Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments
2.1.1. Experimental Setup
2.1.2. Sample Handling and Chemical Analysis
2.1.3. Emission Measurement
2.2. Statistical Analysis
2.3. MFA Modelling
3. Results and Discussions
3.1. Material Inflows and Outflows from the Vermicomposting System
3.2. Physio-Chemical Characteristics
3.3. Gaseous Emissions
3.4. Material and Substance Flows
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Teenstra, E.; Vellinga, T.V.; Aktasaeng, N.; Amatayaku, W.; Ndambi, A.; Pelster, D.; Germer, L.; Jenet, A.; Opio, C.; Andeweg, K. Global Asessment of Manure Management Policies and Practices; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- UBOS. Uganda Bureau of Statistics 2017 Statistical Abstract. Available online: https://www.ubos.org/wp-content/uploads/publications/03_20182017_Statistical_Abstract.pdf (accessed on 23 March 2019).
- Kiggundu, N.; Ddungu, S.P.; Wanyama, J.; Cherotich, S.; Mpairwe, D.; Zziwa, E.; Mutebi, F.; Falcucci, A. Greenhouse gas emissions from Uganda’s cattle corridor farming systems. Agric. Syst. 2019, 176, 102649. [Google Scholar] [CrossRef]
- Lederer, J.; Karungi, J.; Ogwang, F. The potential of wastes to improve nutrient levels in agricultural soils: A material flow analysis case study from Busia District, Uganda. Agric. Ecosyst. Environ. 2015, 207, 26–39. [Google Scholar] [CrossRef]
- Komakech, A.J.; Sundberg, C.; Jönsson, H.; Vinnerås, B. Life cycle assessment of biodegradable waste treatment systems for sub-Saharan African cities. Resour. Conserv. Recycl. 2015, 99, 100–110. [Google Scholar] [CrossRef]
- Vu, T.; Vu, D.; Jensen, L.S.; Sommer, S.G.; Bruun, S. Life cycle assessment of biogas production in small-scale household digesters in Vietnam. Asian Austral. J. Anim. 2015, 28, 716. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Chia, S.R.; Yen, H.W.; Nomanbhay, S.; Ho, Y.C.; Show, P.L.J.S. Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Dominguez, J.; Edwards, C. Vermicomposting organic wastes: A review. In Soil Zoology for Sustainable Development in the 21st Century; Shakir Hanna, S., Mikhail, W.Z., Eds.; Geocities: Cairo, Egypt, 2004; pp. 369–395. [Google Scholar]
- Nagavallemma, K.; Wani, S.; Lacroix, S.; Padmaja, V.; Vineela, C.; Rao, M.B.; Sahrawat, K. Vermicomposting: Recycling wastes into valuable organic fertilizer. J. Agric. Environ. Int. Dev. 2004, 99. [Google Scholar] [CrossRef]
- Mahaly, M.; Senthilkumar, A.K.; Arumugam, S.; Kaliyaperumal, C.; Karupannan, N. Vermicomposting of distillery sludge waste with tea leaf residues. Sustain. Environ. Res. 2018, 28, 223–227. [Google Scholar] [CrossRef]
- Yadav, A.; Garg, V. Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresour. Technol. 2019, 274, 512–517. [Google Scholar] [CrossRef]
- Kopeć, M.; Gondek, K.; Mierzwa-Hersztek, M.; Antonkiewicz, J. Factors influencing chemical quality of composted poultry waste. Saudi J. Biol. Sci. 2018, 25, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Abbasi, S.J.S. Efficacy of the vermicomposts of different organic wastes as “clean” fertilizers: State–of–the–art. Sustainability 2018, 10, 1205. [Google Scholar] [CrossRef]
- Ermolaev, E.; Sundberg, C.; Pell, M.; Jönsson, H. Greenhouse gas emissions from home composting in practice. Bioresour. Technol. 2014, 151, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Lee, L.H.; Wu, T.Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 2016, 111, 262–278. [Google Scholar] [CrossRef]
- Fantozzi, F.; Bartocci, P.; D’Alessandro, B.; Testarmata, F.; Fantozzi, P. Carbon footprint of truffle sauce in central Italy by direct measurement of energy consumption of different olive harvesting techniques. J. Clean. Prod. 2015, 87, 188–196. [Google Scholar] [CrossRef]
- Andersen, J.K.; Boldrin, A.; Samuelsson, J.; Christensen, T.H.; Scheutz, C. Quantification of greenhouse gas emissions from windrow composting of garden waste. J. Environ. Qual. 2010, 39, 713–724. [Google Scholar] [CrossRef]
- Bartocci, P.; Fantozzi, P.; Fantozzi, F. Environmental impact of Sagrantino and Grechetto grapes cultivation for wine and vinegar production in central Italy. J. Clean. Prod. 2017, 140, 569–580. [Google Scholar] [CrossRef]
