Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
V (p, s, h) = ∑ δtvt (p, s, h).
T = 1
3. Results
4. Discuss and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Parry, M. The implications of climate change for crop yields, global food supply and risk of hunger. J. SAT Agric. Res. 2007, 4, 1–44. [Google Scholar]
- Agrawal, A.; McSweeney, C.; Perrin, N. Local Institutions and Climate Change Adaptation. 2008. Available online: http://hdl.handle.net/10986/11145 (accessed on 10 November 2018).
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Aksan, Z.; Çelikler, D. The Turkish adaptation study of global warming questionnaire. Procedia Soc. Behav. Sci. 2012, 31, 681–684. [Google Scholar] [CrossRef]
- Ashfaq, M.; Skinner, C.B.; Diffenbaugh, N.S. Influence of SST biases on future climate change projections. Clim. Dyn. 2011, 36, 1303–1319. Available online: https://link.springer.com/article/10.1007/s00382-010-0875-2 (accessed on 10 November 2018). [CrossRef]
- Baig, I.; Ashfaq, M.; Hassan, S.; Mushtaq, K. Impact of financial reforms in irrigation sector of Punjab, Pakistan. J. Anim. Plant Sci. (Pak.) 2008, 18, 145–150. [Google Scholar]
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, A.W.; Bazmi, A.A. Sustainable agriculture and eradication of rural poverty in Pakistan. Nat. Resour. Forum 2007, 31, 253–262. [Google Scholar] [CrossRef]
- Enete, A.A.; Amusa, T.A. Challenges of agricultural adaptation to climate change in Nigeria: A synthesis from the literature. Field Actions Science Reports. J. Field Actions 2010, 4. Available online: http://factsreports.revues.org/678 (accessed on 10 November 2018).
- Farhangfar, S.; Bannayan, M.; Khazaei, H.R.; Baygi, M.M. Vulnerability assessment of wheat and maize production affected by drought and climate change. Int. J. Disaster Risk Reduct. 2015, 13, 37–51. [Google Scholar] [CrossRef]
- Goddard, L.; Barnston, A.; Mason, S. Evaluation of the IRI’s “net assessment” seasonal climate forecasts: 1997–2001. Bull. Am. Meteorol. Soc. 2003, 84, 1761–1782. [Google Scholar] [CrossRef]
- Heckman, J. Varieties of selection bias. Am. Econ. Rev. 1990, 80, 313–318. Available online: https://www.jstor.org/stable/2006591 (accessed on 10 November 2018).
- Honda, Y.; Kondo, M.; McGregor, G.; Kim, H.; Guo, Y.L.; Hijioka, Y.; Yoshikawa, M.; Oka, K.; Takano, S.; Hales, S.; et al. Heat-related mortality risk model for climate change impact projection. Environ. Health Prev. Med. 2014, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 1204531. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, B.; Jehan, Z. Trade liberalization and economic development: Evidence from Pakistan. Lahore J. Econ. 2006, 11, 19–34. [Google Scholar] [CrossRef]
- Lone, R.A. Agricultural Diversification Towards High Value Commodities in South Asia. Int. J. Trade Glob. Bus. Perspect. 2013, 2, 688. [Google Scholar]
- Ahmad, A.; Ashfaq, M.; Rasul, G.; Wajid, S.A.; Khaliq, T.; Rasul, F.; Saeed, U.; Rahman, M.H.U.; Hussain, J.; Baig, I.; et al. Impact of climate change on the rice-wheat cropping system of Pakistan. In Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments; World Scientific: Singapore, 2015; pp. 219–258. [Google Scholar] [CrossRef]
- Farooqi, A.B.; Khan, A.H.; Mir, H. Climate change perspective in Pakistan. Pak. J. Meteorol. 2005, 2, 11–21. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Kreft, S.; Eckstein, D.; Junghans, L.; Kerestan, C.; Hagen, U. Global Climate Risk Index 2015: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2013 and 1994 to 2013; Germanwatch e.V.: Bonn, Germany; Berlin, Germany, 2014. [Google Scholar]
