Modeling Intersecting Processes of Wetland Shrinkage and Urban Expansion by a Time-Varying Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description and Processing
2.2.1. Classification System
2.2.2. Data Sources and Processing
2.3. TVWSUE Methodology
2.3.1. Historical Change Detection Module
2.3.2. Urban Expansion Forecast Module
2.3.3. Wetland Shrinkage Projection Module
2.4. Methodology Application and Validation
3. Results
3.1. Historical Wetland Shrinkage and Urban Expansion
3.2. Relationship between Wetland Distribution and Explanatory Variables
3.3. Performance of the TVWSUE Methodology
3.4. Modeling of Wetland Shrinkage and Urban Expansion at Year 2030
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zedler, J.B.; Kercher, S. Wetland resources: Status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Sica, Y.V.; Quintana, R.D.; Radeloff, V.; Gavier-Pizarro, G. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci. Total Environ. 2016, 568, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Gardner, R.C.; Barchiesi, S.; Beltrame, C.; Finlayson, C.; Galewski, T.; Harrison, I.; Paganini, M.; Perennou, C.; Pritchard, D.; Rosenqvist, A. State of the world’s wetlands and their services to people: A compilation of recent analyses. SRN Electron. J. 2015. [Google Scholar] [CrossRef]
- Gibbs, J.P. Wetland loss and biodiversity conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef]
- Hategekimana, S.; Twarabamenya, E. The impact of wetlands degradation on water resources management in Rwanda: The case of Rugezi Marsh. In Proceedings of the 5th International Symposium on Hydrology, Cario, Egypt, 2007. [Google Scholar]
- An, S.; Wang, Z.; Zhou, C.; Guan, B.; Deng, Z.; Zhi, Y.; Liu, Y.; Xu, C.; Fang, S.; Xu, Z. The headwater loss of the western plateau exacerbates China’s long thirst. AMBIO J. Hum. Environ. 2006, 35, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Gulbin, S.; Kirilenko, A.P.; Kharel, G.; Zhang, X. Wetland loss impact on long term flood risks in a closed watershed. Environ. Sci. Policy 2019, 94, 112–122. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Quesnelle, P.E.; Fahrig, L.; Lindsay, K.E. Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biol. Conserv. 2013, 160, 200–208. [Google Scholar] [CrossRef]
- Nicholls, R.J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 69–86. [Google Scholar] [CrossRef]
- Robertson, L.D.; King, D.J.; Davies, C. Assessing land cover change and anthropogenic disturbance in wetlands using vegetation fractions derived from Landsat 5 TM imagery (1984–2010). Wetlands 2015, 35, 1077–1091. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Van Schrojenstein Lantman, J.; Verburg, P.H.; Bregt, A.; Geertman, S. Core principles and concepts in land-use modelling: A literature review. In Land-Use Modelling in Planning Practice; Springer: Dordrecht, The Netherlands, 2011; pp. 35–57. [Google Scholar]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- De Rosa, M.; Knudsen, M.T.; Hermansen, J.E. A comparison of Land Use Change models: Challenges and future developments. J. Clean. Prod. 2016, 113, 183–193. [Google Scholar] [CrossRef]
- Brown, D.G.; Verburg, P.H.; Pontius, R.G.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-based land-use models: A review of applications. Landsc. Ecol. 2007, 22, 1447–1459. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Chang. Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef]
