Assessing Sustainability in Rural Water Supply Systems in Developing Countries Using a Novel Tool Based on Multi-Criteria Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Indicators to Assess Sustainability in Rural Water Supply Systems
2.2. Development of a Tool to Assess RWSS Sustainability
2.3. Application of the Tool in the Sustainability Assessment of a Rural Water Supply System in a Case of Study
2.3.1. Selection of the Study Area
2.3.2. Data Collection
2.3.3. Data Analysis
3. Results and Discussion
3.1. Tool for Assessing the Sustainability of Rural Water Supply Systems
3.1.1. Selection of Indicators
Population Characteristics
Users Acceptability
Accountability and Transparency
Collective Action
Conflicts
Policies, Rules, and Norms
Administration, Operation, and Maintenance (AO&M)
Post-Construction Support
Access to Water
Appropriate Technology
Infrastructure
Reliability
Water Quality
Financial Knowledge
Funding
Risks to Service Provision
Environmental Impact of Technology
3.1.2. Weighting of Attributes and Indicators
3.2. Sustainability Assessment of a Rural Water Supply System in a Páramo Community
3.2.1. Population Characteristics
3.2.2. Users Acceptability
3.2.3. Accountability and Transparency
3.2.4. Collective Action
3.2.5. Conflicts
3.2.6. Policies, Rules, and Norms
3.2.7. Administration, Operation, and Maintenance (AO&M)
3.2.8. Post-Construction Support
3.2.9. Access to Water
3.2.10. Appropriate Technology
3.2.11. Infrastructure
3.2.12. Reliability
3.2.13. Water Quality
3.2.14. Financial Knowledge
3.2.15. Funding
3.2.16. Risks to Service Provision
3.2.17. Environmental Impact of Technology
3.3. Insights from Applying the Tool
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations (UN): New York, NY, USA, 2015; Volume A/RES/70/1, p. 35. [Google Scholar]
- WHO; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization (WHO): Geneva, Switzerland; United Nations Children’s Fund (UNICEF): Geneva, Switzerland, 2017. [Google Scholar]
- Dickson, S.; Schuster-Wallace, C.; Newton, J. Water security assessment indicators: The rural context. Water Resour. Manag. 2016, 30, 1567–1604. [Google Scholar] [CrossRef]
- Barnes, R.; Ashbolt, N. Development of a planning framework for sustainable rural water supply and sanitation: A case study of a Filipino NGO. Int. Stud. Manag. Organ. 2010, 40, 78–98. [Google Scholar] [CrossRef]
- Garfì, M.; Ferrer-Martí, L.; Bonoli, A.; Tondelli, S. Multi-criteria analysis for improving strategic environmental assessment of water programmes. A case study in semi-arid region of Brazil. J. Environ. Manag. 2011, 92, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Brikke, F.; Rojas, J. Key factors for sustainable cost recovery in the context of community-managed water supply. In Occasional Paper Series; IRC: New York, NY, USA, 2001. [Google Scholar]
- Harvey, P.; Reed, R. Sustainable rural water supply in Africa: Rhetoric and reality. In Towards the Millennium Development Goals—Actions for Water and Environmental Sanitation, Proceedings of the 29th WEDC International Conference, Abuja, Nigeria, 22–26 September 2003; WEDC: Loughborough, UK, 2004; pp. 115–118. [Google Scholar]
- Hoko, Z.; Hertle, J. An evaluation of the sustainability of a rural water rehabilitation project in Zimbabwe. Phys. Chem. Earth Parts A/B/C 2006, 31, 699–706. [Google Scholar] [CrossRef]
- Kwangware, J.; Mayo, A.; Hoko, Z. Sustainability of donor-funded rural water supply and sanitation projects in Mbire district, Zimbabwe. Phys. Chem. Earth Parts A/B/C 2014, 76, 134–139. [Google Scholar] [CrossRef]
