A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System
Abstract
:1. Introduction
1.1. Stormwater Runoff Characteristics
1.2. Best Management Practices (BMPs) and Low Impact Development (LID)
1.3. Bioretention as a Promising BMPs and LID
2. Nitrogen Removal Processes
2.1. The Effect of Vegetation
2.2. The Effect of Soil Filter Media
2.3. The Effect of Nitrogen Concentration
2.4. The Effect of Hydraulic Factors
3. Nitrogen Leaching
4. Design Features that Enhanced Nitrogen Removal
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
1. Field study | ||||||||||||||
Type of plants used | NH3 | NH4+ | NO2− | NO3− | TKN | TN | TDN | ON | DON | PON | Use of C source | Use of plant | Site Name | Reference |
chokeberry (Aronia prunifolia), winterberry (Ilex verticillata), and compact inkberry (Ilex glabra compacta) | 82 | 67 | 26 | 51 | 14 | no | yes | Haddam, Connecticut., US | Dietz and Clausen (2006) [135] | |||||
river birch (Betula nigra), common rush (Juncus effuses), yellow flag iris (Iris pseudacorus), sweetbay (Magnolia virginiana) | −1 | 75 | −5 | 40 | no | yes | Greensboro, N.C., US | Hunt et al. (2006) [50] | ||||||
Southern wax myrtle (Myrica cerifera), Virginia sweetspire (Itea virginica), winterberry (Ilex verticillata) inkberry (Ilex glabra) | 86.0 | 13 | 45 | 40 | no | yes | Chapel Hill, N.C. US | Hunt et al. (2006) [50] | ||||||
Blueflag iris (Iris virginica), cardinal flower (Lobelia cardinalis), common rush (Juncus effusus), hibiscus (Hibiscus spp.), red maple (Acer rubrum), sweet pepperbush (Clethra alnifolia), Virginia sweetspire (Itea virginica), wild oat grass (Chamanthium latifolium) | 73 | 44 | 32 | no | yes | Charlotte, N.C., US | Hunt et al. (2008) [136] | |||||||
red maple (Acer rubrum), sweet bay (Magnolia virginica), Virginia sweetspire (Itea virginica), liriope (Liriope sp.), verbena (Verbena sp.), and blackeyed Susan (Rudbekia hirti). | 74 to 82 | −209 to −477 | −21 to −75 | −2 to −8 | no | yes | Nashville, N. C., US | Brown and Hunt (2011) [86] | ||||||
n/a | 19.9 to 90.8 | no | yes | LTU, Southfield, MI, US | Carpenter et al. (2010) [137] | |||||||||
prairie cord grass (Spartina pectinata) sumpweed (Iva annua) | 33 | 56 | no | yes | Lenexa, Kansas, US | Chen et al. (2013) [66] | ||||||||
Creeping juniper plants | 16 | 52 | 49 | no | yes | Greenbelt, Maryland | Davis et al (2006) [11] | |||||||
Creeping juniper plants | 15 | 67 | 59 | no | yes | Largo, Maryland | Davis et al (2006) [11] | |||||||
Trees | 58.6 | no | yes | KNU, Chungnamdo, Korea | Geromino et al. (2013) [138] | |||||||||
Dianella species, C. appressa | 96.0 | −17.0 | 37.0 | 58 | 79 | no | yes | McDowall, Australia | Hatt et al. (2009) [30] | |||||
Carex appressa, Carex tereticaulis, Lomandra longifolia, Isolepis nodosa, Caleocephalus lacteus, and Juncus spp. | 64 | −13 | -7 | −129 | 38 | no | yes | Monash University, Australia | Hatt et al. (2009) [30] | |||||
n/a | 82 | 82 | −137 | 9.7 | −146 | 83 | no | yes | College Park, Md., US | Li et al. (2014) [102] | ||||
n/a | 86 | no | yes | College Park, Md., US | Davis (2007) [69] | |||||||||
grass | 79.4 | 43.1 | 60.9 | no | yes | Piedmont of North Carolina | Smith and Hunt (2007) [139] | |||||||
n/a | 77.4 to 78.7 | no | no | Daxing District, Beijing, China | Liu et al (2017) [85] | |||||||||
Lomandra longifolia (Matt Rush) | 11 to 75 | no | yes | Sunshine Coast, Australia | Nichols and Lucke (2016) [140] | |||||||||
hardy native perennials, shrubs, and trees | 99 | no | yes | Blacksburg, Virginia | Debusk et al. (2011) [141] | |||||||||
30.6 to 95.7 | yes | no | University of Delaware, Newark, DE, USA | Tian et al. (2019) [117] | ||||||||||
n/a | 10 | −56 | 9 | 37 | 25 | 53 | no | yes | Balam Estate Rain Garden, Singapore | Wang et al. (2017) [142] | ||||
2. Laboratory study | ||||||||||||||
Type of plants used | NH3 | NH+ | NO2− | NO3− | TKN | TN | TDN | ON | DON | PON | Use of C source | Use of plant | Type of study | Reference |
Creeping juniper plants | <20 | 55 to 65 | no | yes | Pilot boxes | Davis et al. (2006) [11] | ||||||||
Carex rostrata Stokes (Bottle sedge) | 51.7 | NOx = −1461 | −208 | −240 | no | yes | Lab column | Blecken et al. (2007) [143] | ||||||
Carex appressa, Melaleuca ericifolia, Microleana stipoides, Dianella revoluta, Leucophyta brownii | >93 | NOx = 96 to −630 | 79 to −241 | no | yes | Lab column | Bratieres et al. (2008) [70] | |||||||
Chrysanthemum zawadskii var. latilobum, Aquilegia flabellata var. pumila, Rhododendron indicum Linnaeus, Spiraea japonica | 40 to 54 | 35 to 41 | 49 to 55 | no | yes | BR reactors | Geromino et al. (2014) [144] | |||||||
38 to −164 | no | no | Lab column | Hatt et al. (2008) [145] | ||||||||||