- Armah, F.A.; Yawson, D.O.; Yengoh, G.T.; Odoi, J.O.; Afrifa, E.K. Impact of floods on livelihoods and vulnerability of natural resource dependent communities in Northern Ghana. Water 2010, 2, 120–139. [Google Scholar] [CrossRef]
- Kreft, S.; Eckstein, D.; Junghans, L.; Kerestan, C.; Hagen, U. Global Climate Risk Index 2014. Who Suffers Most from Extreme Weather Events, Weather-Related Loss Events in 2012 and 1993 to 2012; Germanwatch e.V.: Bonn, Germany; Berlin, Germany, 2013. [Google Scholar]
- Eriksen, S.H.; Kelly, P.M. Developing credible vulnerability indicators for climate adaptation policy assessment. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 495–524. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Geijzendorffer, I.; Ewert, F.; Metzger, M.; Vereijken, P.; Woltjer, G.; Verhagen, A. Exploring the future of European crop production in a liberalised market, with specific consideration of climate change and the regional competitiveness. Ecol. Model. 2010, 221, 2177–2187. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Testa, G.; Scordia, D.; Alexopoulou, E. Future yields assessment of bioenergy crops in relation to climate change and technological development in Europe. Ital. J. Agron. 2012, 7, 22. [Google Scholar] [CrossRef]
- Leiserowitz, A. International public opinion, perception, and understanding of global climate change. Hum. Dev. Rep. 2007, 2008, 1–40. [Google Scholar]
- Tynkkynen, N. A great ecological power in global climate policy? Framing climate change as a policy problem in Russian public discussion. Environ. Politics 2010, 19, 179–195. [Google Scholar] [CrossRef]
- Cammarano, D.; Hawes, C.; Squire, G.; Holland, J.; Rivington, M.; Murgia, T.; Ronga, D. Rainfall and temperature impacts on barley (Hordeum vulgare L.) yield and malting quality in Scotland. Field Crop. Res. 2019, 241, 107559. [Google Scholar] [CrossRef]
- Mertz, O.; Halsnæs, K.; Olesen, J.E.; Rasmussen, K. Adaptation to climate change in developing countries. Environ. Manag. 2009, 43, 743–752. [Google Scholar] [CrossRef]
- Aslam, A.Q.; Ahmad, S.R.; Ahmad, I.; Hussain, Y.; Hussain, M.S. Vulnerability and impact assessment of extreme climatic event: A case study of southern Punjab, Pakistan. Sci. Total Environ. 2017, 580, 468–481. [Google Scholar] [CrossRef]
- Salma, S.; Shah, M.; Rehman, S. Rainfall trends in different climate zones of Pakistan. Pak. J. Meteorol. 2012, 9. [Google Scholar] [CrossRef]
- Ali, A. Coping with climate change and its impact on productivity, income, and poverty: Evidence from the Himalayan region of Pakistan. Int. J. Disaster Risk Reduct. 2017, 24, 515–525. [Google Scholar]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Ashfaq, M.; Zulfiqar, F.; Sarwar, I.; Quddus, M.A.; Baig, I.A. Impact of climate change on wheat productivity in mixed cropping system of Punjab. Soil Environ. 2011, 30, 110–114. [Google Scholar]
- Mall, R.; Singh, R.; Gupta, A.; Srinivasan, G.; Rathore, L. Impact of climate change on Indian agriculture: A review. Clim. Chang. 2006, 78, 445–478. [Google Scholar] [CrossRef]
- Masutomi, Y.; Takahashi, K.; Harasawa, H.; Matsuoka, Y. Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agric. Ecosyst. Environ. 2009, 131, 281–291. [Google Scholar] [CrossRef]
