicyclist’ route choices on commute trips: Applying a new grid-based method for measuring the built environment along the route. J. Transp. Geogr. 2019, 78, 56–69. [Google Scholar] [CrossRef]
- Larsen, J.; Patterson, Z.; El-Geneidy, A. Build it. But where? The Use of Geographic Information Systems in identifying locations for new cycling infrastructure. Int. J. Sustain. Transp. 2013, 7, 299–317. [Google Scholar] [CrossRef]
- Kelarestaghi, K.B.; Ermagun, A.; Heaslip, K.P. Cycling usage and frequency determinants in college campuses. Cities 2019, 90, 216–228. [Google Scholar] [CrossRef]
- Vale, D.S.; Saraiva, M.; Pereira, M. Active accessibility: A review of operational measures of walking and cycling accessibility. J. Transp. Land Use 2016, 9, 209–235. [Google Scholar] [CrossRef]
- Romanillos, G.; Zaltz, M. Madrid cycle track: Visualizing the cyclable city. J. Maps 2016, 12, 1218–1226. [Google Scholar] [CrossRef]
- Ashley, C.A.; Banister, C. Cycling to work from wards in a metropolitan area: No. 2 model development. Transp. Res. Board 1989, 38, 361–367. [Google Scholar]
- Ståhle, A. More green space in a denser city: Critical relations between user experience and urban form. Urban Des. Int. 2010, 15, 47–67. [Google Scholar] [CrossRef] [Green Version]
- Winters, M.; Teschke, K.; Grant, M.; Setton, E.M.; Brauer, M. How far out the way will we travel? Built environment influences on route selection for bicycle and car travel. Transp. Res. Rec. 2010, 2190, 1–10. [Google Scholar] [CrossRef]
- Lee, C.; Vernez, A. The 3Ds + R: Quantifying land use and urban form correlates of walking. Transp. Res. Part D 2006, 11, 204–215. [Google Scholar] [CrossRef]
- Manum, B.; Nordstrom, T. Integrating bicycle network analysis in urban design: Improving bikeability in Trondheim by combining space syntax and GIS-methods using the place syntax tool. In Proceedings of the 9th International Space Syntax Symposium, Seoul, Korea, 31 October–3 November 2013. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Winters, M.; Brauer, M.; Setton, E.M.; Teschke, K. Built environment influences on healthy transportation choices: Bicycling versus driving. J. Urban Health 2010, 87, 969–992. [Google Scholar] [CrossRef]
- Raford, N.; Chiaradia, A.; Gil, J. Space Syntax: The Role of Urban Form in Cyclist Route Choice in Central London; Safe Transportation Research & Education Center, UC Berkeley: Berkeley, CA, USA, 2007. [Google Scholar]
- Saelens, B.E.; Sallis, J.F.; Frank, L.D. Environmental correlates of walking and cycling: Findings from the transportation, urban design and planning literatures. Ann. Behav. Med. 2003, 25, 80–91. [Google Scholar] [CrossRef]
- Van Loon, J.; Frank, L.D.; Nettlefold, L.; Naylor, P.J. Youth physical activity and the neighbourhood environment: Examining correlates and the role of neighbourhood definition. Soc. Sci. Med. 2014, 104, 107–115. [Google Scholar] [CrossRef]
- Handy, S.L.; Xing, Y. Factors Correlated with Bicycle Commuting: A Study in Six Small U.S. Cities. Int. J. Sustain. Transp. 2011, 5, 91–110. [Google Scholar] [CrossRef]
- Winters, M.; Teschke, K. Route preferences among adults in the near market for bicycling: Findings of the cycling in cities study. Am. J. Health Promot. 2010, 25, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Howard, C.; Burns, E.K. Cycling to work in Phoenix: Route choice, travel behavior and commuter characteristics. Transp. Res. Rec. 2001, 1773, 39–46. [Google Scholar] [CrossRef]
- Nelson, A.; Allen, D. If you build them, commuters will use them: Association between bicycle facilities and bicycle commuting. Transp. Res. Rec. 1997, 1578, 79–83. [Google Scholar] [CrossRef]
- ECO21 Consulting. Plan de Movilidad del Hospital Universitario Virgen de las Nieves; Hospital Universitario Virgen de las Nieves: Granada, Spain, 2011. [Google Scholar]
- Martin, J.E.M. Andalusian Bicycle Plan; Consejería de Fomento y Vivienda, Junta de Andalucía: Sevilla, Spain, 2013. [Google Scholar]
- Granada City Council. Plan de Movilidad Urbano Sostenible (PMUS) de Granada. 2013. Available online: http://www.movilidadgranada.com/cieu/descargalo.php (accessed on 24 June 2019).
