Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective
Abstract
:1. Introduction
2. Methodology
2.1. Study Sites
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Households’ Socioeconomic Characteristics
3.2. Decline of TFCs: Loss of Agrobiodiversity
3.3. Household Food Security
3.4. Energy Use Efficiency: Traditional vs. Popular Crops
3.5. Market Value of TFCs
4. Discussions
4.1. Why Are TFCs Neglected and Underutilized?
4.2. Social Sustainability: Nutritional Value and Social Acceptability
4.3. Environmental Sustainability: Agrobiodiversity and Resilience of Farming Systems
4.4. Economic Sustainability: Market Value and Energy Use Efficiency
4.5. TFCs as ‘Future Smart Foods’: A Way Forward
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rasul, G.; Saboor, A.; Tiwari, P.C.; Hussain, A.; Ghosh, N.; Chettri, G.B. Food and nutrition security in the Hindu Kush Himalaya: Unique challenges and niche opportunities. In The Hindu Kush Himalaya Assessment; Wester, P., Mishra, A., Mukherji, A., Shrestha, A., Eds.; Springer: Cham, Switzland, 2019; pp. 301–338. [Google Scholar]
- Rasul, G.; Hussain, A.; Mahapatra, B.; Dangol, N. Food and nutrition security in the Hindu Kush-Himalayan region. J. Sci. Food Agric. 2018, 98, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, L.; Hussain, A.; Rasul, G. Tapping the Potential of Neglected and Underutilized Food Crops for Sustainable Nutrition Security in the Mountains of Pakistan and Nepal. Sustainability 2017, 9, 291. [Google Scholar] [CrossRef]
- Sati, V.P. Enhancing food security through sustainable agriculture in Uttarakhand Himalaya. Productivity 2017, 58, 187–196. [Google Scholar]
- Regmi, B.; Paudyal, A.; Paul, B. (Eds.) Climate Change and Agrobiodiversity in Nepal: Opportunities to Include Agrobiodiversity Maintenance to Support Nepal’s National Adaptation Programme of Action (NAPA); LI-BIRD: Pokhara, Nepal, 2009. [Google Scholar]
- Upadhyay, M.P.; Gauchan, D.; Shrestha, P.; Sthapit, B.R. Institutionalization of the policy and practices of in-situ conservation of agricultural biodiversity in national research and development in Nepal. In On-Farm Management of Agricultural Biodiversity in Nepal: Lessons Learned. Proceedings of the National Symposium; Sthapit, B.R., Gauchan, D., Subedi, A., Jarvis, D.I., Eds.; Bioversity International: Kathmandu, Nepal, 2006; pp. 19–28. [Google Scholar]
- Maharjan, S.K.; Gurung, A.R.; Sthapit, B.R. Enhancing on-farm conservation of agrobiodiversity through community seed bank: An experience of western Nepal. J. Agric. Environ. 2011, 12, 132–139. [Google Scholar] [CrossRef]
- Singh, V.; Tulachan, P.M. Marginal farming in mountain areas. Asian Agri-Hist. 2002, 6, 269–280. [Google Scholar]
- Sati, V.P. Conservation of agro-biodiversity through traditionally cultivating ‘barahnaja’ in the Garhwal Himalaya. MF Bulletin 2009, 9, 12–14. [Google Scholar]
- Maikhuri, R.K.; Rao, K.S.; Saxena, K.G. Bioprospecting of wild edibles for rural development in the central Himalayan mountains of India. Mt. Res. Dev. 2004, 24, 110–113. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.M.H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 2006, 441, 629–632. [Google Scholar] [CrossRef]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Jarvis, D.; Hodgkin, T.; Bhuwon, S.; Fadda, C.; Lopez-Noriega, I. A heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production systems. Crit. Rev. Plant Sci. 2011, 30, 125–176. [Google Scholar] [CrossRef]
- Østergård, H.; Finckh, M.R.; Fontaine, L.; Goldringer, I.; Hoad, S.P.; Kristensen, K.; Lammerts van Bueren, E.T.; Mascher, F.; Munk, L.; Wolfe, M.S. Time for a shift in crop production: Embracing complexity through diversity at all levels. J. Sci. Food Agric. 2009, 89, 1439–1445. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Luna, J.M. Multi-function agricultural biodiversity: Pest management and other benefits. Basic Appl. Ecol. 2003, 4, 107–116. [Google Scholar] [CrossRef]
- Negi, G.C.S.; Samal, P.K.; Kuniyal, J.C.; Kothyari, B.P.; Sharma, R.K.; Dhyani, P.P. Impact of climate change on the western Himalayan mountain ecosystems: An overview. Trop. Ecol. 2012, 53, 345–356. [Google Scholar]
- FAO. State of the World’s Forests; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- MoAD (Ministry of Agricultural Development). The State of Nepal’s Biodiversity for FOOD and Agriculture; Ministry of Agricultural Development: Kathmandu, Nepal, 2017.