- Sattar, R.; Wang, S.; Tahir, M.; Cadwell, C. Assessment of Smallholder Farmers Vulnerability Due to Climate Change in Arid Areas of Pakistan. Appl. Ecol. Environ. Res. 2017, 15, 291–312. [Google Scholar] [CrossRef]
- Arshad, M.; Amjath-Babu, T.; Aravindakshan, S.; Krupnik, T.J.; Toussaint, V.; Kächele, H.; Müller, K. Climatic variability and thermal stress in pakistan’s rice and wheat systems: A stochastic frontier and quantile regression analysis of economic efficiency. Ecol. Indic. 2018, 89, 496–506. [Google Scholar] [CrossRef]
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- Gorst, A.; Dehlavi, A.; Groom, B. Crop productivity and adaptation to climate change in Pakistan. Environ. Dev. Econ. 2018, 23, 679–701. [Google Scholar] [CrossRef] [Green Version]
- Weldearegay, S.K.; Tedla, D.G. Impact of climate variability on household food availability in Tigray, Ethiopia. Agric. Food Secur. 2018, 7, 6. [Google Scholar] [CrossRef]
- Chalise, S.; Naranpanawa, A.; Bandara, J.S.; Sarker, T. A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal. Econ. Model. 2017, 62, 43–50. [Google Scholar] [CrossRef]
- Menike, L.; Arachchi, K.K. Adaptation to climate change by smallholder farmers in rural communities: Evidence from Sri Lanka. Procedia Food Sci. 2016, 6, 288–292. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Brown, C.M.; Yu, W.H.; Savitsky, A. An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan’s Indus River basin. Water Int. 2013, 38, 632–650. [Google Scholar] [CrossRef]
- Ahmad, M.; Nawaz, M.; Iqbal, M.; Javed, S. Analysing the Impact of Climate Change on Rice Productivity in Pakistan. 2014. Available online: https://mpra.ub.uni-muenchen.de/72861/3/MPRA_paper_72861.pdf (accessed on 16 September 2018).
- Shakoor, U.; Saboor, A.; Ali, I.; Mohsin, A. Impact of climate change on agriculture: Empirical evidence from arid region. Pak. J. Agric. Sci. 2011, 48, 327–333. [Google Scholar]
- Janjua, P.Z.; Samad, G.; Khan, N.U.; Nasir, M. Impact of climate change on wheat production: A case study of Pakistan [with comments]. Pak. Dev. Rev. 2010, 49, 799–822. [Google Scholar] [CrossRef]
- Hussain, S.S.; Mudasser, M. Prospects for wheat production under changing climate in mountain areas of Pakistan—An econometric analysis. Agric. Syst. 2007, 94, 494–501. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Rosenzweig’kil, C.; Jonesi, J.W.; Hatfie1d, J.L.; Mutterl, C.Z. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Integrated regional assessment projects. In Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications; Joint Publication with the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America; World Scientific: Singapore, 2013; pp. 263–280. [Google Scholar] [CrossRef]
- Antle, J.M.; Valdivia, R.O. Modelling the supply of ecosystem services from agriculture: A minimum-data approach. Aust. J. Agric. Resour. Econ. 2006, 50, 1–15. [Google Scholar] [CrossRef]
- Claessens, L.; Antle, J.; Stoorvogel, J.; Valdivia, R.; Thornton, P.K.; Herrero, M. A method for evaluating climate change adaptation strategies for small-scale farmers using survey, experimental and modeled data. Agric. Syst. 2012, 111, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Baig, I.A.; Ashfaq, M.; Naqvi, S.A.A.; Ahmed, A.; Hoogenboom, G.; Antle, J.M.; Valdivia, R. Ex ante impact assessment of wheat crop in Punjab-Pakistan. J. Appl. Environ. Biol. Sci. 2014, 4, 358–363. Available online: https://www.researchgate.net/publication/283353561 (accessed on 10 September 2018).