- Lv, B.; Zhang, D.; Cui, Y.; Yin, F. Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresour. Technol. 2018, 268, 408–414. [Google Scholar] [CrossRef]
- Yang, F.; Li, G.; Zang, B.; Zhang, Z. The maturity and CH4, N2O, NH3 emissions from vermicomposting with agricultural waste. Compost. Sci. Util. 2017, 25, 262–271. [Google Scholar] [CrossRef]
- Nigussie, A.; Kuyper, T.W.; Bruun, S.; de Neergaard, A. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Clean. Prod. 2016, 139, 429–439. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Z.; Xu, X.; Jiang, X.; Zheng, B.; Liu, X.; Pan, X.; Kardol, P. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 2014, 34, 1546–1552. [Google Scholar] [CrossRef]
- Lleó, T.; Albacete, E.; Barrena, R.; Font, X.; Artola, A.; Sánchez, A. Home and vermicomposting as sustainable options for biowaste management. J. Clean. Prod. 2013, 47, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Nada, W.M.; van Rensburg, L.; Claassens, S.; Blumenstein, O. Vermicomposting as a Sustainable Procedure for the Reduction of Carbon Dioxide Emissions. Dyn. Soil Dyn. Plant 2012, 6, 43–50. [Google Scholar]
- Velasco-Velasco, J.; Parkinson, R.; Kuri, V. Ammonia emissions during vermicomposting of sheep manure. Bioresour. Technol. 2011, 102, 10959–10964. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.C.; Sinha, R.K.; Wang, W. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manag. Res. 2011, 29, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Komakech, A.; Zurbrügg, C.; Miito, G.; Wanyama, J.; Vinnerås, B. Environmental impact from vermicomposting of organic waste in Kampala, Uganda. J. Environ. Manag. 2016, 181, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.H.; Rechberger, H. Practical Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ng, C.G.; Yusoff, S. Life cycle inventory of institutional medium-scaled co-composting of food waste and yard waste in tropical country. Sains. Malays. 2015, 44, 517–527. [Google Scholar]
- Padeyanda, Y.; Jang, Y.-C.; Ko, Y.; Yi, S. Evaluation of environmental impacts of food waste management by material flow analysis (MFA) and life cycle assessment (LCA). J. Mater. Cycles Waste 2016, 18, 493–508. [Google Scholar] [CrossRef]
- Chèvre, N.; Guignard, C.; Rossi, L.; Pfeifer, H.R.; Bader, H.P.; Scheidegger, R. Substance flow analysis as a tool for urban water management. Water Sci. Technol. 2011, 63, 1341–1348. [Google Scholar] [CrossRef]
- Yoshida, H.; Christensen, T.H.; Guildal, T.; Scheutz, C. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant. Chemosphere 2015, 138, 874–882. [Google Scholar] [CrossRef]
- Jensen, M.B.; Møller, J.; Scheutz, C. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory. Waste Manag. 2017, 66, 23–35. [Google Scholar] [CrossRef]
- Lalander, C.H.; Komakech, A.J.; Vinnerås, B. Vermicomposting as manure management strategy for urban small-holder animal farms–Kampala case study. Waste Manag. 2015, 39, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Mainoo, N.O.; Barrington, S.; Whalen, J.K.; Sampedro, L. Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana. Bioresour. Technol. 2009, 100, 5872–5875. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Gupta, R.; Garg, V.K. Organic manure production from cow dung and biogas plant slurry by vermicomposting under field conditions. Int. J. Rec. Org. Waste Agric. 2013, 2, 21. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples; NREL Technical Report No. NREL/TP–510–42621; National Renewable Energy Laboratory: Golden, CO, USA, 2008; pp. 1–6. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of ash in biomass; Technical Report No. NREL/TP–510–42622; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Okalebo, J.; Gathua, K.; Woomer, P. Laboratory Methods of Plant and Soil Analysis: A Working Manual; TSBF-UNESCO: Nairobi, Kenya, 2002. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Collier, S.M.; Ruark, M.D.; Oates, L.G.; Jokela, W.E.; Dell, C.J. Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. 2014, 90, e52110. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf (accessed on 16 September 2019).
- Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C. Mass balances and life cycle inventory of home composting of organic waste. Waste Manag. 2011, 31, 1934–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, J.B.; Allen, M.E.; Ullrey, D.E. Feeding captive insectivorous animals: Nutritional aspects of insects as food. Nutrition Advisory Group Handbook, Fact Sheet 003. Available online: https://nagonline.net/wp-content/uploads/2014/01/NAG-FS003-97-Insects-JONI-FEB-24-2002-MODIFIED.pdf (accessed on 16 September 2019).
- Jiménez, E.I.; García, V.P. Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresour. Technol. 1992, 41, 265–272. [Google Scholar] [CrossRef]
- Ndegwa, P.; Thompson, S. Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresour. Technol. 2001, 76, 107–112. [Google Scholar] [CrossRef]
- Bhat, S.A.; Singh, J.; Vig, A.P. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. Springerplus 2015, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Tatàno, F.; Pagliaro, G.; Di Giovanni, P.; Floriani, E.; Mangani, F. Biowaste home composting: Experimental process monitoring and quality control. Waste Manag. 2015, 38, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Sonowal, P.; Khwairakpam, M.; Kalamdhad, A.S. Vermicomposting of solid pulp and paper mill sludge (SPPMS) using Eudrilus Eugeniae Earthworm. Int. J. Environ. Sci. 2014, 5, 502–514. [Google Scholar]
- Varma, V.S.; Kalamdhad, A.S.; Khwairkpam, M. Feasibility of Eudrilus eugeniae and Perionyx excavatus in vermicomposting of water hyacinth. Ecol. Eng. 2016, 94, 127–135. [Google Scholar] [CrossRef]
- Xie, D.; Wu, W.; Hao, X.; Jiang, D.; Li, X.; Bai, L. Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida. Environ. Sci. Pollut. Res. Int. 2016, 23, 7767–7775. [Google Scholar] [CrossRef] [PubMed]
- Wani, K.; Rao, R. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida. Saudi J. Biol. Sci. 2013, 20, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atiyeh, R.M.; Domínguez, J.; Subler, S.; Edwards, C.A. Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia 2000, 44, 709–724. [Google Scholar] [CrossRef]
- Elvira, C.; Sampedro, L.; Benitez, E.; Nogales, R. Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot-scale study. Bioresour. Technol. 1998, 63, 205–211. [Google Scholar] [CrossRef]
- Taeporamaysamai, O.; Ratanatamskul, C. Co-composting of various organic substrates from municipal solid waste using an on-site prototype vermicomposting reactor. Int. Biodeterior. Biodegrad. 2016, 113, 357–366. [Google Scholar] [CrossRef]
- Soobhany, N.; Mohee, R.; Garg, V.K. Recovery of nutrient from Municipal Solid Waste by composting and vermicomposting using earthworm Eudrilus eugeniae. J. Environ. Chem. Eng. 2015, 3, 2931–2942. [Google Scholar] [CrossRef]
- Tumuhairwe, J.B.; Tenywa, J.S.; Otabbong, E.; Ledin, S. Comparison of four low-technology composting methods for market crop wastes. Waste Manag. 2009, 29, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Deka, H.; Deka, S.; Baruah, C.; Das, J.; Hoque, S.; Sarma, N. Vermicomposting of distillation waste of citronella plant (Cymbopogon winterianus Jowitt.) employing Eudrilus eugeniae. Bioresour. Technol. 2011, 102, 6944–6950. [Google Scholar] [CrossRef]
- Ghosh, S.; Goswami, A.J.; Ghosh, G.K.; Pramanik, P. Quantifying the relative role of phytase and phosphatase enzymes in phosphorus mineralization during vermicomposting of fibrous tea factory waste. Ecol. Eng. 2018, 116, 97–103. [Google Scholar] [CrossRef]
- Garg, P.; Gupta, A.; Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 2006, 97, 391–395. [Google Scholar] [CrossRef]