Swamp Foxtail Grass (Pennisetum alopecurioides) Flax Lily (Dianella brevipedunculata), two woody shrubs, Banksia (Banksia integrefolia), Bottlebrush (Callistemon pachyphyllus) | NOx = 88 to 95 | 76 | no | yes | Lab column | Lucas and Greenway (2008) [76] | ||||||||
Twenty native plant species from Victoria and Western Australia and two common lawn grasses | 58 to 89 | no | yes | Lab column | Payne et al. (2014) [146] | |||||||||
Monocots and Dicots | −303.5 | NOx = 78.9 | −66 | −115.4 | −509.9 | 21.6 | no | yes | Lab column | Read et al. (2008) [71] | ||||
Narrowleaf Blue-eyed grass (Sisyrinchium angustifolium) | −1.14 | 60 | 36.4 | no | yes | Lab column | O’Neill and Davis (2012) [147] | |||||||
>90 | yes | no | Pilot boxes | Kim et al. (2003) [109] | ||||||||||
Buffalograss 609 and Big Muhly | NOx = −232 to 62 | 65 to 89 | 59 to 79 | yes | yes | Lab column | Barret et al. (2013) [10] | |||||||
Carex appressa | 88 to 99 | NOx = 80 to 99 | 69 to 95 | yes | yes | Lab column | Glastier et al. (2014) [148] | |||||||
59.8 | yes | no | Lab column | Guo et al. (2014) [149] | ||||||||||
Twenty native plant species from Victoria and Western Australia and two common lawn grasses | 79 to 93 | yes | yes | Lab column | Payne et al. (2014) [146] | |||||||||
Baumea juncea, Melaleuca lateritia, Baumea rubiginosa, Juncus subsecundus | 95 | NOx = 67 | 93 | 93 | yes | yes | Lab column | Zhang et al. (2011) [75] | ||||||
Dianella revoluta, Microlaena stipoides and Carex appressa | 9.8 to 75.6 | NOx = −66.7 to 100 | −11.6 to 68.8 | −96.1 to 41.2 | yes | yes | Lab column | Zinger (2013) [105] | ||||||
Creeping juniper plants | 60 to 80 | 65–75 | no | yes | Pilot boxes | Davis et al. (2001) [9] | ||||||||
Buxus Microphylla var. Koreana | 97.5 | no | yes | Lab column | Cho et al. (2009) [87] | |||||||||
96.2 | 86.4 | no | no | Lab-scale (vertical tubes) | Yafei et al. (2017) [98] | |||||||||
Carex appressa. | 90 | yes | yes | Lab column | Zinger (2007) [150] | |||||||||
Spinach (Ipomoea aquatic) | 64–78 | 68–89 | no | yes | Prototype system in green house | Endut et al. (2009) [151] | ||||||||
Turf-grass, succulent-perennial and reed | 90 | 69 | no | yes | Glasshouse | Milandri et al. (2012) [78] | ||||||||
Zoysia matrella | 42.6 | no | yes | Lab column | Wu et al. (2017) [128] | |||||||||
Iris pseudacorus and Zoysia matrella | 49.8 | no | yes | Lab column | Wu et al. (2017) [128] | |||||||||
n/a | >90 | 21 | 39 | yes | yes | Lab column | Qiu et al. (2019) [152] | |||||||
Ophiopogon japonicus and Radermachera hainanensis Merr. | >95 | 43.0–79.6 | 68.4–83.0 | yes | yes | Lab column | Gongduan et al. (2019) [153] |
References
- Czemiel Berndtsson, J. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Nations, U. World Urbanization Prospects; United Nations: San Francisco, CA, USA, 2014. [Google Scholar]
- Kabir, M.I.; Daly, E.; Maggi, F. A review of ion and metal pollutants in urban green water infrastructures. Sci. Total Environ. 2014, 470, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Song, Y.-I.; Roesner, L.A. Effect of the Seasonal Rainfall Distribution on Storm-Water Quality Capture Volume Estimation. J. Water Resour. Plan. Manag. 2013, 139, 45–52. [Google Scholar] [CrossRef]
- Shrestha, P.; Hurley, S.E.; Wemple, B.C. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Collins, K.A.; Lawrence, T.J.; Stander, E.K.; Jontos, R.J.; Kaushal, S.S.; Newcomer, T.A.; Grimm, N.B.; Ekberg, M.L.C.; Johnson, T.N. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis. Ecol. Eng. 2010, 36, 1507–1519. [Google Scholar] [CrossRef]
- Koch, B.J.; Febria, C.M.; Cooke, R.M.; Hosen, J.D.; Baker, M.E.; Colson, A.R.; Filoso, S.; Hayhoe, K.; Loperfido, J.; Stoner, A.M.; et al. Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures. Elem. Sci. Anthr. 2015, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414, 148–161. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory Study of Biological Retention for Urban Stormwater Management. Water Environ. Res. 2001, 73, 5–14. [Google Scholar] [CrossRef]
- Barrett, M.E.; Limouzin, M.; Lawler, D.F. Effects of Media and Plant Selection on Biofiltration Performance. J. Environ. Eng. 2013, 139, 462–470. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water quality improvement through bioretention media: nitrogen and phosphorus removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C.; Winogradoff, D. Water quality improvement through bioretention: lead, copper, and zinc removal. Water Environ. Res. 2003, 75, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Line, D.E.; Hunt, W.F. Performance of a Bioretention Area and a Level Spreader-Grass Filter Strip at Two Highway Sites in North Carolina. J. Irrig. Drain. Eng. 2009, 135, 217–224. [Google Scholar] [CrossRef]
- Hou, X.; Zhou, F.; Leip, A.; Fu, B.; Yang, H.; Chen, Y.; Gao, S.; Shang, Z.; Ma, L. Spatial patterns of nitrogen runoff from Chinese paddy fields. Agric. Ecosyst. Environ. 2016, 231, 246–254. [Google Scholar] [CrossRef]