- DoE (Department of Environment). The Fifth National Report of Bangladesh to the Convention on Biological Diversity; Department of Environment, Ministry of Environment and Forests, Government of People’s Republic of Bangladesh: Dhaka, Bangladesh, 2015.
- Mohiuddin, M.; Alam, M.K.; Hossain, M.K. Indigenous knowledge-based technologies practiced in hill farming systems in Bandarban hill district of Bangladesh. Bangladsh J. For. Sci. 2012, 32, 20–27. [Google Scholar]
- Rasul, G.; Tripura, N.B.K. Achieving the Sustainable Development Goals in Chittagong Hill Tracts—Challenges and Opportunities; ICIMOD Working Paper 2016/12; ICIMOD: Kathmandu, Bangladesh, 2016. [Google Scholar]
- Szabo, S.; Hossain, M.S.; Renaud, F.; Traore, D.; Hussain, A.; Matczak, P.; Ahmad, S.; Singh, D.R.; Neumann, B.; Matthews, Z. Accelerating progress toward the zero hunger goal in cross-boundary climate change hotspots. Environ. Sci. Policy Sustain. Dev. 2018, 60, 18–27. [Google Scholar] [CrossRef]
- Varshney, R.K.; Ribaut, J.M.; Buckler, E.S.; Tuberosa, R.; Rafalski, J.A.; Langridge, P. Can genomics boost productivity of orphan crops? Nat. Biotechnol. 2012, 30, 1172. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Aryal, K. NGO Initiatives in Promoting Neglected and Underutilized Crop Species in Nepal; Working Groups of Agricultural Plant Genetic Resources (APGRs) in Nepal; National Genebank: Kathmandu, Nepal, 2018; p. 245. [Google Scholar]
- Padulosi, S.; Bergamini, N.; Lawrence, T. (Eds.) On-farm conservation of neglected and underutilized species: Status, trends and novel approaches to cope with climate change. In Proceedings of the International Conference, Friedrichsdorf, Frankfurt, Germany, 14–16 June 2011; Biodiversity International: Rome, Italy, 2011. [Google Scholar]
- MoFALD. Ministry of Federal Affairs and General Administration; Government of Nepal: Kathmandu, Nepal, 2017.
- Thapa, S.; Poudel, S.; Aryal, K.; Kandel, P.; Uddin, K.; Karki, S.; Sharma, B.; Chettri, N. A Multi-Dimensional Assessment of Ecosystems and Ecosystems Services in Taplejung, Nepal; ICIMOD Working Paper 2018/6; ICIMOD: Kathmandu, Nepal, 2018. [Google Scholar]
- ESOMAR. Analysis Report of Four Selected Value Chains in RUMA SADAR Cashew Nut, Coffee, Handicrafts & Mango; ESOMAR: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Rafiee, S.; Avval, S.H.M.; Mohammadi, A. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy 2010, 35, 3301–3306. [Google Scholar] [CrossRef]
- Hedau, N.K.; Tuti, M.D.; Stanley, J.; Mina, B.L.; Agrawal, P.K.; Bisht, J.K.; Bhatt, J.C. Energy-use efficiency and economic analysis of vegetable cropping sequences under greenhouse condition. Energy Effic. 2014, 7, 507–515. [Google Scholar] [CrossRef]
- Avval, S.H.M.; Rafiee, S.; Keyhani, A. Energy efficiency analysis in agricultural productions: Parametric and Non-Parametric Approaches. In Energy Efficiency-A bridge to Low Carbon Economy; Movraj, Z., Ed.; BoD–Books on Demand: Hamburg, Germany, 2012; ISBN 978-953-51-0340-0. [Google Scholar]
- Longvah, T.; Ananthan, R.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Tables; National Institute of Nutrition: Hyderabad, India, 2017. [Google Scholar]
- Hussain, A.; Zulfiqar, F.; Saboor, A. Changing food patterns across the seasons in rural Pakistan: Analysis of food variety, dietary diversity and calorie intake. Ecol. Food Nutr. 2014, 53, 119–141. [Google Scholar] [CrossRef]
- National Planning Commission (NPC). Nepal Thematic Report on Food Security and Nutrition 2013; National Planning Commission, Central Bureau of Statistics: Kathmandu, Nepal, 2013. [Google Scholar]
- Begum, M.E.A.; Hossain, M.I.; Haese, L.D. Food security in Bangladesh: Present status and trend. Progress. Agric. 2013, 24, 263–271. [Google Scholar] [CrossRef]
- MoAD (Ministry of Agriculture and Livestock Department). Statistical information on Nepalese agriculture 2014–2015; Agri-Business Promotion and Statistics Division, Agri. Statistics Section, Ministry of Agricultural Development, Government of Nepal: Kathmandu, Nepal, 2015.
