Temporal-Spatial Variations and Regional Disparities in Land-Use Efficiency, and the Response to Demographic Transition
Abstract
:1. Introduction
2. An Analytical Framework
3. Methodology
3.1. Exploratory Spatial Data Analysis (ESDA)
3.2. Theil Index
3.3. The Indicator System of Demographic Transition
3.4. STIRPAT Model
4. Data Source
5. Results
5.1. Dynamic Evolution of Spatial Distribution for Land-Use Efficiency
- (1)
- The land-use efficiency is the highest in the eastern region and the lowest in the western region, and gradually decreases from east to west. Shanghai’s land-use efficiency has been leading the country for 26 years.
- (2)
- The spatial agglomeration of land-use efficiency is mainly to take some provinces with dense population and developed economies in the eastern region into account as the cluster centers, such as Beijing, Shanghai, Tianjin, Zhejiang, Guangdong and so on. These provinces greatly promote the improvement of land utilization efficiency in their own and their surrounding provinces, forming a number of provincial clusters with higher land-use efficiency, which gradually spread over time. By 2016, the whole eastern and central regions had achieved very high or high land-use efficiency, and some western regions had also been affected, leading to improved land-use efficiency.
5.2. Regional Disparities of Land-Use Efficiency
5.3. Response of Land-Use Efficiency to Demographic Transition
5.3.1. The Analysis of Response in the Whole Country
5.3.2. The Analysis of Response in the Eastern Region
5.3.3. The Analysis of Response in the Central Region
5.3.4. The Analysis of Response in the Western Region
6. Discussion
6.1. Temporal-Spatial Distribution Characteristics and Regional Disparities of Land-Use Efficiency
6.2. Response of Land-Use Efficiency to Demographic Quantity Transition
6.3. Response of Land-Use Efficiency to Demographic Structure Transition
6.4. Response of Land-Use Efficiency to Demographic Quality Transition
7. Conclusions and Implications
- Properly handle the trends in population growth and strengthen the accumulation of human capital. The law of population development in developed countries shows that during the process of a country’s social and economic development, high-level human capital and high population growth will not appear at the same time. Our research results also found that continuous expansion of the population will have a negative impact on land-use efficiency in the later stages, while human capital will always promote land-use efficiency. Since China began implementing the two-child policy in 2015, its population has steadily grown, which has eased the aging crisis China faces to some extent. But at the same time, we should pay more attention to improving the Chinese population’s quality and accumulating human capital. Especially in some provinces where educational resources are scarce, more attention should be paid to the construction of basic educational infrastructure and the cultivation of high-quality educational resources. Therefore, the government should pay attention to population quality construction and improve human capital level while handling the population growth reasonably, and finally propelling the transformation of the population from growth in quantity to growth in quality.
- Improve the employment structure and upgrade the industrial structure. The government and other relevant sectors should further optimize the industrial and employment structures, promote upgrades of the industrial structure, relieve the pressure of economic development on China’s land resources, and improve the intensity of land-use. At the same time, with the gradual increase in the proportion of high-tech industries driven by human capital in the eastern region of China and the deepening of China’s industrialization and globalization, on the one hand, we should pay attention to the introduction of overseas high-level talents while cultivating domestic high-level personnel. On the other hand, we should give more support to innovative enterprises and actively build innovative industrial clusters to provide impetus for economic development and lay a solid foundation for the efficient use of land resources.