- Valdivia, R.O.; Antle, J.M.; Stoorvogel, J.J. Coupling the Tradeoff Analysis Model with a market equilibrium model to analyze economic and environmental outcomes of agricultural production systems. Agric. Syst. 2012, 110, 17–29. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.A.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Hanif, U.; Syed, S.H.; Ahmad, R.; Malik, K.A. Economic impact of climate change on agricultural sector of Punjab. Pak. Dev. Rev. 2010, 49, 771–798. [Google Scholar] [CrossRef]
- Iqbal, M.M. Climate Change Impacts on Agriculture and Building Resilience in Pakistan. Workshop on Developing Farming Systems for Climate Change Mitigation. 2013. Available online: www.adbi.org (accessed on 10 September 2018).
- Subash, N.; Gangwar, B.; Singh, H.; Baigorria, G.; Sikka, A.K.; Valdivia, R.O. Integrated Climate Change Assessment through Linking Crop Simulation with Economic Modeling-Results from the Indo-Gangetic Basin. In Handbook of Climate Change and Agroecosystems; Imperial College Press: London, UK; The American Society of Agronomy: Madison, WI, USA, 2015. [Google Scholar]
- Jehangir, W.A.; Masih, I.; Ahmed, S.; Gill, M.A.; Ahmad, M.; Mann, R.A.; Chaudhary, M.R.; Qureshi, A.S.; Turral, H. Sustaining Crop Water Productivity in Rice-Wheat Systems of South Asia: A Case Study from the Punjab, Pakistan; IWMI Working Paper 115; International Water Management Institute: Colombo, Sri Lanka, 2007; p. 45. [Google Scholar]
Strata | %HOUSEHOLD (HH) Vulnerable | Gains (%) | Losses (%) | Net Impact (%) | Net Returns (NR) without Climate Change (CC) (Rs.) | NR with CC (Rs.) | Per Capita Income (PCI) without CC | PCI with CC | Poverty without CC (%) | Poverty with CC (%) |
---|---|---|---|---|---|---|---|---|---|---|
Climate Change Impacts | ||||||||||
Rawalpindi | 60.9 | 25.6 | 33.0 | −7.3 | 144,514.6 | 129,958.4 | 18,291.6 | 16,730.9 | 57.7 | 61.6 |
Chakwal | 59.7 | 36.9 | 46.1 | −9.2 | 142,234.2 | 124,255.3 | 20,251.9 | 17,985.9 | 52.3 | 56.3 |
Layyah | 60.1 | 23.3 | 29.5 | −6.2 | 130,471.2 | 119,461.2 | 17,234.5 | 16,020.9 | 60.9 | 64.1 |
Aggregate | 60.2 | 28.7 | 36.3 | −7.6 | 139,192.3 | 124,675.9 | 7766.8 | 7063.0 | 20.0 | 25.3 |
Representative Agricultural Pathways | ||||||||||
Rawalpindi | 46.0 | 20.0 | 18.3 | 1.7 | 310,225.9 | 317,620.1 | 28,642.0 | 29,264.9 | 36.3 | 35.0 |
Chakwal | 47.1 | 24.1 | 22.5 | 1.6 | 322,270.2 | 329,194.6 | 33,937.1 | 34,622.8 | 32.0 | 30.9 |
Layyah | 44.7 | 18.4 | 16.3 | 2.1 | 275,166.0 | 283,031.3 | 26,460.3 | 27,148.4 | 39.0 | 37.2 |
Aggregate | 46.0 | 20.9 | 19.1 | 1.8 | 302,723.9 | 310,118.4 | 12,383.0 | 12,656.7 | 14.9 | 14.3 |