- Zijp, M.C.; Heijungs, R.; van der Voet, E.; van de Meent, D.; Huijbregts, M.A.J.; Hollander, A.; Posthuma, L. An identification key for selecting methods for sustainability assessments. Sustainability 2015, 7, 2490–2512. [Google Scholar] [CrossRef]
- Hamouda, M.A.; Anderson, W.B.; Huck, P.M. Employing multi-criteria decision analysis to select sustainable point-of-use and point-of-entry water treatment systems. Water Sci. Technol. Water Supply 2012, 12, 637–647. [Google Scholar] [CrossRef]
- Sikder, A.H.M.K.; Salehin, M. Participatory multi-criteria evaluation of alternative options for water supply in cyclone-prone areas of Bangladesh. J. Water Sanit. Hyg. Dev. 2014, 4, 100–107. [Google Scholar] [CrossRef]
- Boukhari, S.; Djebbar, Y.; Amarchi, H.; Sohani, A. Application of the analytic hierarchy process to sustainability of water supply and sanitation services: The case of Algeria. Water Sci. Technol. Water Supply 2018, 18, 1282–1293. [Google Scholar] [CrossRef]
- Poonia, A.; Punia, M. A question on sustainability of drinking water supply: A district level analysis of India using analytic hierarchy process. Water Policy 2018, 20, 712–724. [Google Scholar] [CrossRef]
- Santos, J.; Pagsuyoin, S.A.; Latayan, J. A multi-criteria decision analysis framework for evaluating point-of-use water treatment alternatives. Clean Technol. Environ. Policy 2016, 18, 1263–1279. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Bhadauria, S.S. Composite sustainable management index for rural water supply systems using the analytical hierarchy process. J. Perform. Constr. Facil. 2014, 28, 608–617. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Muñoz, S.; Chamorro, A. Assessing the quality of service for drinking water supplies in rural settings: A synthetic index approach. J. Environ. Manag. 2019, 247, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.S.; Fraser, E.D.; Dougill, A.J. An adaptive learning process for developing and applying sustainability indicators with local communities. Ecol. Econ. 2006, 59, 406–418. [Google Scholar] [CrossRef]
- Mutikanga, H.E.; Sharma, S.K.; Vairavamoorthy, K. Multi-criteria decision analysis: A strategic planning tool for water loss management. Water Resour. Manag. 2011, 25, 3947. [Google Scholar] [CrossRef]
- Scholz, R.; Tietje, O. Embedded Case Study Methods: Integrating Quantitative and Qualitative Knowledge; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Saaty, T. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Kativhu, T.; Mazvimavi, D.; Tevera, D.; Nhapi, I. Factors influencing sustainability of communally-managed water facilities in rural areas of Zimbabwe. Phys. Chem. Earth Parts A/B/C 2017, 100, 247–257. [Google Scholar] [CrossRef]
- Rivera-Ospina, D.; Murcia-Rodríguez, E. Guía Divulgativa de Criterios Para la Delimitación de Páramos de Colombia; Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2011.
- Ochoa-Tocachi, B.F.; Buytaert, W.; De Bièvre, B.; Célleri, R.; Crespo, P.; Villacís, M.; Llerena, C.A.; Acosta, L.; Villazón, M.; Guallpa, M. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol. Process. 2016, 30, 4074–4089. [Google Scholar] [CrossRef] [Green Version]
- Quintero, F. Cebolleros de Santurban se resisten a dejar de cultivar. El Tiempo. 2014. Available online: https://www.eltiempo.com/archivo/documento/CMS-13918957 (accessed on 17 September 2019).