- Promote urbanization and standardize the construction of land markets. With the Belt and Road Initiative and the shift of the manufacturing industry to the central and western regions, driven by the development of the Yangtze River Economic Belt, China’s central and western regions will experience a faster urbanization rate to absorb population increases. In the meantime, the urbanization process will definitely be an acid test for land market mechanisms. Therefore, on the one hand, there should be an increased focus on the degree of urbanization of the central and western regions and the interrelation between land-use and urbanization should be strengthened. On the other hand, governments should increase the rationalization of land supply for urban construction, focus on the development and utilization of idle lands, strengthen the market mechanisms in regard to land and construction, and promote coordinated sustainable development of urbanization and land resources.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Regions | Provinces |
---|---|
Eastern | Liaoning, Shanghai, Jiangsu, Zhejiang, Tianjin, Fujian, Shandong, Hebei, Guangdong, Hainan, Beijing |
Central | Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan |
Western | Sichuan, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Inner Mongolia, Qinghai, Xizang, Xinjiang, Guangxi |
Year | Moran’I | p-Value | Z-Score |
---|---|---|---|
1991 | 0.087 | 0.027 | 2.215 |
1992 | 0.091 | 0.02 | 2.321 |
1993 | 0.092 | 0.015 | 2.427 |
1994 | 0.097 | 0.013 | 2.492 |
1995 | 0.100 | 0.012 | 2.503 |
1996 | 0.099 | 0.013 | 2.482 |
1997 | 0.095 | 0.015 | 2.433 |
1998 | 0.093 | 0.017 | 2.384 |
1999 | 0.091 | 0.019 | 2.34 |
2000 | 0.090 | 0.022 | 2.294 |
2001 | 0.093 | 0.023 | 2.267 |
2002 | 0.097 | 0.023 | 2.268 |
2003 | 0.099 | 0.022 | 2.298 |
2004 | 0.099 | 0.022 | 2.296 |
2005 | 0.103 | 0.019 | 2.343 |
2006 | 0.106 | 0.018 | 2.374 |
2007 | 0.106 | 0.017 | 2.379 |
2008 | 0.111 | 0.016 | 2.401 |
2009 | 0.117 | 0.018 | 2.372 |
2010 | 0.123 | 0.016 | 2.417 |
2011 | 0.131 | 0.015 | 2.445 |
2012 | 0.137 | 0.015 | 2.443 |
2013 | 0.139 | 0.015 | 2.44 |
2014 | 0.139 | 0.015 | 2.428 |
2015 | 0.140 | 0.015 | 2.428 |
2016 | 0.135 | 0.016 | 2.412 |
Unit Root Test | Variable | IPS | Fisher ADF | Fisher PP |
---|---|---|---|---|
Levels | lnP | −2.835 *** | 124.895 *** | 221.878 *** |
lnWAP | 0.078 | 48.712 | 38.344 | |
lnURB | −1.241 | 69.920 | 61.693 | |
lnNFP | 1.102 | 63.538 | 90.799 ** | |
lnES2 | 1.900 | 42.542 | 34.908 | |
lnES3 | 2.787 | 94.345 *** | 152.944 *** | |
lnPEDU | 1.692 | 33.251 | 40.340 | |
lnPGDP | −0.991 | 90.600 ** | 113.533 *** | |
lnLUE | 0.801 | 54.866 | 97.816 *** | |
First difference | lnP | −23.536 *** | 518.501 *** | 537.371 *** |
lnWAP | −22.161 *** | 493.191 *** | 575.572 *** | |
lnURB | −16.058 *** | 341.800 *** | 359.686 *** | |
lnNFP | −12.375 *** | 266.586 *** | 279.100 *** | |
lnES2 | −11.949 *** | 258.703 *** | 277.294 *** | |
lnES3 | −18.570 *** | 408.794 *** | 424.017 *** | |
lnPEDU | −30.828 *** | 687.972 *** | 811.876 *** | |
lnPGDP | −6.317 *** | 146.169 *** | 112.627 *** | |
lnLUE | −5.353 *** | 135.480 *** | 89.779 ** |
Unit Root Test | Variable | IPS | Fisher ADF | Fisher PP |
---|---|---|---|---|
Levels | lnP | 1.998 | 16.993 | 36.890 ** |
lnWAP | 0.900 | 11.205 | 12.105 | |
lnURB | −1.604 * | 29.160 | 25.741 | |
lnNFP | 0.240 | 17.218 | 23.109 | |
lnES2 | 1.879 | 7.680 | 6.717 | |
lnES3 | 1.691 | 24.820 | 66.844 *** | |
lnPEDU | 0.005 | 17.713 | 22.281 | |
lnPGDP | −3.136 *** | 65.025 *** | 86.239 *** | |
lnLUE | −0.910 | 32.036 * | 67.598 *** | |
First difference | lnP | −16.401 *** | 211.872 *** | 216.456 *** |