Strata | %HH Vulnerable | Gains (%) | Losses (%) | Net Impact (%) | NR without CC | NR with CC | PCI without CC | PCI with CC | Poverty without CC (%) | Poverty with CC (%) |
---|---|---|---|---|---|---|---|---|---|---|
Climate Change Impacts | ||||||||||
Rawalpindi | 66.3 | 24.0 | −35.2 | −11.2 | 144,514.6 | 122,515.4 | 22,356.4 | 19,473.6 | 48.5 | 54.3 |
Chakwal | 65.4 | 34.4 | −49.3 | −14.9 | 142,234.2 | 113,322.2 | 24,752.3 | 20,298.6 | 45.6 | 51.9 |
Layyah | 64.0 | 22.3 | −30.8 | −8.6 | 130,471.2 | 115,217.5 | 21,543.2 | 19,441.5 | 50.1 | 54.5 |
Aggregate | 65.3 | 26.9 | −38.6 | −11.6 | 139,192.3 | 117,137.6 | 9538.4 | 8219.1 | 20.0 | 22.4 |
Representative Agricultural Pathways | ||||||||||
Rawalpindi | 56.0 | 17.8 | −20.4 | −2.6 | 310,225.9 | 299,111.3 | 28,642.0 | 27,705.7 | 36.3 | 37.6 |
Chakwal | 58.0 | 21.3 | −25.6 | −4.3 | 322,270.2 | 303,258.8 | 33,937.1 | 32,054.5 | 32.0 | 33.6 |
Layyah | 52.7 | 16.7 | −17.8 | −1.1 | 275,166.0 | 271,131.7 | 26,460.3 | 26,107.4 | 39.0 | 39.2 |
Aggregate | 55.7 | 18.7 | −21.4 | −2.7 | 302,723.9 | 291,342.0 | 12,383.0 | 11,932.7 | 14.9 | 15.3 |
Strata | %HH Vulnerable | Gains (%) | Losses (%) | Net Impact (%) | NR without CC | NR with CC | PCI without CC | PCI with CC | Poverty without CC (%) | Poverty with CC (%) |
---|---|---|---|---|---|---|---|---|---|---|
Climate Change Impacts | ||||||||||
Rawalpindi | 69.6 | 23.1 | −36.7 | −13.7 | 144,514.6 | 117,683.5 | 22,356.4 | 18,840.4 | 48.5 | 55.6 |
Chakwal | 67.8 | 33.4 | −50.9 | −17.5 | 142,234.2 | 108,451.5 | 24,752.3 | 19,548.3 | 45.6 | 53.0 |
Layyah | 68.3 | 21.2 | −32.6 | −11.4 | 130,471.2 | 110,163.6 | 21,543.2 | 18,745.1 | 50.1 | 56.1 |
Aggregate | 68.6 | 25.9 | −40.2 | −14.3 | 139,192.3 | 112,220.7 | 9538.4 | 7934.7 | 20.0 | 22.9 |
Representative Agricultural Pathways | ||||||||||
Rawalpindi | 62.5 | 16.5 | −22.1 | −5.6 | 310,225.9 | 286,559.9 | 28,642.0 | 26,648.4 | 36.3 | 39.5 |
Chakwal | 62.2 | 22.1 | −29.3 | −7.2 | 322,270.2 | 290,488.5 | 33,937.1 | 30,789.8 | 32.0 | 35.3 |
Layyah | 60.5 | 15.4 | −19.7 | −4.3 | 275,166.0 | 259,104.7 | 26,460.3 | 25,055.2 | 39.0 | 41.4 |
Aggregate | 61.8 | 18.2 | −23.9 | −5.7 | 302,723.9 | 278,890.1 | 12,383.0 | 11,467.0 | 14.9 | 16.1 |
Strata | %HH Vulnerable | Gains (%) | Losses (%) | Net Impact (%) | NR without CC | NR with CC | PCI without CC | PCI with CC | Poverty without CC (%) | Poverty with CC (%) |
---|---|---|---|---|---|---|---|---|---|---|
Climate Change Impacts | ||||||||||
Rawalpindi | 69.0 | 23.2 | −36.4 | −13.2 | 144,514.6 | 118,672.1 | 22,356.4 | 18,970.0 | 48.5 | 55.4 |
Chakwal | 65.4 | 34.4 | −49.4 | −15.0 | 142,234.2 | 113,200.5 | 24,752.3 | 20,279.8 | 45.6 | 51.9 |