- Regan, J.; Fenton, O.; Healy, M. A review of phosphorus and sediment release from Irish tillage soils, the methods used to quantify losses and the current state of mitigation practice. Boil. Environ. Proc. R. Ir. Acad. 2012, 112, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Whipple, W.; Berger, B.B.; Gates, C.D.; Randall, C.W. Characterization of Urban Runoff. Water Resour. Res. 1978, 14, 370–372. [Google Scholar] [CrossRef]
- Zhang, T.; Ni, J.; Xie, D. Assessment of the relationship between rural non-point source pollution and economic development in the Three Gorges Reservoir Area. Environ. Sci. Pollut. Res. 2016, 23, 8125–8132. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.F.; Yusop, Z. Storm runoff quality in a residential catchment in Malaysia. J. Environ. Hydrol. 2009, 17, 1–9. [Google Scholar]
- Kumwimba, M.N.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Tao, W.; Liang, T.J.; Ilunga, L. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. Sci. Total Environ. 2018, 639, 742–759. [Google Scholar] [CrossRef]
- Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Environ. Sci. Policy 2016, 64, 101–117. [Google Scholar] [CrossRef]
- Lundy, L.; Ellis, J.B.; Revitt, D.M. Risk prioritisation of stormwater pollutant sources. Water Res. 2011, 6, 6589–6600. [Google Scholar] [CrossRef]
- Konrad, C.P.; Booth, D.B.; Burges, S.J. Effects of urban development in the Puget Lowland, Washington, on interannual streamflow patterns: Consequences for channel form and streambed disturbance. Water Resour. Res. 2005, 41, 1–15. [Google Scholar] [CrossRef]
- Doan, L.N.; Davis, A.P. Bioretention–Cistern–Irrigation Treatment Train to Minimize Stormwater Runoff. J. Sustain. Water Built Environ. 2017, 3, 4017003. [Google Scholar] [CrossRef]
- Lien, S.J.; Ahmed, N.A. Flow pattern and hydraulic performance of the REDAC Gross Pollutant Trap. Flow Meas. Instrum. 2011, 22, 153–164. [Google Scholar] [CrossRef]
- Zhang, M.K.; Wang, L.P.; He, Z.L. Spatial and temporal variation of nitrogen exported by runo ff from sandy agricultural soils. J. Environ. Sci. 2007, 19, 1086–1092. [Google Scholar] [CrossRef]
- Department of Irrigation and Drainage. Government of Malaysia Department of Irrigation and Drainage Urban Stormwater Management Manual for Malaysia MSMA, 2nd ed.; Department of Irrigation and Drainage: Kuala Lumpur, Malaysia, 2012.
- Standards, C.Q. Chemical Assessment Methods EU-Wide Environmental Quality Standards—Chemical Status National Environmental Quality Standards—Ecological Status; The Contact. 2–3; EEA: Boston, MA, USA, 2018. [Google Scholar]
- WEPA. National Water Quality Standards for Malaysia CLASS UNIT Source: EQR2006; WEPA: Swalmen, The Netherlands, 2016; pp. 1–4. [Google Scholar]
- Han, J.; Li, Z.; Li, P.; Tian, J. Nitrogen and phosphorous concentrations in runoff from a purple soil in an agricultural watershed. Agric. Water Manag. 2010, 97, 757–762. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Ivanovsky, A.; Belles, A.; Criquet, J.; Dumoulin, D.; Noble, P.; Alary, C.; Billon, G. Assessment of the treatment efficiency of an urban stormwater pond and its impact on the natural downstream watercourse. J. Environ. Manag. 2018, 226, 120–130. [Google Scholar] [CrossRef]
- Taylor, G.D.; Fletcher, T.D.; Wong, T.H.; Breen, P.F.; Duncan, H.P. Nitrogen composition in urban runoff—implications for stormwater management. Water Res. 2005, 39, 1982–1989. [Google Scholar] [CrossRef]
- Wang, S.; He, Q.; Ai, H.; Wang, Z.; Zhang, Q. Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing. J. Environ. Sci. 2013, 25, 502–510. [Google Scholar] [CrossRef]
- Alam, M.Z.; Anwar, A.F.; Sarker, D.C.; Heitz, A.; Rothleitner, C. Characterising stormwater gross pollutants captured in catch basin inserts. Sci. Total Environ. 2017, 586, 76–86. [Google Scholar] [CrossRef]
- Chahal, M.K.; Shi, Z.; Flury, M. Nutrient leaching and copper speciation in compost-amended bioretention systems. Sci. Total Environ. 2016, 556, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucke, T.; Drapper, D.; Hornbuckle, A. Urban stormwater characterisation and nitrogen composition from lot-scale catchments—New management implications. Sci. Total Environ. 2018, 619, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Li, P.; Yan, X. Runoff concentration and load of nitrogen and phosphorus from a residential area in an intensive agricultural watershed. Sci. Total Environ. 2013, 458, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Gold Coast Planning Scheme, Section 13 Water Sensitive Urban Design (WSUD) Guidelines Policies. Policy 11: Land Development Guidelines, 13.4 Bioretention Swales. In Our Living City, 5th ed.; 2007; pp. 1–30.