- Duarte-Abadía, B.; Boelens, R. Disputes over territorial boundaries and diverging valuation languages: The Santurban hydrosocial highlands territory in Colombia. Water Int. 2016, 41, 15–36. [Google Scholar] [CrossRef]
- Geilfus, F. 80 Tools for Participatory Development: Appraisal, Planning, Follow-Up and Evaluation; Instituto Interamericano de Cooperación Para la Agricultura (IICA): San José, CA, USA, 2008. [Google Scholar]
- WHO. Water Safety in Distribution Systems Services; World Health Organization (WHO): Geneva, Switzerland, 2014; p. 147. [Google Scholar]
- WHO. Water Safety Planning for Small Community Water Supplies: Step-by-Step Risk Management Guidance for Drinking-Water Supplies in Small Communities; World Health Organization (WHO): Geneva, Switzerland, 2012; p. 66. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality (2011), 4th ed.; World Health Organization (WHO): Geneva, Switzerland, 2012; p. 541. [Google Scholar]
- Bartram, J.; Ballance, R. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; E & FN Spon: London, UK, 1996. [Google Scholar]
- WHO. Rapid Assessment of Drinking-Water Quality: A Handbook for Implementation; World Health Organization (WHO): Geneva, Switzerland, 2012; p. 148. [Google Scholar]
- APHA. Standards Methods for Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Walters, J.P.; Javernick-Will, A.N. Long-term functionality of rural water services in developing countries: A system dynamics approach to understanding the dynamic interaction of factors. Environ. Sci. Technol. 2015, 49, 5035–5043. [Google Scholar] [CrossRef]
- Jones, S.; Sanford Bernhardt, K.; Kennedy, M.; Lantz, K.; Holden, T. Collecting critical data to assess the sustainability of rural infrastructure in low-income countries. Sustainability 2013, 5, 4870–4888. [Google Scholar] [CrossRef]
- Howard, G.; Bartram, J. Domestic Water Quantity, Service Level and Health; WHO/SDE/WSH/03.02; World Health Organization: Geneva, Switzerland, 2003; p. 33. [Google Scholar]
- Hazeltine, B. Water supply. In Field Guide to Appropriate Technology; Hazeltine, B., Bull, C., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2003; pp. 731–809. [Google Scholar]
- Garfì, M.; Ferrer-Martí, L. Decision-making criteria and indicators for water and sanitation projects in developing countries. Water Sci. Technol. 2011, 64, 83–101. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization (WHO): Geneva, Switzerland, 2008. [Google Scholar]
- Neely, K.; Walters, J.P. Using Causal Loop Diagramming to explore the drivers of the sustained functionality of rural water services in Timor-Leste. Sustainability 2016, 8, 57. [Google Scholar] [CrossRef]
- Smits, S.; Tamayo, S.; Ibarra, V.; Rojas, J.; Benavidez, A.; Bey, V. Gobernanza y Sostenibilidad de los Sistemas de Agua Potable y Saneamiento Rurales en Colombia. Banco Interamericano de Desarrollo (BID): Washington, DC, USA, 2012; p. 155. [Google Scholar]
- Madrigal-Ballestero, R.; Alpízar, F.; Schlüter, A. Public perceptions of the performance of community-based drinking water organizations in Costa Rica. Water Resour. Rural Dev. 2013, 1, 43–56. [Google Scholar] [CrossRef]
- Kelly, E.; Lee, K.; Shields, K.F.; Cronk, R.; Behnke, N.; Klug, T.; Bartram, J. The role of social capital and sense of ownership in rural community-managed water systems: Qualitative evidence from Ghana, Kenya, and Zambia. J. Rural Stud. 2017, 56, 156–166. [Google Scholar] [CrossRef]
- Koutsou, S.; Partalidou, M.; Ragkos, A. Young farmers’ social capital in Greece: Trust levels and collective actions. J. Rural Stud. 2014, 34, 204–211. [Google Scholar] [CrossRef]
- Jones, S.; Silva, C. A practical method to evaluate the sustainability of rural water and sanitation infrastructure systems in developing countries. Desalination 2009, 248, 500–509. [Google Scholar] [CrossRef]
- Peter, G.; Nkambule, S.E. Factors affecting sustainability of rural water schemes in Swaziland. Phys. Chem. Earth Parts A/B/C 2012, 50, 196–204. [Google Scholar] [CrossRef]
- Schweitzer, R.W.; Mihelcic, J.R. Assessing sustainability of community management of rural water systems in the developing world. J. Water Sanit. Hyg. Dev. 2012, 2, 20–30. [Google Scholar] [CrossRef]
- Alexander, K.T.; Tesfaye, Y.; Dreibelbis, R.; Abaire, B.; Freeman, M.C. Governance and functionality of community water schemes in rural Ethiopia. Int. J. Public Health 2015, 60, 977–986. [Google Scholar] [CrossRef]
- Miller, M.; Cronk, R.; Klug, T.; Kelly, E.R.; Behnke, N.; Bartram, J. External support programs to improve rural drinking water service sustainability: A systematic review. Sci. Total Environ. 2019, 670, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Beyene, H.A. Factors Affecting the Sustainability of Rural Water Supply Systems: The Case of Mecha Woreda, Amhara Region, Ethiopia. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2012. [Google Scholar]
- Kleemeier, E. The impact of participation on sustainability: An analysis of the Malawi rural piped scheme program. World Dev. 2000, 28, 929–944. [Google Scholar] [CrossRef]
- Lockwood, H. Mecanismos de Apoyo Institucional Para los Sistemas Rurales de Agua Potable y Saneamiento Manejados por las Comunidades en América Latina; USAID: Washington, DC, USA, 2002; p. 79.