lnWAP | −11.017 *** | 146.206 *** | 166.406 *** | |
lnURB | −8.693 *** | 109.274 *** | 111.074 *** | |
lnNFP | −5.453 *** | 67.717 *** | 61.697 *** | |
lnES2 | −5.749 *** | 72.908 *** | 74.946 *** | |
lnES3 | −10.639 *** | 140.855 *** | 119.799 *** | |
lnPEDU | −17.319 *** | 230.945 *** | 267.447 *** | |
lnPGDP | −3.904 *** | 48.723 *** | 45.641 *** | |
lnLUE | −3.416 *** | 48.808 *** | 44.350 *** |
Unit Root Test | Variable | IPS | Fisher ADF | Fisher PP |
---|---|---|---|---|
Levels | lnP | −2.803 *** | 34.434 *** | 45.985 *** |
lnWAP | −1.313 | 21.368 | 10.376 | |
lnURB | −0.286 | 13.055 | 13.675 | |
lnNFP | 1.738 | 8.107 | 23.231 | |
lnES2 | −0.220 | 17.301 | 15.030 | |
lnES3 | 0.285 | 32.389 *** | 31.888 ** | |
lnPEDU | 0.978 | 7.755 | 12.099 | |
lnPGDP | −0.077 | 13.057 | 14.865 | |
lnLUE | 0.921 | 9.402 | 16.556 | |
First difference | lnP | −12.505 *** | 139.295 *** | 139.468 *** |
lnWAP | −11.166 *** | 126.031 *** | 160.043 *** | |
lnURB | −7.531 *** | 80.748 *** | 80.836 *** | |
lnNFP | −4.725 *** | 51.479 *** | 59.174 *** | |
lnES2 | −5.065 *** | 53.559 *** | 52.214 *** | |
lnES3 | −8.239 *** | 93.263 *** | 102.663 *** | |
lnPEDP | −14.729 *** | 167.376 *** | 207.988 *** | |
lnPGDP | −4.213 *** | 46.903 *** | 46.738 *** | |
lnLUE | −5.167 *** | 57.552 *** | 41.854 *** |
Unit Root Test | Variable | IPS | Fisher ADF | Fisher PP |
---|---|---|---|---|
Levels | lnP | −4.200 *** | 73.468 *** | 139.004 *** |
lnWAP | 0.345 | 16.139 | 15.863 | |
lnURB | −0.225 | 27.706 | 22.277 | |
lnNFP | 0.144 | 38.213 ** | 44.459 *** | |
lnES2 | 1.425 | 17.562 | 13.161 | |
lnES3 | 2.625 | 37.136 ** | 54.213 *** | |
lnPEDU | 1.987 | 7.782 | 5.960 | |
lnPGDP | 1.628 | 12.519 | 12.430 | |
lnLUE | 1.463 | 13.428 | 13.662 | |
First difference | lnP | −11.934 *** | 167.335 *** | 181.448 *** |
lnWAP | −15.988 *** | 220.954 *** | 249.123 *** | |
lnURB | −11.337 *** | 151.778 *** | 167.777 *** | |
lnNFP | −10.840 *** | 147.390 *** | 158.229 *** | |
lnES2 | −9.580 *** | 132.236 *** | 150.135 *** | |
lnES3 | −12.928 *** | 174.675 *** | 201.555 *** | |
lnPEDP | −20.973 *** | 289.652 *** | 336.441 *** | |
lnPGDP | −4.651 *** | 62.194 *** | 56.576 *** | |
lnLUE | −3.658 *** | 54.204 *** | 42.189 ** |
Cointegration Test | All Provinces | Eastern Region | Central Region | Western Region |
---|---|---|---|---|
ADF stat | −13.723 *** | −9.075 *** | −9.922 *** | −12.921 *** |
Residual variance | 0.000303 | 0.000223 | 0.000133 | 0.000450 |
HAC variance | 0.000157 | 0.000156 | 0.0000869 | 0.000172 |
All Province | Eastern Region | Central Region | Western Region | |
---|---|---|---|---|
Hausman test | 63.772 *** | 51.713 *** | 12.459 *** | 43.452 *** |
Likelihood ratio test | 64.827 *** | 50.667 *** | 67.674 *** | 43.375 *** |
Model type | FE | FE | FE | FE |
References
- Choudhry, M.T.; Elhorst, J.P. Demographic transition and economic growth in China, India and Pakistan. Econ. Syst. 2010, 34, 218–236. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Yamamoto, K. Population concentration, urbanization, and demographic transition. J. Urban Econ. 2005, 58, 45–61. [Google Scholar] [CrossRef]
- Tamura, R. From decay to growth: A demographic transition to economic growth. J. Econ. Dyn. Control 1996, 20, 1237–1261. [Google Scholar] [CrossRef]
- Brezis, E.S. Social classes, demographic transition and economic growth. Eur. Econ. Rev. 2001, 45, 707–717. [Google Scholar] [CrossRef]
- Wang, F. World Population in the Era of Globalization and China’s Choice. Int. Econ. Rev. 2010, 6, 70–80. [Google Scholar]
- Chen, Y.; Fang, Z. Industrial electricity consumption, human capital investment and economic growth in Chinese cities. Econ. Model. 2018, 69, 205–219. [Google Scholar] [CrossRef]
- Fang, Z.; Chen, Y. Human capital and energy in economic growth – Evidence from Chinese provincial data. Energy Econ. 2017, 68. [Google Scholar] [CrossRef]