- Groeneveld, J.; Müller, B.; Buchmann, C.M.; Dressler, G.; Guo, C.; Hase, N.; Hoffmann, F.; John, F.; Klassert, C.; Lauf, T. Theoretical foundations of human decision-making in agent-based land use models–A review. Environ. Model. Softw. 2017, 87, 39–48. [Google Scholar] [CrossRef]
- Sánchez-González, S.; Martínez-Alegría, R.; Taboada, J. Modeling wetland change in Spain’s Tierra de Campos district. Wetl. Ecol. Manag. 2016, 24, 399–410. [Google Scholar] [CrossRef]
- Jamru, L.R.; Rahaman, Z.A. Combination of spatial logistic regression and geographical information systems in modelling wetland changes in Setiu basin, Terengganu. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; p. 012106. [Google Scholar]
- Cui, L.; Gao, C.; Zhou, D.; Mu, L. Quantitative analysis of the driving forces causing declines in marsh wetland landscapes in the Honghe region, northeast China, from 1975 to 2006. Environ. Earth Sci. 2014, 71, 1357–1367. [Google Scholar] [CrossRef]
- Koneff, M.D.; Royle, J.A. Modeling wetland change along the United States Atlantic Coast. Ecol. Model. 2004, 177, 41–59. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Gao, H.; Nie, N. Climate change and anthropogenic impacts on wetland and agriculture in the Songnen and Sanjiang Plain, northeast China. Remote Sens. 2018, 10, 356. [Google Scholar] [CrossRef]
- Liu, H.; Bu, R.; Liu, J.; Leng, W.; Hu, Y.; Yang, L.; Liu, H. Predicting the wetland distributions under climate warming in the Great Xing’an Mountains, northeastern China. Ecol. Res. 2011, 26, 605–613. [Google Scholar] [CrossRef]
- Zhao, D.; He, H.; Wang, W.; Wang, L.; Du, H.; Liu, K.; Zong, S. Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid-and High-Latitude Region. Sustainability 2018, 10, 863. [Google Scholar] [CrossRef]
- Akin, A.; Berberoğlu, S.; Erdogan, M.A.; Donmez, C. Modelling land-use change dynamics in a Mediterranean coastal wetland using CA-Markov chain analysis. Fresenius Environ. Bull. 2012, 21, 386–396. [Google Scholar]
- Yu, H.; He, Z.; Pan, X. Wetlands shrink simulation using cellular automata: A case study in Sanjiang Plain, China. Procedia Environ. Sci. 2010, 2, 225–233. [Google Scholar] [CrossRef]
- Wang, H.; He, Q.; Liu, X.; Zhuang, Y.; Hong, S. Global urbanization research from 1991 to 2009: A systematic research review. Landsc. Urban Plan. 2012, 104, 299–309. [Google Scholar] [CrossRef]
- Rojas, C.; Munizaga, J.; Rojas, O.; Martínez, C.; Pino, J. Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning. Land Use Policy 2019, 80, 47–56. [Google Scholar] [CrossRef]
- Grimmond, S.U.E. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Ahn, C.; Schmidt, S. Designing Wetlands as an Essential Infrastructural Element for Urban Development in the era of Climate Change. Sustainability 2019, 11, 1920. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 380–389. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Triantakonstantis, D.; Mountrakis, G. Urban growth prediction: A review of computational models and human perceptions. J. Geogr. Inf. Syst. 2012, 4, 555. [Google Scholar] [CrossRef]
- Chaudhuri, G.; Clarke, K. The SLEUTH land use change model: A review. Environ. Resour. Res. 2013, 1, 88–105. [Google Scholar]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Liu, Z. Pollution Load and Environment Capacity in Tonghu Lake Basin. Wetland Sci. 2016, 14, 354–360, (In Chinese with English Abstract). [Google Scholar]