Layyah | 67.8 | 21.3 | −32.4 | −11.1 | 130,471.2 | 110,760.0 | 21,543.2 | 18,827.3 | 50.1 | 55.9 |
Aggregate | 67.3 | 26.4 | −39.5 | −13.1 | 139,192.3 | 114,307.9 | 9538.4 | 8057.6 | 20.0 | 22.7 |
Representative Agricultural Pathways | ||||||||||
Rawalpindi | 61.1 | 16.8 | −21.8 | −4.9 | 310,225.9 | 289,213.5 | 28,642.0 | 26,871.9 | 36.3 | 38.9 |
Chakwal | 58.7 | 21.1 | −25.7 | −4.7 | 322,270.2 | 301,667.5 | 33,937.1 | 31,896.9 | 32.0 | 34.0 |
Layyah | 60.4 | 15.4 | −19.6 | −4.2 | 275,166.0 | 259,434.0 | 26,460.3 | 25,084.0 | 39.0 | 41.4 |
Aggregate | 60.0 | 17.9 | −22.5 | −4.6 | 302,723.9 | 283,566.6 | 12,383.0 | 11,649.4 | 14.9 | 15.9 |
Strata | %HH Vulnerable | Gains (%) | Losses (%) | Net Impact (%) | NR without CC | NR with CC | PCI without CC | PCI with CC | Poverty without CC (%) | Poverty with CC (%) |
---|---|---|---|---|---|---|---|---|---|---|
Climate Change Impacts | ||||||||||
Rawalpindi | 71.5 | 22.5 | −37.7 | −15.2 | 144,514.6 | 114,833.5 | 22,356.4 | 18,467.0 | 48.5 | 56.4 |
Chakwal | 63.8 | 35.1 | −48.4 | −13.3 | 142,234.2 | 116,314.1 | 24,752.3 | 20,759.5 | 45.6 | 51.2 |
Layyah | 62.9 | 22.6 | −30.5 | −7.9 | 130,471.2 | 116,405.9 | 21,543.2 | 19,605.2 | 50.1 | 54.2 |
Aggregate | 66.1 | 26.7 | −39.1 | −12.3 | 139,192.3 | 115,829.1 | 9538.4 | 8090.1 | 20.0 | 22.7 |
Representative Agricultural Pathways | ||||||||||
Rawalpindi | 58.2 | 17.4 | −20.9 | −3.6 | 310,225.9 | 294,968.5 | 28,642.0 | 27,356.7 | 36.3 | 38.2 |
Chakwal | 55.7 | 21.8 | −24.8 | −3.0 | 322,270.2 | 308,902.7 | 33,937.1 | 32,613.4 | 32.0 | 33.1 |
Layyah | 50.9 | 17.1 | −17.4 | −0.4 | 275,166.0 | 273,821.4 | 26,460.3 | 26,342.7 | 39.0 | 38.9 |
Aggregate | 55.1 | 18.8 | −21.2 | −2.4 | 302,723.9 | 292,618.8 | 12,383.0 | 11,953.8 | 14.9 | 15.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naqvi, S.A.A.; Nadeem, A.M.; Iqbal, M.A.; Ali, S.; Naseem, A. Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan. Sustainability 2019, 11, 5365. https://doi.org/10.3390/su11195365
Naqvi SAA, Nadeem AM, Iqbal MA, Ali S, Naseem A. Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan. Sustainability. 2019; 11(19):5365. https://doi.org/10.3390/su11195365
Chicago/Turabian StyleNaqvi, Syed Asif Ali, Abdul Majeed Nadeem, Muhammad Amjed Iqbal, Sadia Ali, and Asia Naseem. 2019. "Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan" Sustainability 11, no. 19: 5365. https://doi.org/10.3390/su11195365
APA StyleNaqvi, S. A. A., Nadeem, A. M., Iqbal, M. A., Ali, S., & Naseem, A. (2019). Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan. Sustainability, 11(19), 5365. https://doi.org/10.3390/su11195365