- Alavi, N.; Daneshpajou, M.; Shirmardi, M.; Goudarzi, G.; Neisi, A.; Babaei, A.A. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite. Waste Manag. 2017, 69, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, P.; Ghosh, G.; Ghosal, P.; Banik, P. Changes in organic–C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresour. Technol. 2007, 98, 2485–2494. [Google Scholar] [CrossRef]
- Nigussie, A. Closing the Nutrient Loops in (peri-) Urban Farming Systems through Composting. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar]
- Robin, P.; Germain, P.; Lecomte, M.; Landrain, B.; Li, Y.; Cluzeau, D. Earthworm effects on gaseous emissions during vermifiltration of pig fresh slurry. Bioresour. Technol. 2011, 102, 3679–3686. [Google Scholar]
- Shen, Y.; Ren, L.; Li, G.; Chen, T.; Guo, R. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture. Waste Manag. 2011, 31, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Swati, A.; Hait, S. Greenhouse Gas Emission During Composting and Vermicomposting of Organic Wastes–A Review. CLEAN–Soil Air Water 2018, 46, 1700042. [Google Scholar] [CrossRef]
- Sánchez, A.; Artola, A.; Font, X.; Gea, T.; Barrena, R.; Gabriel, D.; Sánchez-Monedero, M.Á.; Roig, A.; Cayuela, M.L.; Mondini, C. Greenhouse gas from organic waste composting: Emissions and measurement. In CO2 Sequestration, Biofuels and Depollution; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer: Cham, Switzerland, 2015; pp. 33–70. [Google Scholar]
- Hao, X.; Chang, C.; Larney, F.J.; Travis, G.R. Greenhouse gas emissions during cattle feedlot manure composting. J. Environ. Qual. 2001, 30, 376–386. [Google Scholar] [CrossRef]
- Hao, X.; Chang, C.; Larney, F.J. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting. J. Environ. Qual. 2004, 33, 37–44. [Google Scholar] [CrossRef]
- Pattey, E.; Trzcinski, M.; Desjardins, R. Quantifying the reduction of greenhouse gas emissions as a resultof composting dairy and beef cattle manure. Nutr. Cycl. Agroecosyst. 2005, 72, 173–187. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; de Neergaard, A.; Jensen, L.S. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere 2014, 97, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Arriaga, H.; Viguria, M.; López, D.M.; Merino, P. Ammonia and greenhouse gases losses from mechanically turned cattle manure windrows: A regional composting network. J. Environ. Manag. 2017, 203, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, C.; Yates, N.E.; Powers, S.J.; Donovan, N.; Misselbrook, T.; Shield, I. Testing the use of static chamber boxes to monitor greenhouse gas emissions from wood chip storage heaps. BioEnergy Res. 2017, 10, 353–362. [Google Scholar] [CrossRef]
- Shah, G.M.; Groot, J.; Oenema, O.; Lantinga, E. Covered storage reduces losses and improves crop utilisation of nitrogen from solid cattle manure. Nutr. Cycl. Agroecosyst. 2012, 94, 299–312. [Google Scholar] [CrossRef]
- Larney, F.J.; Buckley, K.E.; Hao, X.; McCaughey, W.P. Fresh, stockpiled, and composted beef cattle feedlot manure. J. Environ. Qual. 2006, 35, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Michel, F.C., Jr.; Pecchia, J.A.; Rigot, J.; Keener, H.M. Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw. Compost. Sci. Util. 2004, 12, 323–334. [Google Scholar] [CrossRef]
Week of Feeding | Material Added | |||||||
---|---|---|---|---|---|---|---|---|
Cattle Manure (kg) | Water (L) | |||||||
R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | |
1 | 10 | 10 | 10 | 10 | 1 | 1 | 1 | 1 |
2 | 0 | 12 | 12 | 15 | 0 | 2 | 2 | 2 |
3 | 15 | 18 | 20 | 22 | 3 | 4 | 4 | 4 |
4 | 30 | 24 | 30 | 35 | 4 | 3 | 2 | 2 |
5 | 36 | 39 | 40 | 42 | 6 | 3 | 2 | 4 |
6 | 40 | 46 | 44 | 46 | 5 | 3 | 3 | 3 |