- Majuru, B.; Jagals, P.; Hunter, P.R. Assessing rural small community water supply in Limpopo, South Africa: Water service benchmarks and reliability. Sci. Total Environ. 2012, 435, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Klug, T.; Cronk, R.; Shields, K.F.; Bartram, J. A categorization of water system breakdowns: Evidence from Liberia, Nigeria, Tanzania, and Uganda. Sci. Total Environ. 2018, 619, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Foster, T.; Hope, R. A multi-decadal and social-ecological systems analysis of community waterpoint payment behaviours in rural Kenya. J. Rural Stud. 2016, 47, 85–96. [Google Scholar] [CrossRef]
- World Bank. Infrastructure at the Crossroads: Lessons from 20 Years of World Bank Experience; World Bank: Washington, DC, USA, 2006; p. 168. [Google Scholar]
- Pagsuyoin, S.A.; Santos, J.R.; Latayan, J.S.; Barajas, J.R. A multi-attribute decision-making approach to the selection of point-of-use water treatment. Environ. Syst. Decis. 2015, 35, 437–452. [Google Scholar] [CrossRef]
- Raigoza-Loaiza, J.F. Aplicación de Métodos Multi-Criterio (MCDA) Para Planeamiento Energético de Largo Plazo en la Industria del Cemento. Ph.D. Thesis, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia, 2016. [Google Scholar]
- Congreso de Colombia. Ley 1930; Diario Oficial: Bogotá, Colombia, 2018.
- Harvey, P.A.; Reed, R.A. Community-managed water supplies in Africa: Sustainable or dispensable? Community Dev. J. 2007, 42, 365–378. [Google Scholar] [CrossRef]
- Domínguez-Rivera, I.; Oviedo-Ocaña, E.R.; Restrepo-Tarquino, I. Service provision in rural water supplies: Analysis of four community-based systems in Colombia. Cuadernos de Desarrollo Rural 2016, 13, 117–140. [Google Scholar] [CrossRef]
- Moriarty, P.; Smits, S.; Butterworth, J.; Franceys, R. Trends in rural water supply: Towards a service delivery approach. Water Altern. 2013, 6, 329–349. [Google Scholar]
- Smits, S.; van Koppen, B.; Moriarty, P.; Butterworth, J. Multiple-use services as an alternative to rural water supply services: A characterisation of the approach. Water Altern. 2010, 3, 102–121. [Google Scholar]
- Van Koppen, B.; Smits, S. Multiple-use water services: Climbing the water ladder. Waterlines 2010, 29, 5–20. [Google Scholar] [CrossRef]
- Carr, G.; Blöschl, G.; Loucks, D.P. Evaluating participation in water resource management: A review. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- WWAP. The United Nations World Water Development Report 2019: Leaving No One Behind; UNESCO World Water Assessment Programme: Paris, France, 2019; p. 186. [Google Scholar]
Attribute | Wa | Indicator Code | Wi | Data Collection Method | Indicator Code | Wi | Data Collection Method | Indicator Code | Wi | Data Collection Method |
---|---|---|---|---|---|---|---|---|---|---|
1. Population characteristics | 0.06 | 1.1 | 0.05 | HS | 1.4 | 0.05 | HS | 1.7 | 0.10 | HS |
1.2 | 0.20 | TL | 1.5 | 0.05 | HS | |||||
1.3 | 0.50 | WM | 1.6 | 0.05 | HS | |||||