- Li, Y.; Shu, B.; Wu, Q. Urban land use efficiency in China: Spatial and temporal characteristics, regional difference and influence factors. Econ. Geogr. 2014, 34, 133–139. [Google Scholar] [CrossRef]
- Zhong, T.; Chen, Y.; Huang, X. Impact of land revenue on the urban land growth toward decreasing population density in Jiangsu Province, China. Habitat Int. 2016, 58, 34–41. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Shi, C. Urban land-use efficiency, spatial spillover, and determinants in China. Acta Geogr. Sin. 2015, 70, 1788–1799. [Google Scholar]
- Garg, V.; Nikam, B.R.; Thakur, P.K.; Aggarwal, S.P.; Gupta, P.K.; Srivastav, S.K. Human-induced land use land cover change and its impact on hydrology. HydroResearch 2019, 1, 48–56. [Google Scholar] [CrossRef]
- Belay, T.; Mengistu, D.A. Land use and land cover dynamics and drivers in the Muga watershed, Upper Blue Nile basin, Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 15, 100249. [Google Scholar] [CrossRef]
- Yang, Y.; Lang, Y. Impacts of urbanization on land use efficiency and its regional difference in inland area of China regarding the opening reform. China Land Sci. 2011, 25, 19–26. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Li, J. The influencing factors and spatial spillover effect of urban land use efficiency in China. Econ. Surv. 2017, 34, 25–30. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wu, Q.; Wang, W. Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River. Land Use Policy 2018, 75, 518–529. [Google Scholar] [CrossRef]
- Chen, W.; Shen, Y.; Wang, Y.; Wu, Q. The effect of industrial relocation on industrial land use efficiency in China: A spatial econometrics approach. J. Clean. Prod. 2018, 205, 525–535. [Google Scholar] [CrossRef]
- Kytzia, S.; Walz, A.; Wegmann, M. How can tourism use land more efficiently? A model-based approach to land-use efficiency for tourist destinations. Tour. Manag. 2011, 32, 629–640. [Google Scholar] [CrossRef]
- Liu, S.; Ye, Y.; Li, L. Spatial–Temporal Analysis of Urban Land-Use Efficiency: An Analytical Framework in Terms of Economic Transition and Spatiality. Sustainability 2019, 11, 1839. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Wei, Y.H.D. A comparative study of land efficiency of electronics firms located within and outside development zones in Shanghai. Habitat Int. 2016, 56, 63–73. [Google Scholar] [CrossRef]
- Cegielska, K.; Noszczyk, T.; Kukulska, A.; Szylar, M.; Hernik, J.; Dixon-Gough, R.; Jombach, S.; Valánszki, I.; Filepné Kovács, K. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy 2018, 78, 1–18. [Google Scholar] [CrossRef]
- Betru, T.; Tolera, M.; Sahle, K.; Kassa, H. Trends and drivers of land use/land cover change in Western Ethiopia. Appl. Geogr. 2019, 104, 83–93. [Google Scholar] [CrossRef]
- Sylvester, K.M.; Brown, D.G.; Deane, G.D.; Kornak, R.N. Land transitions in the American plains: Multilevel modeling of drivers of grassland conversion (1956–2006). Agric. Ecosyst. Environ. 2013, 168, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, Z. Evaluation and improvement of agricultural land resource utilization efficiency: A case study of Jiangxi Province. Chin. J. Eco-Agric. 2019, 27, 803–814. [Google Scholar] [CrossRef]
- Li, C.; Miao, M. Urban land use efficiency measurement of city group in middle reaches of Yangtze River:reality mechanism and spatiotemporal diversities. China Popul. Resour. Environ. 2017, 27, 157–164. [Google Scholar]
- Zhu, M.; Fu, X. Spatial-temporal Evolution of Urban Land Use Efficiency in the Guangdong-Hong Kong-Macao Greater Bay Area. Trop. Geogr. 2017, 37, 814–823. [Google Scholar] [CrossRef]
- Gao, X.; Liu, H.; Zhang, Y.; Lv, Y.; Liu, X. Spatio-temporal patterns of urban expansion in the Yangtze River Delta Megalopolis from 1990 to 2010. Nat. Sci. 2016, 52, 645–650. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Unwin, D. Geographic Information Analysis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ertur, C.; Koch, W. Regional Disparities in the European Union and the Enlargement Process: An Exploratory Spatial Data Analysis, 1995–2000. Ann. Reg. Sci. 2006, 40, 723–765. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—ISA. Geogr. Anal. 2010, 27, 93–115. [Google Scholar] [CrossRef]