- CBS (Central Bureau of Statistics, Nepal). Statistical Pocket Book of Nepal 2014; Central Bureau of Statistics, National Planning Commission Secretariat, Government of Nepal: Kathmandu, Nepal, 2014.
- Mal, B.; Padulosi, S.; Ravi, S.B. Minor millets in South Asia: Learnings from IFAD-NUS project in India and Nepal; Biodiversity International, Maccarese: Rome, Italy; The M.S. Swaminathan Research Foundation: Chennai, India, 2010. [Google Scholar]
- Dame, J.; Nüsser, M. Food security in high mountain regions: Agricultural production and the impact of food subsidies in Ladakh, Northern India. Food Secur. 2011, 3, 179–194. [Google Scholar] [CrossRef]
- Finnis, E. The political ecology of dietary transitions: Changing production and consumption patterns in the Kolli Hills, India. Agric. Hum. Values 2007, 24, 343. [Google Scholar] [CrossRef]
- Malapit, H.J.L.; Kadiyala, S.; Quisumbing, A.R.; Cunningham, K.; Tyagi, P. Women’s empowerment mitigates the negative effects of low production diversity on maternal and child nutrition in Nepal. J. Dev. Stud. 2015, 51, 1097–1123. [Google Scholar] [CrossRef]
- Shively, G.; Sununtnasuk, C. Agricultural diversity and child stunting in Nepal. J. Dev. Stud. 2015, 51, 1078–1096. [Google Scholar] [CrossRef]
- Behera, R.N.; Nayak, D.K.; Andersen, P.; Måren, I.E. From jhum to broom: Agricultural land-use change and food security implications on the Meghalaya Plateau, India. Ambio 2016, 45, 63–77. [Google Scholar] [CrossRef]
- Bisht, I.S.; Mehta, P.S.; Negi, K.S.; Verma, S.K.; Tyagi, R.K.; Garkoti, S.C. Farmers’ rights, local food systems, and sustainable household dietary diversification: A case of Uttarakhand Himalaya in north-western India. Agroecol. Sustain. Food Syst. 2018, 42, 77–113. [Google Scholar] [CrossRef]
- Scherr, S.J.; McNeely, J.A. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ecoagriculture landscapes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 477–494. [Google Scholar] [CrossRef]
- Partap, U.; Partap, T. Warning Signals from Apple Valleys of the HKH Region: Productivity Concerns and Pollination Problems; ICIMOD: Kathmandu, Nepal, 2002. [Google Scholar]
- KC, K.B.; Pant, L.P.; Fraser, E.D.G.; Shrestha, P.K.; Shrestha, D.; Lama, A. Assessing links between crop diversity and food self-sufficiency in three agroecological regions of Nepal. Reg. Environ. Chang. 2016, 16, 1239–1251. [Google Scholar] [CrossRef]
- Pradhan, N.S.; Sijapati, S.; Bajracharya, S.R. Farmers’ responses to climate change impact on water availability: Insights from the Indrawati Basin in Nepal. Int. J. Water Resour. Dev. 2015, 31, 269–283. [Google Scholar] [CrossRef]
- Aryal, K.; Poudel, S.; Chaudhary, R.P.; Chettri, N.; Ning, W.; Shaoliang, Y.; Kotru, R. Conservation and management practices of traditional crop genetic diversity by the farmers: A case from Kailash Sacred Landscape, Nepal. J. Agric. Environ. 2017, 18, 15–28. [Google Scholar] [CrossRef]
- Merrey, D.J.; Hussain, A.; Tamang, D.D.; Thapa, B.; Prakash, A. Evolving high altitude livelihoods and climate change: A case study from Rasuwa district, Nepal. Food Secur. 2018, 10, 1055–1071. [Google Scholar] [CrossRef]