- Granada Bike-school Association. Propuestas Para el Fomento de la Bicicleta Como Medio de Transporte en la Aglomeración Urbana de Granada. 2018. Available online: http://enbicialtrabajo.wordporess.com (accessed on 24 June 2019).
- Granada City Council. Declaración Institucional Relativa a la Revisión del Convenio de Aplicación del Plan Andaluz de la Bicicleta en la Ciudad de Granada. 2017. Available online: http://www.granada.org/segmociones.nsf/wwdeins/F196E29B9F800863C12581BF003AFA46 (accessed on 24 June 2019).
- ECO21 Consulting. El Servicio de Préstamo. Estudio de Síntesis; Universidad de Granada: Granada, Spain, 2012. [Google Scholar]
- Granada City Council. Aforos Bici 2017. 2018. Available online: http://www.movilidadgranada.com/bici_aforos.php (accessed on 24 June 2019).
- Ståhle, A. Park Syntax-Measuring open space accessibility and smart growth. In Proceedings of the 5th International Space Syntax Symposium, Delft, The Netherlands, 13–17 June 2005. [Google Scholar]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Verheij, R.A.; Spreeuwenberg, P.; Groenewegen, P.P. Physical activity as a possible mechanism behind the relationship between green space and health: A multilevel analysis. BMC Public Health 2008, 8, 206. [Google Scholar] [CrossRef]
- Di Nardo, F.; Saulle, R.; la Torre, G. Green areas and health outcomes: A systematic review of the scientific literature. Ital. J. Public Health 2010, 7, 402–413. [Google Scholar]
- Neuvonen, M.; Sievänen, T.; Tönnes, S.; Koskela, T. Access to green areas and the frequency of visits–A case study in Helsinki. Urban For. Urban Green. 2007, 6, 235–247. [Google Scholar] [CrossRef]
- Balsas, C.J. Sustainable transportation planning on college campuses. Transp. Policy 2003, 10, 35–49. [Google Scholar] [CrossRef]
- Dill, J. Bicycling for transportation and health: The role of infrastructure. J. Public Health Policy 2009, 30, 95–110. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Potwarka, L.R.; Saelens, B.E. Association of park size, distance, and features with physical activity in neighborhood parks. Am. J. Public Health 2008, 98, 1451–1456. [Google Scholar] [CrossRef]
Factors | Variables (Unit) | References | Measurements |
---|---|---|---|
Cyclist’s behaviour | 1. Flow (n) | [11,12,22] | nº of cycling routes (GPS) passing through the green area plus a 100 m buffer zone surrounding it. |
Green area | 2. Size (ha) | [2,23,24,25,26] | Surface area of the green area. |
Environment | 3. Residents (n) | nº of inhabitants within a 1 km buffer around thegreen area. | |
Environment | 4. Commerce (m2) | [21,26,27] | Built area for commercial use within a 1 km buffer around the green area. |
Network | 5. Global intermediation (n) | [27,28] | Intermediation (i.e., the potential for intersections) of the access street to each green area at the city level. |
Network | 6. Global integration (n) | [27,28] | Integration (i.e., potential for a destination) of the access street to each green area at city level. |
Green area | 7. Altitude (n) | [5,21,29] | Variability in altitude in the green areas. |
Cyclist’s behaviour | 8. Length (km) | [2,12,25,30] | Average length of the routes passing through each green area +100 m buffer. |
Cyclist’s behaviour | 9. Time (h) | [2,12,25,30] | Average time for the routes passing through each green area +100 m buffer. |
Cyclist’s behaviour | 10. Speed (km/h) | [2,12,25,30] | Average speed of the routes passing through each green area +100 m buffer. |
Traffic | 11. Crossroads (n) | [11,31,32] | nº of crossroads ≥4 roads within a 1 km buffer around the green area. |