2. Users acceptability | 0.06 | 2.1 | 0.20 | HS | 2.3 | 0.20 | HS | 2.5 | 0.20 | HS |
2.2 | 0.35 | HS | 2.4 | 0.05 | HS | |||||
3. Accountability and transparency | 0.02 | 3.1 | 0.25 | FG; SSI | 3.3 | 0.25 | FG; SSI; HS | |||
3.2 | 0.25 | FG; SSI | 3.4 | 0.25 | FG; SSI | |||||
4. Collective action | 0.06 | 4.1 | 0.05 | HS; FG; SSI | 4.5 | 0.10 | HS; FG; SSI | 4.9 | 0.05 | FG; SSI; TL |
4.2 | 0.05 | HS; FG; SSI | 4.6 | 0.05 | HS; FG; SSI | 4.10 | 0.05 | HS; FG; SSI | ||
4.3 | 0.05 | FG; SSI; TL | 4.7 | 0.20 | HS; FG; SSI | |||||
4.4 | 0.35 | HS | 4.8 | 0.05 | HS | |||||
5. Conflicts | 0.04 | 5.1 | 0.30 | FG; SSI; TL | 5.2 | 0.40 | FG; SSI; TL | 5.3 | 0.30 | HS; FG; SSI |
6. Policies, rules, and norms | 0.02 | 6.1 | 0.30 | FG; SSI | 6.2 | 0.70 | FG; SSI | |||
7. Administration, Operation, and Maintenance | 0.04 | 7.1 | 0.02 | FG; SSI | 7.7 | 0.01 | FG; SSI | 7.13 | 0.02 | FG; SSI; O |
7.2 | 0.15 | FG; SSI | 7.8 | 0.10 | FG; SSI | 7.14 | 0.10 | FG; SSI; O; SI | ||
7.3 | 0.01 | FG; SSI | 7.9 | 0.10 | FG; SSI; O | 7.15 | 0.10 | FG; SSI; O; SI | ||
7.4 | 0.01 | FG; SSI | 7.10 | 0.01 | FG; SSI; O | 7.16 | 0.10 | FG; SSI | ||
7.5 | 0.01 | FG; SSI | 7.11 | 0.01 | FG; SSI; O; SI | 7.17 | 0.10 | FG; SSI | ||
7.6 | 0.12 | FG; SSI | 7.12 | 0.03 | FG; SSI; O | |||||
8. Post-construction support | 0.01 | 8.1 | 0.10 | FG; SSI; O | 8.2 | 0.70 | FG; SSI; O | 8.3 | 0.20 | FG; SSI; O |
9. Access | 0.08 | 9.1 | 0.70 | FG; SSI; SI; O; SM | 9.2 | 0.30 | HS; FG; SSI | |||
10. Appropriateness | 0.13 | 10.1 | 0.20 | O | 10.3 | 0.20 | FG; SSI; SI; O | 10.5 | 0.20 | FG; SSI; SI; O |
10.2 | 0.20 | FG; SSI; SI; O | 10.4 | 0.20 | FG; SSI; SI; O | |||||
11. Infrastructure | 0.09 | 11.1 | 0.40 | WM; FG; SSI | 11.4 | 0.10 | FG; SSI; SI; O | 11.7 | 0.05 | FG; SSI; SI; O |
11.2 | 0.10 | FG; SSI; SI; O | 11.5 | 0.05 | FG; SSI; SI; O | 11.8 | 0.10 | FG; SSI; SI; O | ||
11.3 | 0.10 | FG; SSI; SI; O | 11.6 | 0.05 | FG; SSI; SI; O | 11.9 | 0.05 | HS; FG; SSI | ||
12. Reliability | 0.08 | 12.1 | 0.40 | HS; FG; SSI | 12.3 | 0.05 | HS; FG; SSI | 12.5 | 0.20 | HS; FG; SSI |
12.2 | 0.30 | HS; FG; SSI | 12.4 | 0.05 | HS; FG; SSI | |||||
13. Water quality | 0.14 | 13.1 | 0.80 | WM | 13.2 | 0.20 | WM | |||
14. Financial knowledge | 0.02 | 14.1 | 0.20 | FG; SSI; O | 14.3 | 0.30 | FG; SSI; O | |||
14.2 | 0.30 | FG; SSI; O | 14.4 | 0.20 | FG; SSI; O | |||||
15. Funding | 0.05 | 15.1 | 0.30 | FG; SSI; O | 15.3 | 0.05 | FG; SSI; HS | 15.5 | 0.05 | FG; SSI; O |
15.2 | 0.05 | FG; SSI; O | 15.4 | 0.20 | FG; SSI; HS | 15.6 | 0.35 | FG; SSI | ||
16. Risks to service provision | 0.09 | 16.1 | 0.50 | WM | 16.3 | 0.10 | SI | |||
16.2 | 0.30 | SI | 16.4 | 0.10 | HS; O | |||||
17. Environmental impact of technology | 0.01 | 17.1 | 0.15 | WM | 17.4 | 0.10 | SI; WM | 17.7 | 0.10 | SI; WM |
17.2 | 0.10 | SI; WM | 17.5 | 0.10 | SI; WM | |||||
17.3 | 0.40 | WM | 17.6 | 0.05 | SI; WM |
Sustainability Indicator | Weight of Indicator (Wi) | Qualitative Value Judgement | Data Collection Method | Behavior in the Case Study | Score (S) | Wi*S |