- Geary, C.R. The Contiguity Ratio and Statistical Mapping. Inc. Stat. 1954, 5, 115–145. [Google Scholar] [CrossRef]
- Getis, A.; Ord, K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Cliff, D.A.; Ord, K. Spatial Autocorrelation: A Review of Existing and New Measures with Applications. Econ. Geogr. 1970, 46, 269–292. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Boston, MA, USA, 1988. [Google Scholar]
- Shorrocks, A.F. The Class of Additively Decomposable Inequality Measures. Econometrica 1980, 48, 613–625. [Google Scholar] [CrossRef]
- Liu, B.; Xu, M.; Wang, J.; Xie, S. Regional disparities in China’s marine economy. Mar. Policy 2017, 82, 1–7. [Google Scholar] [CrossRef]
- Yue, W.; Zhang, Y.; Ye, X.; Cheng, Y.; Leipnik, M.R. Dynamics of Multi-Scale Intra-Provincial Regional Inequality in Zhejiang, China. Sustainability 2014, 6, 5763–5784. [Google Scholar] [CrossRef] [Green Version]
- Chongvilaivan, A.; Kim, J. Individual Income Inequality and Its Drivers in Indonesia: A Theil Decomposition Reassessment. Soc. Indic. Res. 2016, 126, 79–98. [Google Scholar] [CrossRef]
- Akita, T. Decomposing Regional Income Inequality in China and Indonesia Using Two-stage Nested Theil Decomposition Method. Ann. Reg. Sci. 2003, 37, 55–77. [Google Scholar] [CrossRef]
- Paredes, D.; Iturra, V.; Lufin, M. A Spatial Decomposition of Income Inequality in Chile. Reg. Stud. 2014, 49, 771–789. [Google Scholar] [CrossRef]
- Bianco, V.; Cascetta, F.; Marino, A.; Nardini, S. Understanding energy consumption and carbon emissions in Europe: A focus on inequality issues. Energy 2019, 170, 120–130. [Google Scholar] [CrossRef]
- Padilla, E.; Duro, J.A. Explanatory factors of CO2 per capita emission inequality in the European Union. Energy Policy 2013, 62, 1320–1328. [Google Scholar] [CrossRef]
- Padilla, E.; Serrano, A. Inequality in CO2 emissions across countries and its relationship with income inequality: A distributive approach. Energy Policy 2006, 34, 1762–1772. [Google Scholar] [CrossRef]
- Cantore, N.; Padilla, E. Equality and CO2 emissions distribution in climate change integrated assessment modelling. Energy 2010, 35, 298–313. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Chang. 2016, 37, 1–15. [Google Scholar] [CrossRef]
- Hang, F.; Guo, J. Demographic Transition and the Evolution of Economic Development Stage. Northwest Popul. J. 2016, 37, 8–13. [Google Scholar] [CrossRef]
- Liu, W.; Li, L. Re-thinking on Urbanization: Demographic Transition Perspective. Soc. Sci. Chin. High. Educ. Inst. 2014, 5, 102–115. [Google Scholar] [CrossRef]
- Yuan, B.; Huang, W. Effect of the population and labor aging on the economic growth during demographic transition. China Labor 2016, 24, 55–58. [Google Scholar] [CrossRef]
- Wu, K.; Cheng, W.; Feng, F. Influence of Demograpjic Transition on Economic Growth Fluctuation in China. China J. Econ. 2016, 3, 186–202. [Google Scholar] [CrossRef]
- Guo, X.; Duan, Y. Demographic Transition and Economic Growth in Middle-income Stage. Financ. Econ. 2017, 3, 27–39. [Google Scholar]
- Duan, B. Dynamic Evolution of All Ages Life Expectancies in China. Popul. Econ. 2015, 1, 49–63. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G. Problems of Population Age Structure under the Two—Children Policy—A Theoretical Thinking Based on the Stable Population Theory. Soc. Sci. Ed. 2018, 32, 21–27. [Google Scholar] [CrossRef]
- Li, T.; Long, H. Analysis of Rural Transformation Development from the Viewpoint of “Population-Land-Industry”: The Case of Shandong Province. Econ. Geogr. 2015, 35, 149–155. [Google Scholar] [CrossRef]
- Min, J.; Yang, W.; Wang, J. Spatial Pattern of Rural Transition in The Three Gorges Reservoir Area of Chongqing. Nat. Sci. 2017, 34, 42–48. [Google Scholar]