- FAO. Future smart food: Unlocking hidden treasures in Asia and the Pacific. In RI-Zero Hunger—Policy Brief—Agricultural Diversification for a Healthy Diet; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2017. [Google Scholar]
Inputs and Outputs | Unit | Energy Equivalent (MJ Per Unit) | ||
---|---|---|---|---|
Inputs | ||||
Human labor | Hour | Man: 1.96, woman: 1.57 | ||
Machinery | Tractor | kg (deprecated mass) | 93.61 | |
Self-propelled | 87.63 | |||
Other machinery | 62.70 | |||
Diesel fuel | Liter | 56.31 | ||
Chemicals | Herbicides | kg | 238 | |
Insecticides | 101.2 | |||
Fungicides | 216 | |||
Chemical fertilizers | Nitrogen | kg | 66.14 | |
Phosphate (P2O5) | 12.44 | |||
Potassium (K2O) | 11.15 | |||
Sulphur (S) | 1.12 | |||
Zinc (Zn) | 8.40 | |||
Farmyard manure | kg | 0.30 | ||
Water for irrigation | m3 | 1.02 | ||
Electricity | kWh | 3.6 | ||
Seed | kg | Factor was used according to crop type | ||
Animal power | Ox | Day | 10 | (8 working hours per day) |
Buffalo | Day | 9.5 | (8 working hours per day) | |
Horse | Day | 18 | (8 working hours per day) | |
Donkey | Day | 3 | (4 working hours per day) | |
Outputs | ||||
Rice | kg | 14.80 | ||
Maize | 13.98 | |||
Ginger | 2.30 | |||
Mustard | 21.32 | |||
Buckwheat | 14.35 | |||
Millets | 14.56 | |||
Niger | 21.36* | |||
Soybean | 15.88** |
Characteristics | Nepal (N = 59) | Bangladesh (N = 30) | |
---|---|---|---|
Household size Mean (Std. Dev.) | 5.6 (1.78) | 6.1 (1.65) | |
Household head’s sex | Male | 83% | 97% |
Female | 17% | 3% | |
Households who still rely on agriculture as their primary source of income | 66% | 87% | |
Education status of household head | Illiterate | 22% | 7% |
Primary schooling | 63% | 80% | |
Intermediate and above | 15% | 13% | |
Number of migrants in the household Mean (Std. Dev.) | 0.36 (0.120) | 0.50 (0.82) | |
Household’s experience in agriculture (years) Mean (Std. Dev.) | 61.50 (35.24) | 33.00 (17.47) | |
Number of household members involved in agriculture Mean (Std. Dev.) | 2.62 (1.36) | 2.37 (0.89) | |
Owned agricultural land* Mean (Std. Dev.) | 10.97 (10.31) Ropani = 0.56 ha | 4.6 (2.4) acre = 1.86 ha | |
Cultivated land* Mean (Std. Dev.) | 6.20 (4.84) Ropani = 0.32 ha | 4.1 (1.80) acre = 1.66 ha | |
Households having access to formal credit | 33% | 0% | |
Households having access to extension services | 22% | 0% |
Indicator | Study Villages in Nepal (SVN) | Study Village in Bangladesh (SVB) |
---|---|---|
Average number of crops grown in the last 12 month; Mean (Std. Dev.) | 2.30 (0.99) | 2.03 (0.49) |
Crops grown in the last 12 months* (% of households) | Maize (100); Millets (87.1); Mustard (14.9); Rice (14.9); Buckwheat (5.6); Niger (3.7); Soybean (3.7); Ginger (1.9) | Rice (96.7); Maize (93.4); Barley (10); Sesame (3.4) |
Crops abandoned by households (% HH) in the last 10 years | Buckwheat (30.6); Barley 15.3); Millets (5.1): Rice (3.4) | Sorghum (66.7); Millets (43.4); Barley (40); Maize (3.4); Sesame (3.4) |