- Li, D. Thoughts on water conservancy construction and wetland protection in tonghu area. Guangdong Water Resour. Hydropower 2011, 8, 15–17, (In Chinese with English Abstract). [Google Scholar]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Matthews, G.V.T. The Ramsar Convention on Wetlands: Its History and Development; Ramsar Convention Bureau: Gland, Switzerland, 1993. [Google Scholar]
- Liu, G.; Zhang, L.; Zhang, Q.; Musyimi, Z.; Jiang, Q. Spatio–Temporal Dynamics of Wetland Landscape Patterns Based on Remote Sensing in Yellow River Delta, China. Wetlands 2014, 34, 787–801. [Google Scholar] [CrossRef]
- Li, X.; Xue, Z.; Gao, J. Dynamic changes of plateau wetlands in Madou County, the Yellow River source zone of China: 1990–2013. Wetlands 2016, 36, 299–310. [Google Scholar] [CrossRef]
- Jiyuan, L.; Mingliang, L.; Xiangzheng, D.; Dafang, Z.; Zengxiang, Z.; Di, L. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 2002, 12, 275–282. [Google Scholar] [CrossRef]
- Davranche, A.; Lefebvre, G.; Poulin, B. Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sens. Environ. 2010, 114, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Landmann, T.; Schramm, M.; Colditz, R.R.; Dietz, A.; Dech, S. Wide area wetland mapping in semi-arid Africa using 250-meter MODIS metrics and topographic variables. Remote Sens. 2010, 2, 1751–1766. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Tu, M.-C.; Smith, P.; Filippi, A.M. Hybrid forward-selection method-based water-quality estimation via combining Landsat TM, ETM+, and OLI/TIRS images and ancillary environmental data. PLoS ONE 2018, 13, e0201255. [Google Scholar] [CrossRef] [PubMed]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Land Use/Land Cover Change Analysis Using Object-Based Classification Approach in Munessa-Shashemene Landscape of the Ethiopian Highlands. Remote Sens. 2013, 5, 2411–2435. [Google Scholar] [CrossRef] [Green Version]
- Dessie, G.; Kleman, J. Pattern and Magnitude of Deforestation in the South Central Rift Valley Region of Ethiopia. Mt. Res. Dev. 2007, 27, 162–168. [Google Scholar] [CrossRef]
- Lobo, F.L.; Costa, M.P.F.; Novo, E.M.L.M. Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens. Environ. 2015, 157, 170–184. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Silva, E.A.; Clarke, K.C. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput. Environ. Urban Syst. 2002, 26, 525–552. [Google Scholar] [CrossRef]
- Rienow, A.; Goetzke, R. Supporting SLEUTH–Enhancing a cellular automaton with support vector machines for urban growth modeling. Comput. Environ. Urban Syst. 2015, 49, 66–81. [Google Scholar] [CrossRef]
- Oguz, H.; Klein, A.; Srinivasan, R. Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Houston-Galveston-Brazoria CMSA. Res. J. Soc. Sci. 2007, 2, 72–82. [Google Scholar]
- Bihamta, N.; Soffianian, A.; Fakheran, S.; Gholamalifard, M. Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. J. Indian Soc. Remote Sens. 2015, 43, 407–414. [Google Scholar] [CrossRef]
- Dietzel, C.; Clarke, K.C. Spatial differences in multi-resolution urban automata modeling. Trans. GIS 2004, 8, 479–492. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Remote Sens. 2002, 23, 1775–1798. [Google Scholar] [CrossRef]
- Greiner, M.; Pfeiffer, D.; Smith, R. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 2000, 45, 23–41. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Johnston, C.A. Wetland losses due to row crop expansion in the Dakota Prairie Pothole Region. Wetlands 2013, 33, 175–182. [Google Scholar] [CrossRef]