- Tang, L.; Liu, Y.; Tang, X. Temporal Characteristics and Coupling of Urban-rural transformation and Rural Regional Multifunction in Beijing: From 1978 to 2012. Hum. Geogr. 2016, 31, 123–129. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Liao, F.H.; Huang, Z. Administrative hierarchy and urban land expansion in transitional China. Appl. Geogr. 2015, 56, 177–186. [Google Scholar] [CrossRef]
- Mu, H. On Farmers’ Income and its Determinants. Popul. Dev. 2016, 22, 64–71. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T. Impacts of urbanization-related factors on CO2 emissions: Evidence from China’s three regions with varied urbanization levels. Atmos. Pollut. Res. 2018, 9, 15–26. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Investigating the role of high-tech industry in reducing China’s CO2 emissions: A regional perspective. J. Clean. Prod. 2018, 177, 169–177. [Google Scholar] [CrossRef]
- He, Z.; Xu, S.; Shen, W.; Long, R.; Chen, H. Impact of urbanization on energy related CO2 emission at different development levels: Regional difference in China based on panel estimation. J. Clean. Prod. 2017, 140, 1719–1730. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, Y.; Wang, J.; Xu, L. Panel estimation for the impacts of population-related factors on CO2 emissions: A regional analysis in China. Ecol. Indic. 2017, 78, 322–330. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [PubMed]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Fu, B.; Wu, M.; Che, Y.; Wang, M.; Huang, Y.; Bai, Y. The strategy of a low-carbon economy based on the STIRPAT and SD models. Acta Ecol. Sin. 2015, 35. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Greene, W.H. Econometric Analysis, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels. J. Econ. 2004, 69, 1–42. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, Y. Analysis of coordinative and harmonious degree between urban land use efficiency and urbanization-A case study on 285 cities at prefecture level or above. Res. Soil Water Conserv. 2017, 24, 291–297. [Google Scholar] [CrossRef]
- Guo, G.; Xiong, Q. Study on the urban industrial land use efficiency and its influencing factors in China. China Land Sci. 2014, 28, 45–52. [Google Scholar] [CrossRef]
- Li, G. China urban land use average efficiency: Measure, evolution mechanism and influencing factors. J. Financ. Econ. Theory 2015, 3, 33–38. [Google Scholar] [CrossRef]
- Wu, D.; Mao, H.; Zhang, X.; Huang, J. Assessment of urban land use efficiency in China. Acta Geogr. Sin. 2011, 66, 1111–1121. [Google Scholar] [CrossRef]
- Wang, X.; Meng, W. Measurement and analysis of the provincial regions’ human capital in China: Based on a Multivariate Complex-approach. Popul. Econ. 2014, 4, 3–13. [Google Scholar]
Synthetic Index | Type | Indicator (Variable) | Definition | Unit of Measurement |
---|---|---|---|---|
Demographic transition | Quantity transition | Population (P) | Total population at the end of the year | 104 Person |
Structure transition | Working-age population ratio (WAP) | The ratio of people over 14 and under 65 years old in the total population | Percent | |
Urbanization (URB) | The ratio of the urban population in the total population | Percent | ||
Nonfarm payrolls ratio (NFP) | The ratio of the nonfarm payrolls in the total working population | Percent | ||
Employment structure 2 (ES2) | Employment population of the secondary industry | 104 | ||
Employment structure 3 (ES3) | Employment population of the tertiary industry | 104 | ||
Quality transition | Per capita education (PEDU) | The average of the total number of years of education | Year | |
Per capita GDP (PGDP) | GDP divided by the population at the end of the year | Yuan | ||
Land-use efficiency (LUE) | GDP divided by the area of land at the end of the year | 108 Yuan/km2 |