---|---|---|---|---|---|---|
Percentage (%) of people that have completed high school (1.1) | 0.05 | The educational level of the community facilitates system functioning | HS | Only 12% of SR had a high school or above level of education. | 1 | 0.05 |
Population growth rate (%) (1.2) | 0.20 | Population growth is not a hazard for the system capacity in the short-term | TL | Population growth was 4%, which could be an issue and a pressure factor due to the fragile páramo ecosystem. | 1 | 0.20 |
Percapita water demand/World Health Organization standard (100 lpcd) [36] (1.3) | 0.50 | User water practices are not a hazard for the system capacity in the short-term | WM | Water demand was 740 lpcd. With increasing population growth (4%) and productive uses of water, water provision could be at risk if water management strategies are not considered. | 1 | 0.50 |
Percentage (%) of users who have been trained in water, sanitation, and hygiene issues (1.4) | 0.05 | Users have been trained in water, sanitation, and hygiene issues | HS | 0% of SR had received training in water, sanitation, and hygiene issues. | 1 | 0.05 |
Percentage (%) of users who understand how the system is managed (1.5) | 0.05 | Users understand how the system is managed | HS | 52% of SR indicated they understood how the system was managed. | 3 | 0.15 |
Percentage (%) of Users who understand how the system is operated and maintained (1.6) | 0.05 | Users understand how the system is operated and maintained | HS | 68% of SR indicated they understood how the system was operated and maintained. | 4 | 0.20 |
Percentage (%) of Users who believe they are able to pay for the water service (1.7) | 0.1 | Users believe they are able to pay for the water service | HS | 97% of SR indicated they were able to pay for the water service. | 5 | 0.50 |
1.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez, I.; Oviedo-Ocaña, E.R.; Hurtado, K.; Barón, A.; Hall, R.P. Assessing Sustainability in Rural Water Supply Systems in Developing Countries Using a Novel Tool Based on Multi-Criteria Analysis. Sustainability 2019, 11, 5363. https://doi.org/10.3390/su11195363
Domínguez I, Oviedo-Ocaña ER, Hurtado K, Barón A, Hall RP. Assessing Sustainability in Rural Water Supply Systems in Developing Countries Using a Novel Tool Based on Multi-Criteria Analysis. Sustainability. 2019; 11(19):5363. https://doi.org/10.3390/su11195363
Chicago/Turabian StyleDomínguez, Isabel, Edgar Ricardo Oviedo-Ocaña, Karen Hurtado, Andrés Barón, and Ralph P. Hall. 2019. "Assessing Sustainability in Rural Water Supply Systems in Developing Countries Using a Novel Tool Based on Multi-Criteria Analysis" Sustainability 11, no. 19: 5363. https://doi.org/10.3390/su11195363
APA StyleDomínguez, I., Oviedo-Ocaña, E. R., Hurtado, K., Barón, A., & Hall, R. P. (2019). Assessing Sustainability in Rural Water Supply Systems in Developing Countries Using a Novel Tool Based on Multi-Criteria Analysis. Sustainability, 11(19), 5363. https://doi.org/10.3390/su11195363