- Niemczynowicz, J. Urban hydrology and water management—Present and future challenges. Urban Water 1999, 1, 1–14. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Md Noh, M.N.B. Role of MSMA in Promoting Sustainable Urban Drainage Systems in Malaysia; Department of Irrigation and Drainage: Kuala Lumpur, Malaysia, 2008.
- Simpson, M.G.; Roesner, L.A. Hydrologic Modeling and Capital Cost Analysis of Low-Impact Development. J. Sustain. Water Built Environ. 2018, 4, 05018003. [Google Scholar] [CrossRef]
- Jia, Z.; Evans, R.O.; Smith, J.T. Effect of controlled drainage and vegetative buffers on drainage water quality from wastewater irrigated fields. J. Irrig. Drain. Eng. 2006, 132, 159–170. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Yu, Z.; Lung, I.; Yarotski, J.; Elliott, J.; Tiessen, K. Assessing Effects of Small Dams on Stream Flow and Water Quality in an Agricultural Watershed. J. Hydrol. Eng. 2014, 19, 5014015. [Google Scholar] [CrossRef]
- Guitjens, J.; Ayars, J. Drainage Design for Water Quality Management: Overview. J. Irrig. Drain. Eng. 1997, 123, 148–153. [Google Scholar] [CrossRef]
- Abida, H.; Sabourin, J.F. Grass Swale-Perforated Pipe Systems for Stormwater Management. J. Irrig. Drain. Eng. 2006, 132, 55–63. [Google Scholar] [CrossRef]
- EPA. Green Infrastructure in Arid and Semi-Arid Climates Adapting innovative stormwater management techniques to the. Am. Recover. Reinvestment Act (ARRA). Green Proj. Reserv. 2009, 2009, 1–9. [Google Scholar]
- States, U. Storm Water Technology Fact Sheet Bioretention; EPA: Washington, DC, USA, 1999. [Google Scholar]
- Christianson, R.D.; Barfield, B.J.; Hayes, J.C.; Gasem, K.; Brown, G.O. Modeling Effectiveness of Bioretention Cells for Control of Stormwater Quantity and Quality. World Water Environ. Resour. Congr. 2004. [Google Scholar] [CrossRef]
- Hunt, W.F.; Jarrett, A.R.; Smith, J.T.; Sharkey, L.J. Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. J. Irrig. Drain. Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- Ming-Han, P.L.; Li, P.E. Bioretention for Highway Stormwater Quality Improvement in Texas; Final report; National Transportation Library: Washington, DC, USA, 2013.
- Winston, R.J.; Dorsey, J.D.; Hunt, W.F. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Batalini, M.; Macedo, D.; Ambrogi, C.; Mario, E. Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment. Sci. Total Environ. 2019, 647, 923–931. [Google Scholar]
- Yu, S.L.; Kuo, J.T.; Fassman, E.A.; Pan, H. Field Test of Grassed Swale Performance in Removing Runoff Pollution. J. Water Resour. Plan. Manag. 2001, 127, 168–171. [Google Scholar] [CrossRef]
- Muerdter, C.; Özkök, E.; Li, L.; Davis, A.P. Vegetation and Media Characteristics of an Effective Bioretention Cell. J. Sustain. Water Built Environ. 2016, 2, 04015008. [Google Scholar] [CrossRef]
- Hunt, W.F.; Asce, M.; Davis, A.P.; Asce, F.; Traver, R.G.; Asce, M. Meeting Hydrologic and Water Quality Goals through Targeted Bioretention Design. J. Environ. Eng. 2012, 138, 698–707. [Google Scholar] [CrossRef]
- Pellerin, B.A.; Kaushal, S.S.; McDowell, W.H. Does anthropogenic nitrogen enrichment increase organic nitrogen concentrations in runoff from forested and human-dominated watersheds? Ecosystem 2006, 9, 852–864. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Lewis, W.M.; McCutchan, J.H. Land use change and nitrogen enrichment of a rocky mountain watershed. Ecol. Appl. 2006, 16, 299–312. [Google Scholar] [CrossRef]
- Miguntanna, N.P.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Characterising nutrients wash-off for effective urban stormwater treatment design. J. Environ. Manag. 2013, 120, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, R.M. Evaluation and Optimization of Bioretention Design for Nitrogen and Phosphorus Removal. Master’s Thesis, University of New Hampshire, Durham, NH, USA, May 2013. [Google Scholar]
- O’Reilly, A.M.; Wanielista, M.P.; Chang, N.B.; Xuan, Z.; Harris, W.G. Nutrient removal using biosorption activated media: Preliminary biogeochemical assessment of an innovative stormwater infiltration basin. Sci. Total Environ. 2012, 432, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, D.; Brisson, J.; Fletcher, T.D. The role of plants in bioretention systems; does the science underpin current guidance? Ecol. Eng. 2018, 120, 532–545. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, D.; Wang, Z.-W. The potential of using biological nitrogen removal technique for stormwater treatment. Ecol. Eng. 2017, 106, 482–495. [Google Scholar] [CrossRef]