- Lee, S.; Dunn, R.; Young, R.; Connolly, R.; Dale, P.; Dehayr, R.; Lemckert, C.; McKinnon, S.; Powell, B.; Teasdale, P. Impact of urbanization on coastal wetland structure and function. Austral Ecol. 2006, 31, 149–163. [Google Scholar] [CrossRef]
- Hua, L.; Tang, L.; Cui, S.; Yin, K. Simulating urban growth using the SLEUTH model in a coastal peri-urban district in China. Sustainability 2014, 6, 3899–3914. [Google Scholar] [CrossRef]
- Kentula, M.E.; Gwin, S.E.; Pierson, S.M. Tracking changes in wetlands with urbanization: Sixteen years of experience in Portland, Oregon, USA. Wetlands 2004, 24, 734–743. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, H.; Yao, L. An Elevation-Based Stratification Model for Simulating Land Use Change. Remote Sens. 2018, 10, 1730. [Google Scholar] [CrossRef]
- Brinkmann, K.; Noromiarilanto, F.; Ratovonamana, R.Y.; Buerkert, A. Deforestation processes in south-western Madagascar over the past 40 years: What can we learn from settlement characteristics? Agric. Ecosyst. Environ. 2014, 195, 231–243. [Google Scholar] [CrossRef]
- Oberosler, V.; Groff, C.; Iemma, A.; Pedrini, P.; Rovero, F. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. 2017, 87, 50–61. [Google Scholar] [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Vazquez-Prokopec, G.M.; Bisanzio, D.; Stoddard, S.T.; Paz-Soldan, V.; Morrison, A.C.; Elder, J.P.; Ramirez-Paredes, J.; Halsey, E.S.; Kochel, T.J.; Scott, T.W. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS ONE 2013, 8, e58802. [Google Scholar] [CrossRef]
- Li, X.; Ratti, C.; Seiferling, I. Mapping urban landscapes along streets using google street view. In Proceedings of the International Cartographic Conference (ICACI 2017), Washington, DC, USA, 2–7 July 2017; pp. 341–356. [Google Scholar]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Alcamo, J.; Grubler, A.; Riahi, K.; Roehrl, R.; Rogner, H.-H.; Victor, N. Special Report on Emissions Scenarios (SRES), a Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Dietzel, C.; Clarke, K.C. Toward Optimal Calibration of the SLEUTH Land Use Change Model. Trans. GIS 2007, 11, 29–45. [Google Scholar] [CrossRef]
- Akın, A.; Clarke, K.C.; Berberoglu, S. The impact of historical exclusion on the calibration of the SLEUTH urban growth model. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 156–168. [Google Scholar] [CrossRef]
- Jantz, C.A.; Goetz, S.J.; Donato, D.; Claggett, P. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comput. Environ. Urban Syst. 2010, 34, 1–16. [Google Scholar] [CrossRef]
Time | Satellite | Path | Row | Date |
---|---|---|---|---|
1977 | Landsat Multispectral Scanner (MSS) | 131 | 44 | 09/14/1977 |
1986 | Landsat Thematic Mapper (TM) | 122 | 44 | 11/03/1986 |
1993 | Landsat Thematic Mapper (TM) | 122 | 44 | 09/03/1993 |
2006 | Landsat Thematic Mapper (TM) | 122 | 44 | 09/23/2006 |
2017 | Landsat Operational Land Imager (OLI) | 122 | 44 | 10/23/2017 |
Input Layer | Year | Data Source |
---|---|---|
Slope | Calculation from elevation | |
Land use | 1986, 1993, 2006, 2017 | Remote sensing interpretation |
Exclusion | Remote sensing interpretation and selection | |
Urban | 1986, 1993, 2006, 2017 | Remote sensing interpretation |
Transportation | 1986, 1993, 2006, 2017 | Digitization from transportation department |
Hillshade | Calculation from elevation |
Category | Explanatory Variable | Source |
---|---|---|
Climate variable | x1: annual precipitation | Resource and Environment Data Cloud Platform, Chinese Academy of Sciences (http://www.resdc.cn/) |