7 | 53 | 51 | 54 | 52 | 5 | 4 | 4 | 2 |
8 | 57 | 58 | 59 | 58 | 4 | 3 | 3 | 4 |
9 | 63 | 60 | 62 | 63 | 6 | 7 | 7 | 6 |
10 | 23 | 25 | 30 | 30 | 3 | 3 | 4 | 3 |
11 | − | − | − | − | − | − | − | − |
12 | − | − | − | − | − | − | − | − |
Total | 317 | 343 | 361 | 374 | 37 | 33 | 32 | 31 |
Mean harvested vermicompost (kg) | 152.58a | 166.02b | 174.09bc | 180.53c | ||||
Mean harvested Earthworm biomass (kg) | 6.18a | 7.30b | 8.40bc | 8.18c |
Parameter | Time (weeks) | |||
---|---|---|---|---|
0 | 4 | 8 | 12 | |
pH | 8.05 ± 0.14a | 7.70 ± 0.11b | 6.92 ± 0.14c | 6.43 ± 0.11d |
TS (%) | 21.52 ± 0.55a | 23.66 ± 0.88b | 27.79 ± 0.72c | 30.26 ± 0.37d |
Ash content (%DM) | 18.69 ± 0.95a | 23.93 ± 1.26b | 30.52 ± 0.95c | 34.77 ± 0.76d |
VS (%DM) | 81.31 ± 0.95a | 76.07 ± 1.26b | 69.48 ± 0.95c | 65.23 ± 0.76d |
TOC (%DM) | 34.38 ± 0.73a | 31.80 ± 0.90b | 23.26 ± 0.75c | 20.26 ± 0.39d |
TKN (%DM) | 1.44 ± 0.04a | 1.55 ± 0.04b | 1.82 ± 0.05c | 2.13 ± 0.06d |
C/N ratio | 23.97 ± 0.74a | 20.56 ± 0.51b | 12.78 ± 0.36c | 9.52 ± 0.35d |
TP (%DM) | 0.50 ± 0.05a | 0.64 ± 0.03b | 0.84 ± 0.03c | 1.08 ± 0.03d |
TK (%DM) | 1.13 ± 0.08a | 1.24 ± 0.05a | 1.46 ± 0.10b | 1.66 ± 0.18c |
Week of Measurement | CO2 (%) | CH4 (%) | N2O (ppm) |
---|---|---|---|
Week 4 | 0.32 ± 0.01a | 0.21 ± 0.01a | 5.25 ± 0.45a |
Week 8 | 1.42 ± 0.01c | 0.15 ± 0.01b | 3.00 ± 0.00b |
Week 12 | 0.61 ± 0.01b | 0.09 ± 0.01c | ND |
Units | TS | VS | TC | Ash Content | TKN | TP | TK |
---|---|---|---|---|---|---|---|
%DM | 14.5 | 70.0 ± 0.2 | 36.8 ± 1.8 | 30.0 | 7.4 ± 0.1 | 0.87 | 0.96 |
g/kg ww | 145 | 102 ± 0.0 | 53.42 ± 2.6 | 43.5 | 10.73 ± 0.2 | 1.39 | 1.26 |
Reference | [35] | [35] | [35] based on [46] | [35] | [35] | [45] | [45] |
Variable | Ash | TOC | VS | Nutrients | ||
---|---|---|---|---|---|---|
N | P | K | ||||
Input material (kg) | 13.75 | 25.95 | 61.35 | 1.1 | 0.41 | 0.75 |
Vermicompost (%) | 97.63 | 29.97 | 40.83 | 74.55 | 97.62 | 98.69 |
Earthworm biomass (%) | 2.37 | 1.54 | 1.24 | 7.27 | 2.38 | 1.31 |
Off gas (%) | 0 | 68.49 | 57.93 | 18.18 | 0 | 0 |
Sum (%) | 100 | 100 | 100 | 100 | 100 | 100 |
Substrate | Management Method | C Loss (% Initial C) | N Loss (% Initial N) | P Loss (% Initial P) | K Loss (% Initial K) | Reference |
---|---|---|---|---|---|---|
Cattle manure | Windrow composting | 75% | 60% | NA | NA | [73] |
Solid cattle manure | Stockpiling | 59% | 31% | NA | NA | [75] |
Solid cattle manure | Composting | 67% | 46% | NA | NA | [75] |
Beef cattle feedlot manure | Stockpiling | 37.5% | 22.5% | 6.7% | NA | [76] |
Beef cattle feedlot manure | Composting | 66.9% | 46.3% | 30% | NA | [76] |
Cattle feedlot manure | Composting | 35%–53% | 12%–42% | NA | NA | [70] |
Dairy cattle manure | Windrow composting | 74%–79% | 26%–43% | 21%–38% | 25%–39% | [77] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jjagwe, J.; Komakech, A.J.; Karungi, J.; Amann, A.; Wanyama, J.; Lederer, J. Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda. Sustainability 2019, 11, 5173. https://doi.org/10.3390/su11195173
Jjagwe J, Komakech AJ, Karungi J, Amann A, Wanyama J, Lederer J. Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda. Sustainability. 2019; 11(19):5173. https://doi.org/10.3390/su11195173
Chicago/Turabian StyleJjagwe, Joseph, Allan John Komakech, Jeninah Karungi, Arabel Amann, Joshua Wanyama, and Jakob Lederer. 2019. "Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda" Sustainability 11, no. 19: 5173. https://doi.org/10.3390/su11195173
APA StyleJjagwe, J., Komakech, A. J., Karungi, J., Amann, A., Wanyama, J., & Lederer, J. (2019). Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda. Sustainability, 11(19), 5173. https://doi.org/10.3390/su11195173