- Klocker, C.A.; Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Morgan, R.P. Nitrogen uptake and denitrification in restored and unrestored streams in urban Maryland, USA. Aquat. Sci. 2009, 71, 411–424. [Google Scholar] [CrossRef]
- Rycewicz-Borecki, M.; McLean, J.E.; Dupont, R.R. Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms. Ecol. Eng. 2017, 99, 409–416. [Google Scholar] [CrossRef]
- Chen, X.; Peltier, E.; Sturm, B.S.M.; Young, C.B. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. Water Res. 2013, 47, 1691–1700. [Google Scholar] [CrossRef]
- Wang, S. Nitrogen removal from urban stormwater runoff by stepped bioretention systems. Ecol. Eng. 2017, 106, 340–348. [Google Scholar] [CrossRef]
- Gold, A.C.; Thompson, S.P.; Piehler, M.F. Nitrogen cycling processes within stormwater control measures: A review and call for research. Water Res. 2019, 149, 578–587. [Google Scholar] [CrossRef]
- Davis, A.P. Field Performance of Bioretention: Water Quality. Environ. Eng. Sci. 2007, 24, 1048–1064. [Google Scholar] [CrossRef]
- Bratieres, K.; Fletcher, T.D.; Deletic, A.; Zinger, Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res. 2008, 42, 3930–3940. [Google Scholar] [CrossRef] [PubMed]
- Read, J.; Wevill, T.; Fletcher, T.; Deletic, A. Variation among plant species in pollutant removal from stormwater in biofiltration systems. Water Res. 2008, 42, 893–902. [Google Scholar] [CrossRef] [PubMed]
- De Rozari, P.; Greenway, M.; El Hanandeh, A. Nitrogen removal from sewage and septage in constructed wetland mesocosms using sand media amended with biochar. Ecol. Eng. 2018, 111, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Sample, D.J.; Bell, C.; Guan, Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.T.; Herrero, P.; Hatt, B.; Farrelly, M.; Mccarthy, D. Biofilters for urban agriculture: Metal uptake of vegetables irrigated with stormwater. Ecol. Eng. 2018, 122, 177–186. [Google Scholar] [CrossRef]
- Zhang, Z.; Rengel, Z.; Liaghati, T.; Antoniette, T.; Meney, K. Influence of plant species and submerged zone with carbon addition on nutrient removal in stormwater biofilter. Ecol. Eng. 2011, 37, 1833–1841. [Google Scholar] [CrossRef]
- Lucas, W.C.; Greenway, M. Nutrient Retention in Vegetated and Nonvegetated Bioretention Mesocosms. J. Irrig. Drain. Eng. 2008, 134, 613–623. [Google Scholar] [CrossRef]
- Goh, H.W.; Zakaria, N.A.; Lau, T.L.; Foo, K.Y.; Chang, C.K.; Leow, C.S. Mesocosm study of enhanced bioretention media in treating nutrient rich stormwater for mixed development area. Urban Water J. 2017, 14, 134–142. [Google Scholar] [CrossRef]
- Milandri, S.G.; Winter, K.J.; Chimphango, S.B.M.; Armitage, N.P.; Mbui, D.N.; Jackson, G.E.; Liebau, V. The performance of plant species in removing nutrients from stormwater in biofiltration systems in Cape Town. Water SA 2012, 38, 655–662. [Google Scholar] [CrossRef]
- Chen, X.C.; Huang, L.; Ong, B.L. The phytoremediation potential of a Singapore forest tree for bioretention systems. J. Mater. Sci. Eng. 2014, 7, 220–227. [Google Scholar]
- Lim, H.S.; Lim, W.; Hu, J.Y.; Ziegler, A.; Ong, S.L. Comparison of fi lter media materials for heavy metal removal from urban stormwater runoff using bio fi ltration systems. J. Environ. Manag. 2015, 147, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Clar, M.; Laramore, E.; Ryan, H.; Depth, A.P. Rethinking Bioretention Design Concepts. In Low Impact Development: New and Continuing Applications; ASCE: Reston, VA, USA, 2008; pp. 119–127. [Google Scholar]
- Lintern, A.; Daly, E.; Duncan, H.; Hatt, B.E.; Fletcher, T.D.; Deletic, A. Key design characteristics that influence the performance of stormwater biofilters. In Proceedings of the 12th International Conference on Urban, Porto Alegre, Brazil, 11–16 September 2011; pp. 11–16. [Google Scholar]
- Takaijudin, H.; Puay, H.T.; Ghani, A.A.; Zakaria, N.A.; Lau, T.L. The Influence of Filter Depths in Capturing Nutrient Contaminants for Non-Vegetated Bioretention Column: A Preliminary Study. In Proceedings of the E-Proceedings 36th IAHR World Congr, Hague, The Netherlands, 28 June–3 July 2015; p. 986. [Google Scholar]