Traffic | 12. Parking (n) | [1,12,21,33,34] | nº of public car parks within a 1 km buffer around the green area. |
Cycling infrastructure | 13. Bicycle racks (n) | [21,35,36] | Bicycle racks in each green area +100 m buffer. |
Cycling infrastructure | 14. Bicycle lanes (m) | [2,3,23,36] | Distance from the edge of the park to the nearest bicycle lane (or bus-taxi lane for use by cyclists). |
Environment | 15. University centres (n) | [21,26,27] | nº of university buildings (faculties, centres, rectorate, etc.) within a 1 km buffer around each green area. |
Variables (Unit) | N | Minimum | Maximum | Average | Mean | SD |
---|---|---|---|---|---|---|
1. Flow (n) | 54 | 0 | 96 | 23.93 | 13.50 | 26.92 |
2. Size (ha) | 54 | 0.50 | 19.78 | 2.52 | 1.48 | 3.08 |
3. Residents (n) | 54 | 8165 | 86,089 | 36,155 | 34,833 | 14,882.26 |
4. Commerce (m2) | 54 | 8426 | 532,869 | 173,217 | 132,209 | 149,247.28 |
5. Global intermediation (n) | 54 | 16 | 31,919,872 | 1,656,727 | 108,857 | 4,869,757.24 |
6. Global integration (n) | 54 | 937 | 1833 | 1425 | 1414 | 225.31 |
7. Altitude (n) | 54 | 647 | 827 | 695 | 682 | 39.21 |
8. Longitude (km) | 54 | 0 | 12.50 | 4.25 | 3.55 | 2.75 |
9. Time (h) | 54 | 0 | 4,90 | 0.57 | 0.39 | 0.73 |
10. Speed (km/h) | 54 | 0 | 25.66 | 10.53 | 11.02 | 5.04 |
11. Crossroads (n) | 54 | 57 | 377 | 160.59 | 148.50 | 66.46 |
12. Parking (n) | 54 | 0 | 33 | 9.76 | 7 | 9.75 |
13. Bicycle racks (n) | 54 | 0 | 8 | 0.98 | 0 | 1.71 |
14. Bicycle lanes (m) | 54 | 0 | 665 | 192.59 | 137.50 | 198.13 |
15. University centres (n) | 54 | 0 | 36 | 9.72 | 4 | 10.22 |
Variables | B | ORs | p | 95% CI |
---|---|---|---|---|
2. Size (ha) | 0.674 | 1.962 | 0.424 | 0.376–10.247 |
3. Residents (n) | 1.658 | 5.248 | 0.372 | 0.138–199.899 |
4. Commerce (m2) | 0.776 | 2.174 | 0.440 | 0.303–15.607 |
6. Global integration (n) | −0.396 | 0.673 | 0.691 | 0.095–4.749 |
11. Crossroads (n) | −2.909 | 0.055 | 0.151 | 0.001–2.883 |
12. Parking (n) | 3.187 | 24.223 | 0.045 (*) | 1.067–549.887 |
13. Bicycle racks (n) | −1.001 | 0.367 | 0.251 | 0.066–2.032 |
14. Bicycle lanes (m) | 1.643 | 5.173 | 0.052 (*) | 0.966–27.712 |
15. Univ. centres (n) | 1.957 | 7.080 | 0.041 (*) | 1.088–46.073 |
Measurement | N (Unique) | Male | Female | No Data |
---|---|---|---|---|
30 days by bike 2019 challenge | 560 (560) | 288 (51%) | 227 (41%) | 45 (8%) |
In all green areas | 1292 (497) | 635 (49%) | 499 (39%) | 158 (12%) |
In green areas with a high probability of cycle routes | 1169 (483) | 559 (48%) | 464 (40%) | 146 (12%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Sánchez, F.S.; Valenzuela-Montes, L.M.; Abarca-Álvarez, F.J. Evidence of Green Areas, Cycle Infrastructure and Attractive Destinations Working Together in Development on Urban Cycling. Sustainability 2019, 11, 4730. https://doi.org/10.3390/su11174730
Campos-Sánchez FS, Valenzuela-Montes LM, Abarca-Álvarez FJ. Evidence of Green Areas, Cycle Infrastructure and Attractive Destinations Working Together in Development on Urban Cycling. Sustainability. 2019; 11(17):4730. https://doi.org/10.3390/su11174730
Chicago/Turabian StyleCampos-Sánchez, Francisco Sergio, Luis Miguel Valenzuela-Montes, and Francisco Javier Abarca-Álvarez. 2019. "Evidence of Green Areas, Cycle Infrastructure and Attractive Destinations Working Together in Development on Urban Cycling" Sustainability 11, no. 17: 4730. https://doi.org/10.3390/su11174730
APA StyleCampos-Sánchez, F. S., Valenzuela-Montes, L. M., & Abarca-Álvarez, F. J. (2019). Evidence of Green Areas, Cycle Infrastructure and Attractive Destinations Working Together in Development on Urban Cycling. Sustainability, 11(17), 4730. https://doi.org/10.3390/su11174730