x2: annual temperature | ||
Topography factor | x3: elevation | Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Database, Geospatial Data Cloud Site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn/) |
x4: slope | ||
Urban expansion influence | x5: distance to urban extent at the initial time | Visual interpretation from Landsat images and Euclidean distance calculation in ArcGIS 10.0 |
x7: distance to new urban extent from initial to particular time | ||
Surface hydrology factor | x8: wetland extent at the initial time | Visual interpretation from Landsat images |
x9: distance to natural wetlands and Tonghu at different periods | Digitization from the topography maps and visual interpretation from Landsat images; Euclidean distance calculation |
Year | Accuracy Metric | |
---|---|---|
Overall Accuracy | Kappa Coefficient | |
1986 | 92.56% | 0.918 |
2006 | 92.76% | 0.919 |
2017 | 92.10% | 0.914 |
1986 | 1993 | 2006 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
β | Odds Ratio | β | Odds Ratio | β | Odds Ratio | β | Odds Ratio | ||||
β0 | −0.82 | 0.44 | β0 | −2.43 | 0.09 | β0 | −3.37 | 0.03 | β0 | −4.82 | 0.01 |
x1 (1977–1986) | - | - | x1 (1986–1993) | - | - | x1 (1993–2006) | - | - | x1 (2006–2017) | - | - |
x2 (1977–1986) | - | - | x2 (1986–1993) | - | - | x2 (1993–2006) | - | - | x2 (2006–2017) | - | - |
x3 | - | - | x3 | - | - | x3 | - | - | x3 | - | - |
x4 | - | - | x4 | - | - | x4 | - | - | x4 | - | - |
x5 (1977) | 1.48 | 4.4 | x5 (1986) | 0.36 | 1.43 | x5 (1993) | 1.82 | 6.18 | x5 (2006) | 1.93 | 6.88 |
x6 (1977–1986) | 0.35 | 1.41 | x6 (1986–1993) | 3.47 | 32.1 | x6 (1993–2006) | 3.79 | 44.39 | x6 (2006–2017) | 5.21 | 183.64 |
x7 (1977) | 5.22 | 184.56 | x7 (1986) | 4.39 | 80.96 | x7 (1993) | 3.83 | 45.92 | x7 (2006) | 3.93 | 50.96 |
x8 (1965) | −2.35 | 0.10 | x8 (1965) | −2.79 | 0.06 | x8 (1965) | −3.14 | 0.04 | x8 (1965) | −1.50 | 0.22 |
x8 (1977) | −0.72 | 0.48 | x8 (1977) | −1.69 | 0.19 | x8 (1977) | −2.30 | 0.10 | x8 (1977) | −0.55 | 0.58 |
x8 (1986) | - | - | x8 (1986) | - | - | x8 (1986) | - | - | |||
x9 (1993) | −0.43 | 0.65 | x8 (1993) | −1.31 | 0.27 | ||||||
ROC | 0.94 | ROC | 0.93 | ROC | 0.90 | ROC | 0.94 |
Area Proportion (%) | |||||
---|---|---|---|---|---|
Wetland Losses at 1977–1986 to Wetlands in 1977 | Wetland Losses at 1986–1993 to Wetlands in 1986 | Wetland Losses at 1993–2006 to Wetlands in 1993 | Wetland Losses at 2006–2017 to Wetlands in 2006 | ||
Wetland probability | 0–0.2 | 21.35 | 73.81 | 73.50 | 74.08 |
0.2–0.4 | 23.93 | 65.89 | 64.59 | 67.72 | |
0.4–0.6 | 41.08 | 50.79 | 57.50 | ||
0.6–0.8 | 26.10 | 27.89 | 22.27 | ||
0.8–1.0 | 1.31 | 6.26 | 7.18 | 5.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, E.; Chen, Y. Modeling Intersecting Processes of Wetland Shrinkage and Urban Expansion by a Time-Varying Methodology. Sustainability 2019, 11, 4953. https://doi.org/10.3390/su11184953
Xu E, Chen Y. Modeling Intersecting Processes of Wetland Shrinkage and Urban Expansion by a Time-Varying Methodology. Sustainability. 2019; 11(18):4953. https://doi.org/10.3390/su11184953
Chicago/Turabian StyleXu, Erqi, and Yimeng Chen. 2019. "Modeling Intersecting Processes of Wetland Shrinkage and Urban Expansion by a Time-Varying Methodology" Sustainability 11, no. 18: 4953. https://doi.org/10.3390/su11184953
APA StyleXu, E., & Chen, Y. (2019). Modeling Intersecting Processes of Wetland Shrinkage and Urban Expansion by a Time-Varying Methodology. Sustainability, 11(18), 4953. https://doi.org/10.3390/su11184953