- Li, J.; Zhao, R.; Li, Y.; Chen, L. Modeling the effects of parameter optimization on three bioretention tanks using the HYDRUS-1D model. J. Environ. Manag. 2018, 217, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Dong, H.; Zhu, Z.; Shang, B.; Yin, F. Effects of biofilter media depth and moisture content on removal of gases from a swine barn. J. Air Waste Manag. Assoc. 2017, 67, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- RBrown, A.; Hunt, W.F. Impacts of Media Depth on Effluent Water Quality and Hydrologic Performance of Undersized Bioretention Cells. J. Irrig. Drain. Eng. 2011, 137, 132–143. [Google Scholar] [CrossRef]
- Cho, K.W.; Song, K.G.; Cho, J.W.; Kim, T.G.; Ahn, K.H. Removal of nitrogen by a layered soil infiltration system during intermittent storm events. Chemosphere 2009, 76, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Bučiene, A.; Gaigalis, K. Chemical composition of wet deposits and drainage runoff in agroecosystems: The case of middle Lithuania. Baltica 2012, 25, 153–162. [Google Scholar] [CrossRef]
- Houdeshel, C.D.; Hultine, K.R.; Johnson, N.C.; Pomeroy, C.A. Evaluation of three vegetation treatments in bioretention gardens in a semi-arid climate. Landsc. Urban Plan. 2015, 135, 62–72. [Google Scholar] [CrossRef]
- Yang, H.; McCoy, E.L.; Grewal, P.S.; Dick, W.A. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems. Chemosphere 2010, 80, 929–934. [Google Scholar] [CrossRef]
- Laurenson, G.; Laurenson, S.; Bolan, N.; Beecham, S.; Clark, I. The Role of Bioretention Systems in the Treatment of Stormwater. Adv. Agron. 2013, 120, 223–274. [Google Scholar]
- Mangangka, I.R.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Performance characterisation of a stormwater treatment bioretention basin. J. Environ. Manag. 2015, 150, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Fowdar, H.S.; Hatt, B.E.; Breen, P.; Cook, P.L.M.; Deletic, A. Evaluation of sustainable electron donors for nitrate removal in different water media. Water Res. 2015, 85, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Ning-yuan, T.; Tian, L.I. Nitrogen removal by three types of bioretention columns under wetting and drying regimes. J. Cent. South Univ. 2016, 23, 324–332. [Google Scholar]
- Peterson, I.J.; Igielski, S.; Davis, A.P. Enhanced Denitrification in Bioretention Using Woodchips as an Organic Carbon Source. J. Sustain. Water Built Environ. 2015, 9, 1–9. [Google Scholar] [CrossRef]
- Goh, H.W.; Lau, T.L.; Foo, K.Y.; Chang, C.K.; Zakaria, N.A. Influence of Hydraulic Conductivity and Organic Matter Content in Different Bioretention Media on Nutrient Removal. Appl. Mech. Mater. 2015, 802, 448–453. [Google Scholar] [CrossRef]
- McPhillips, L.; Goodale, C.; Walter, M.T. Nutrient Leaching and Greenhouse Gas Emissions in Grassed Detention and Bioretention Stormwater Basins. J. Sustain. Water Built Environ. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Pan, J.; Qi, S.; Chen, Q.; Tong, D. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge. Bioresour. Technol. 2017, 244, 8–14. [Google Scholar] [CrossRef]
- RBrown, A.; Line, D.E.; Hunt, W.F. LID Treatment Train: Pervious Concrete with Subsurface Storage in Series with Bioretention and Care with Seasonal High Water Tables. J. Environ. Eng. 2012, 138, 689–697. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Motavalli, P.P.; Garrett, H.E.; Krstansky, J.J. Nitrogen losses in runoff from three adjacent agricultural watersheds with claypan soils. Agric. Ecosyst. Environ. 2006, 117, 39–48. [Google Scholar] [CrossRef]
- Hurley, S.; Shrestha, P.; Cording, A. Nutrient Leaching from Compost: Implications for Bioretention and Other Green Stormwater Infrastructure. J. Sustain. Water Built Environ. 2017, 3, 04017006. [Google Scholar] [CrossRef]
- Li, L.; Davis, A.P. Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environ. Sci. Technol. 2014, 48, 3403–3410. [Google Scholar] [CrossRef]
- Blecken, G.T.; Zinger, Y.; Deletić, A.; Fletcher, T.D.; Hedström, A.; Viklander, M. Laboratory study on stormwater biofiltration: Nutrient and sediment removal in cold temperatures. J. Hydrol. 2010, 394, 507–514. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, P.; Cao, X.; Zhou, Y.; Song, C. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters. Bioresour. Technol. 2016, 218, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Zinger, Y.; Blecken, G.T.; Fletcher, T.D.; Viklander, M.; Deletić, A. Optimising nitrogen removal in existing stormwater biofilters: Benefits and tradeoffs of a retrofitted saturated zone. Ecol. Eng. 2013, 51, 75–82. [Google Scholar] [CrossRef]