Year | Theil Index | Contribution (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Between-Region Differences | Within-Region Differences | Within-Region Differences in Three Regions | Between-Region Differences | Within-Region Differences | Within-Region Differences in Three Regions | |||||
Eastern Region | Central Region | Western Region | Eastern Region | Central Region | Western Region | ||||||
1991 | 0.41901 | 0.29345 | 0.15535 | 0.05409 | 0.00997 | 0.09128 | 70.03 | 37.07 | 12.91 | 2.38 | 21.79 |
1992 | 0.42910 | 0.30429 | 0.15365 | 0.05453 | 0.01028 | 0.08883 | 70.91 | 35.81 | 12.71 | 2.40 | 20.70 |
1993 | 0.44112 | 0.31787 | 0.15108 | 0.05378 | 0.01032 | 0.08697 | 72.06 | 34.25 | 12.19 | 2.34 | 19.72 |
1994 | 0.44488 | 0.32183 | 0.15060 | 0.05308 | 0.01023 | 0.08730 | 72.34 | 33.85 | 11.93 | 2.30 | 19.62 |
1995 | 0.45224 | 0.32499 | 0.15428 | 0.05580 | 0.01180 | 0.08668 | 71.86 | 34.12 | 12.34 | 2.61 | 19.17 |
1996 | 0.44982 | 0.32205 | 0.15492 | 0.05508 | 0.01213 | 0.08771 | 71.60 | 34.44 | 12.24 | 2.70 | 19.50 |
1997 | 0.45226 | 0.32363 | 0.15565 | 0.05666 | 0.01202 | 0.08697 | 71.56 | 34.42 | 12.53 | 2.66 | 19.23 |
1998 | 0.45399 | 0.32412 | 0.15697 | 0.05792 | 0.01222 | 0.08682 | 71.39 | 34.58 | 12.76 | 2.69 | 19.12 |
1999 | 0.45796 | 0.32729 | 0.15763 | 0.05989 | 0.01216 | 0.08558 | 71.47 | 34.42 | 13.08 | 2.66 | 18.69 |
2000 | 0.47808 | 0.34524 | 0.15835 | 0.06788 | 0.01190 | 0.07857 | 72.22 | 33.12 | 14.20 | 2.49 | 16.44 |
2001 | 0.47047 | 0.33494 | 0.16174 | 0.06709 | 0.01294 | 0.08171 | 71.19 | 34.38 | 14.26 | 2.75 | 17.37 |
2002 | 0.48508 | 0.34911 | 0.16112 | 0.07180 | 0.01223 | 0.07709 | 71.97 | 33.22 | 14.80 | 2.52 | 15.89 |
2003 | 0.48882 | 0.35317 | 0.16057 | 0.07320 | 0.01212 | 0.07526 | 72.25 | 32.85 | 14.97 | 2.48 | 15.40 |
2004 | 0.49137 | 0.35272 | 0.16353 | 0.07569 | 0.01311 | 0.07473 | 71.78 | 33.28 | 15.40 | 2.67 | 15.21 |
2005 | 0.49384 | 0.35762 | 0.16089 | 0.07492 | 0.01306 | 0.07291 | 72.42 | 32.58 | 15.17 | 2.65 | 14.76 |
2006 | 0.49445 | 0.35852 | 0.16071 | 0.07500 | 0.01325 | 0.07246 | 72.51 | 32.50 | 15.17 | 2.68 | 14.65 |
2007 | 0.49337 | 0.35584 | 0.16254 | 0.07521 | 0.01399 | 0.07333 | 72.12 | 32.94 | 15.24 | 2.84 | 14.86 |
2008 | 0.47417 | 0.33905 | 0.16163 | 0.06843 | 0.01438 | 0.07883 | 71.51 | 34.09 | 14.43 | 3.03 | 16.62 |
2009 | 0.47244 | 0.33629 | 0.16298 | 0.06711 | 0.01504 | 0.08083 | 71.18 | 34.50 | 14.20 | 3.18 | 17.11 |
2010 | 0.46557 | 0.33190 | 0.16072 | 0.06459 | 0.01491 | 0.08122 | 71.29 | 34.52 | 13.87 | 3.20 | 17.45 |
2011 | 0.45204 | 0.31972 | 0.16049 | 0.06042 | 0.01471 | 0.08535 | 70.73 | 35.50 | 13.37 | 3.25 | 18.88 |
2012 | 0.44459 | 0.31202 | 0.16154 | 0.05837 | 0.01506 | 0.08811 | 70.18 | 36.33 | 13.13 | 3.39 | 19.82 |
2013 | 0.44356 | 0.30932 | 0.16360 | 0.05850 | 0.01555 | 0.08955 | 69.73 | 36.88 | 13.19 | 3.51 | 20.19 |
2014 | 0.44422 | 0.30731 | 0.16651 | 0.05921 | 0.01644 | 0.09086 | 69.18 | 37.48 | 13.33 | 3.70 | 20.45 |
2015 | 0.45033 | 0.30907 | 0.17072 | 0.06111 | 0.01747 | 0.09213 | 68.63 | 37.91 | 13.57 | 3.88 | 20.46 |
2016 | 0.45948 | 0.30827 | 0.18071 | 0.06751 | 0.01884 | 0.09436 | 67.09 | 39.33 | 14.69 | 4.10 | 20.54 |
Variable | The Whole Sample | Eastern Region | ||||||
FE(1) | FGLS(2) | PCSE(3) | DK(4) | FE(5) | FGLS(6) | PCSE(7) | DK(8) | |
lnP | 1.574 *** | 1.901 *** | 1.963 *** | 1.574 ** | 1.516 *** | 1.708 *** | 1.839 *** | 1.516 ** |
(lnP) * | −0.0849 *** | −0.0993 *** | −0.102 *** | −0.0849 ** | −0.0804 *** | −0.0856 *** | −0.0934 *** | −0.0804 * |
lnWAP | −0.00712 | −0.0210 *** | −0.0272 | −0.00712 | 0.0630 | 0.0155 | 0.0270 | 0.0630 |
lnURB | 0.00435 | 0.00369 *** | 0.00640 | 0.00435 | 0.00409 | 0.00184 | 0.00948 | 0.00409 |
(lnURB) * | −0.000166 | 0.000289 | 0.00162 | −0.000166 | 0.00593 | 0.00421 | 0.00919 | 0.00593 |
lnNFP | −0.00892 | −0.0251 *** | −0.0374 | −0.00892 | 0.0549 | 0.000719 | −0.0480 | 0.0549 |
lnES2 | −0.0221 | −0.0381 *** | −0.050 3 ** | −0.0221 | 0.0161 | −0.153 ** | −0.119 | 0.0161 |