Crops adopted to replace abandoned crops (% of households) in the last 10 years | Mustard (6.8); Cardamom (5.1); Maize (3.4); Wheat (3.4); Spinach (1.7) | Mango (36.7); Coffee (30); Orange (13.4); Litchi (10); Banana (6.7); Coconut (6.7); Papaya (3.4); Pineapple (3.4); Jack fruit (3.4); Rubber (3.4) |
Number of TFCs abandoned in the last 10 years; Mean (Std. Dev.) | 1.55(0.67) | 2.37 (1.01) |
Food variety score**; Mean (Std. Dev.) | 9.1 (4.97) | 9.9 (1.95) |
Dietary energy intake per person per day*** (Kcal per day per capita) | 1106 (840.4) | 1379 (997.5) |
Share of TFCs in calorie intake | 7% | 3% |
Crops | *Energy Input (MJ per Ropani) | *Energy Output (MJ per Ropani) | Energy Use Efficiency Ratio | |
---|---|---|---|---|
Popular crops | Rice | 524 | 2888 | 5.51 |
Maize | 1351 | 1413 | 1.05 | |
Ginger | 383 | 262 | 0.68 | |
Mustard | 133 | 61 | 0.46 | |
TFCs | Buckwheat | 46 | 278 | 6.04 |
Millets | 201 | 357 | 1.78 | |
Niger | 908 | 1797 | 1.98 | |
Soybean | 32 | 255 | 7.97 |
Crops | *Energy Input (MJ per Acre) | *Energy Output (MJ per Acre) | Energy Use Efficiency Ratio | |
---|---|---|---|---|
Popular crops | Maize | 6104 | 11769 | 1.9 |
Rice | 2866 | 9169 | 3.2 | |
Sesame | 1437 | 1047 | 0.7 | |
TFCs | Barley | 2756 | 4924 | 1.8 |
Crops | Botanical Name | Nutritive Value Per 100 Gram | |||||||
---|---|---|---|---|---|---|---|---|---|
kcal | Protein (g) | Dietary Fiber (g) | Thiamine (mg) | Riboflavin (mg) | Calcium (mg) | Iron (mg) | Zinc (mg) | ||
Amaranthus (seed, black) | Amaranthus cruentus | 356 | 14.6 | 7.0 | 0.0 | 0.0 | 181.0 | 9.3 | 2.66 |
Pearl millet | Pennisetum typhoideum | 348 | 11.0 | 11.5 | 0.3 | 0.2 | 27.4 | 6.4 | 2.76 |
Barley | Hordeum vulgare | 316 | 10.9 | 15.6 | 0.4 | 0.2 | 28.6 | 1.6 | 1.5 |
Sorghum | Sorghum vulgare | 334 | 10.0 | 10.2 | 0.4 | 0.1 | 27.6 | 4.0 | 1.96 |
Quinoa | Chenopodium quinoa | 328 | 13.1 | 14.7 | 0.8 | 0.2 | 198.0 | 7.5 | 3.31 |
Little millet | Panicum miliare | 346 | 10.1 | 7.7 | 0.3 | 0.1 | 16.1 | 1.3 | 1.82 |
Foxtail millet | Setaria italica | 332 | 8.9 | 6.4 | 0.3 | 0.2 | 15.3 | 2.3 | 1.65 |
Finger millet | Eleusine coracana | 321 | 7.2 | 11.2 | 0.4 | 0.2 | 364.0 | 4.6 | 2.53 |
Maize (dry) | Zea mays | 334 | 8.8 | 12.24 | 0.33 | 0.09 | 8.91 | 2.49 | 2.27 |
Wheat (whole) | Triticum aestivum | 322 | 10.59 | 11.23 | 0.46 | 0.15 | 39.36 | 3.97 | 2.85 |
Rice (raw, milled) | Oryza sativa | 356 | 7.94 | 2.81 | 0.05 | 0.05 | 7.49 | 0.65 | 1.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, L.; Tuladhar, S.; Hussain, A.; Aryal, K. Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective. Sustainability 2019, 11, 5236. https://doi.org/10.3390/su11195236
Adhikari L, Tuladhar S, Hussain A, Aryal K. Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective. Sustainability. 2019; 11(19):5236. https://doi.org/10.3390/su11195236
Chicago/Turabian StyleAdhikari, Lipy, Sabarnee Tuladhar, Abid Hussain, and Kamal Aryal. 2019. "Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective" Sustainability 11, no. 19: 5236. https://doi.org/10.3390/su11195236
APA StyleAdhikari, L., Tuladhar, S., Hussain, A., & Aryal, K. (2019). Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective. Sustainability, 11(19), 5236. https://doi.org/10.3390/su11195236