- Ma, L.; He, F.; Huang, T.; Zhou, Q.; Zhang, Y.; Wu, Z. Nitrogen and phosphorus transformations and balance in a pond-ditch circulation system for rural polluted water treatment. Ecol. Eng. 2016, 94, 117–126. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Mixed-Media Filter System for Removal of Multiple Contaminants from Urban Storm Water: Large-Scale Laboratory Testing. J. Hazard. Toxic Radioact. Waste 2014, 18, 1–8. [Google Scholar] [CrossRef]
- Glaister, B.J.; Fletcher, T.D.; Cook, P.L.M.; Hatt, B.E. Interactions between design, plant growth and the treatment performance of stormwater biofilters. Ecol. Eng. 2017, 105, 21–31. [Google Scholar] [CrossRef]
- Kim, H.; Seagren, E.A.; Davis, A.P. Engineered Bioretention for Removal of Nitrate from Stormwater Runoff. Water Environ. Res. 2003, 75, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Li, T.; Shi, Z. A layered bioretention system for inhibiting nitrate and organic matters leaching. Ecol. Eng. J. 2017, 107, 233–238. [Google Scholar] [CrossRef]
- Randall, M.T.; Bradford, A. Bioretention gardens for improved nutrient removal. Water Qual. Res. J. 2013, 48, 372–386. [Google Scholar] [CrossRef]
- Bock, E. Enhanced Nitrate and Phosphate Removal in a Denitrifying Bioreactor with Biochar. J. Environ. Qual. 2015, 44, 605. [Google Scholar] [CrossRef]
- Charlesworth, S.M. Laboratory based experiments to assess the use of green and food based compost to improve water quality in a Sustainable Drainage (SUDS) device such as a swale. Sci. Total Environ. 2012, 424, 337–343. [Google Scholar] [CrossRef]
- Paus, K.H.; Morgan, J.; Gulliver, J.S.; Hozalski, R.M. Effects of Bioretention Media Compost Volume Fraction on Toxic Metals Removal, Hydraulic Conductivity, and Phosphorous Release. J. Environ. Eng. 2014, 140, 04014033. [Google Scholar] [CrossRef]
- Iqbal, H.; Garcia-Perez, M.; Flury, M. Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Sci. Total Environ. 2015, 521, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Messer, T.L.; Burchell, M.R.; Birgand, F.; Broome, S.W.; Chescheir, G. Nitrate removal potential of restored wetlands loaded with agricultural drainage water: A mesocosm scale experimental approach. Ecol. Eng. 2017, 106, 541–554. [Google Scholar] [CrossRef]
- Tian, J.; Jin, J.; Chiu, P.C.; Cha, D.K.; Guo, M.; Imhoff, P.T. A pilot-scale, bi-layer bioretention system with biochar and zero- valent iron for enhanced nitrate removal from stormwater. Water Res. 2019, 148, 378–387. [Google Scholar] [CrossRef]
- Johnson, J.P.; Hunt, W.F. A retrospective comparison of water quality treatment in a bioretention cell 16 years following initial analysis. Sustainability 2019, 11, 1945. [Google Scholar] [CrossRef]
- Subramaniam, D.; Mather, P.; Russell, S.; Rajapakse, J. Dynamics of Nitrate-Nitrogen Removal in Experimental Stormwater Biofilters under Intermittent Wetting and Drying. J. Environ. Eng. 2014, 142, 1–12. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Palmer, E.T.; Poor, C.J.; Hinman, C.; Stark, J.D. Nitrate and Phosphate Removal through Enhanced Bioretention Media: Mesocosm Study. Water Environ. Res. 2013, 85, 823–832. [Google Scholar] [CrossRef]
- You, Z.; Zhang, L.; Pan, S.Y.; Chiang, P.C.; Pei, S.; Zhang, S. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff. Water Res. 2019, 161, 61–73. [Google Scholar] [CrossRef]
- Afrooz, A.R.M.N.; Boehm, A.B. Effects of submerged zone, media aging, and antecedent dry period on the performance of biochar-amended biofilters in removing fecal indicators and nutrients from natural stormwater. Ecol. Eng. 2017, 102, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, F.; Qin, H.; Zeng, X.; Li, X.; Yu, S.L. Effect of saturated zone on nitrogen removal processes in stormwater bioretention systems. Water 2018, 10, 162. [Google Scholar] [CrossRef]
- CKlein, A.M.; Logtestijn, R.S.P. Denitrification in the top soil of managed grasslands in the Netherlands in relation to soil type and fertilizer level. Plant Soil 1994, 163, 33–44. [Google Scholar] [CrossRef]
- KSmith, A.; Thomson, P.E.; Clayton, H.; McTaggart, I.P.; Conen, F. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 1998, 32, 3301–3309. [Google Scholar] [CrossRef]
- Ergas, S.J.; Sengupta, S.; Siegel, R.; Pandit, A.; Yao, Y.; Yuan, X. Performance of Nitrogen-Removing Bioretention Systems for Control of Agricultural Runoff. J. Environ. Eng. 2010, 136, 1105–1112. [Google Scholar] [CrossRef]
- Wu, J. Performance of biofilter with a saturated zone for urban stormwater runoff pollution control: Influence of vegetation type and saturation time. Ecol. Eng. 2017, 105, 355–361. [Google Scholar] [CrossRef]