(lnES2) * | 0.00502 | 0.00612 *** | 0.00764 *** | 0.00502 | 0.00205 | 0.0131 *** | 0.0124 | 0.00205 |
lnES3 | 0.126 * | 0.0756 *** | 0.0845 | 0.126 | −0.114 | 0.105 | 0.110 | −0.114 |
(lnES3) * | −0.00973 | −0.00468 *** | −0.00498 | −0.00973 | 0.00958 | −0.00716 | −0.00639 | 0.00958 |
lnPEDU | 0.0121 | 0.0181 *** | 0.0149 | 0.0121 | 0.0546 * | 0.0380 *** | 0.0649 * | 0.0546 * |
lnPGDP | 1.147 *** | 1.072 *** | 1.070 *** | 1.147 *** | 1.096 *** | 1.069 *** | 1.042 *** | 1.096 *** |
(lnPGDP) * | −0.0121 *** | −0.00797 *** | −0.00765 * | −0.0121 * | −0.00771 ** | −0.00508 *** | −0.00417 | −0.00771 |
Constant | 0.0156 *** | 0.0143 *** | 0.0136 *** | 0.0156 ** | 0.0137 *** | 0.00929 *** | 0.0108 *** | 0.0137 ** |
R* | 0.947 | 0.943 | 0.971 | 0.966 | ||||
Autocorrelation test | F(1,30) = 0.006 | F(1,10) = 5.492 ** | ||||||
Cross-sectional dependence test | 16.256 *** | 209.157 *** | ||||||
dependence test | ||||||||
Heteroscedasticity test | χ * (31) = 10136.37 *** | χ * (11) = 434.25 *** | ||||||
Observations | 775 | 775 | 775 | 775 | 275 | 275 | 275 | 275 |
Variable | Central Region | Western Region | ||||||
FE(9) | FGLS(10) | PCSE(11) | DK(12) | FE(13) | FGLS(14) | PCSE(15) | DK(16) | |
lnP | 3.187 | 4.120 *** | 4.235 *** | 3.187 * | 0.463 | 0.844 *** | 0.729 | 0.463 |
(lnP) * | −0.181 | −0.235 *** | −0.242 *** | −0.181 * | −0.0203 | −0.0376 *** | −0.0338 | −0.0203 |
lnWAP | −0.0343 | −0.0380 | −0.0299 | −0.0343 | −0.0352 | −0.0169 | −0.0374 | −0.0352 |
lnURB | 0.0225 | 0.0261 *** | 0.0228 * | 0.0225 | 0.00775 | 0.0101 | 0.00851 | 0.00775 |
(lnURB) * | 0.00340 | 0.00636 | 0.00338 | 0.00340 | 0.00126 | 0.00345 | 0.00201 | 0.00126 |
lnNFP | −0.0350 | −0.0254 | −0.0212 | −0.0350 | 0.00356 | −0.0180 | −0.0129 | 0.00356 |
lnES2 | −0.291 | −0.131 | −0.194 | −0.291 | −0.00363 | 0.0166 | −0.00899 | −0.00363 |
(lnES2) * | 0.0275 | 0.0121 * | 0.0191 | 0.0275 | 0.00307 | −0.000383 | 0.00353 | 0.00307 |
lnES3 | 0.113 | 0.134 | 0.237 | 0.113 | 0.231 * | 0.131 *** | 0.230 *** | 0.231 |
(lnES3) * | −0.00992 | −0.0100 | −0.0201 | −0.00992 | −0.0204 * | −0.0107 *** | −0.0193 *** | −0.0204 |
lnPEDU | 0.0307 | 0.0203 | 0.0329 | 0.0307 | −0.00323 | 0.000613 | −0.00417 | −0.00323 |
lnPGDP | 1.162 *** | 1.156 *** | 1.144 *** | 1.162 *** | 1.160 *** | 1.095 *** | 1.128 *** | 1.160 *** |
(lnPGDP) * | −0.0114 *** | −0.00976 *** | −0.0104*** | −0.0114 ** | −0.0159 *** | −0.00863 *** | −0.0140* | −0.0159 * |
Constant | 0.00930 *** | 0.00545 *** | 0.00965 *** | 0.00930 ** | 0.0225 *** | 0.0130 *** | 0.0216 *** | 0.0225 * |
R* | 0.975 | 0.975 | 0.905 | 0.904 | ||||
Autocorrelation test | F(1,7) = 0.295 | F(1,11) = 0.001 | ||||||
Cross-sectional dependence test | 52.163 *** | 385.329 *** | ||||||
dependence test | ||||||||
Heteroscedasticity test | χ * (8) = 348.91 *** | χ * (12) = 2700.80 *** | ||||||
Observations | 200 | 200 | 200 | 200 | 300 | 300 | 300 | 300 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yang, J.; Ou, D.; Xiong, Y.; Deng, O.; Li, Q. Temporal-Spatial Variations and Regional Disparities in Land-Use Efficiency, and the Response to Demographic Transition. Sustainability 2019, 11, 4756. https://doi.org/10.3390/su11174756
Wang G, Yang J, Ou D, Xiong Y, Deng O, Li Q. Temporal-Spatial Variations and Regional Disparities in Land-Use Efficiency, and the Response to Demographic Transition. Sustainability. 2019; 11(17):4756. https://doi.org/10.3390/su11174756
Chicago/Turabian StyleWang, Ge, Juan Yang, Dinghua Ou, Yalan Xiong, Ouping Deng, and Qiquan Li. 2019. "Temporal-Spatial Variations and Regional Disparities in Land-Use Efficiency, and the Response to Demographic Transition" Sustainability 11, no. 17: 4756. https://doi.org/10.3390/su11174756
APA StyleWang, G., Yang, J., Ou, D., Xiong, Y., Deng, O., & Li, Q. (2019). Temporal-Spatial Variations and Regional Disparities in Land-Use Efficiency, and the Response to Demographic Transition. Sustainability, 11(17), 4756. https://doi.org/10.3390/su11174756