- Yang, H.; Dick, W.A.; Mccoy, E.L.; Phelan, P.L.; Grewal, P.S. Field evaluation of a new biphasic rain garden for stormwater flow management and pollutant removal. Ecol. Eng. 2013, 54, 22–31. [Google Scholar] [CrossRef]
- Goh, H.W.; Chang, C.K.; Lau, T.L.; Foo, K.Y.; Zakaria, N.A. The Role of Tropical Shrub with Enhanced Bioretention Media in Nutrient Rich Runoff Treatment. IAHR World Congr. 2015, 28, 979. [Google Scholar]
- Tian, J.; Miller, V.; Chiu, P.C.; Maresca, J.A.; Guo, M.; Imhoff, P.T. Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment. Sci. Total Environ. 2016, 553, 596–606. [Google Scholar] [CrossRef]
- Kim, H.; Seagren, E.A.; Davis, A.P. Engineered Bioretention for Removal of Nitrate from Stormwater Runoff. Proc. Water Environ. Fed. 2000, 2000, 623–632. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y. Experimental study of nitrogen removal efficiency of layered bioretention under intermittent or continuous operation. Pol. J. Environ. Stud. 2017, 26, 1121–1130. [Google Scholar] [CrossRef]
- Wang, M. Effect of a submerged zone and carbon source on nutrient and metal removal for stormwater by bioretention cells. Water 2018, 10, 1629. [Google Scholar] [CrossRef]
- Clausen, J.C.; Dietz, M.E. Saturation to Improve Pollutant Retention in a Rain Garden. Environ. Sci. Technol. 2006, 40, 1335–1340. [Google Scholar]
- Hunt, W.F.; Smith, J.T.; Jadlocki, S.J.; Hathaway, J.M.; Eubanks, P.R. Pollutant Removal and Peak Flow Mitigation by a Bioretention Cell in Urban Charlotte, N.C. J. Environ. Eng. 2008, 134, 403–408. [Google Scholar] [CrossRef]
- Carpenter, D.D.; Hallam, L. Influence of Planting Soil Mix Characteristics on Bioretention Cell Design and Performance. J. Hydrol. Eng. 2010, 15, 404–416. [Google Scholar] [CrossRef]
- Geronimo, F.K.F.; Maniquiz-Redillas, M.C.; Kim, L.H. Treatment of parking lot runoff by a tree box filter. Desalin. Water Treat. 2013, 51, 4044–4049. [Google Scholar] [CrossRef]
- Smith, R.A.; Hunt, W.F. Pollutant Removal in Bioretention Cells with Grass Cover. World Environ. Water Resour. Congr. 2007, 2007, 1–11. [Google Scholar]
- Nichols, P. Evaluation of the Long-Term Pollution Removal Performance of Established Bioretention Cells. Int. J. Geomate 2016, 11, 2363–2369. [Google Scholar] [CrossRef]
- Debusk, K.M.; Asce, M.; Wynn, T.M.; Ph, D.; Asce, M. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J. Environ. Eng. 2011, 137, 800–808. [Google Scholar] [CrossRef]
- Wang, J.; Chua, L.H.C.; Shanahan, P. Evaluation of pollutant removal efficiency of a bioretention basin and implications for stormwater management in tropical cities. Environ. Sci. Water Res. Technol. 2017, 3, 78–91. [Google Scholar] [CrossRef]
- Blecken, G.T.; Zinger, Y.; Muthanna, T.M.; Deletic, A.; Fletcher, T.D.; Viklander, M. The influence of temperature on nutrient treatment efficiency in stormwater biofilter systems. Water Sci. Technol. 2007, 56, 83–91. [Google Scholar] [CrossRef]
- Geronimo, F.K.F.; Maniquiz-Redillas, M.C.; Kim, L.H. Fate and removal of nutrients in bioretention systems. Desalin. Water Treat. 2015, 53, 3072–3079. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydraulic and pollutant removal performance of fine media stormwater filters. Environ. Sci. Technol. 2008, 42, 2535–2541. [Google Scholar] [CrossRef]
- Payne, E.G.I.; Pham, T.; Cook, P.L.M.; Fletcher, T.D.; Hatt, B.E.; Deletic, A. Biofilter design for effective nitrogen removal from stormwater—Influence of plant species, inflow hydrology and use of a saturated zone. Water Sci. Technol. 2014, 69, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.W.; Davis, A.P. Water Treatment Residual as a Bioretention Amendment for Phosphorus. I: Evaluation Studies. J. Environ. Eng. 2011, 138, 318–327. [Google Scholar]
- Glaister, B.J.; Fletcher, T.D.; Cook, P.L.M.; Hatt, B.E. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: The role of filter media, vegetation and saturated zone. Water Sci. Technol. 2014, 69, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Guo, H. Soil column studies on the performance evaluation of engineered soil mixes for bioretention systems. Desalin. Water Treat. 2015, 54, 3661–3667. [Google Scholar] [CrossRef]
- Zinger, Y.; Fletcher, T.D.; Deletic, A.; Blecken, G.T.; Viklander, M. Optimisation of the nitrogen retention capacity of stormwater biofiltration systems. In Proceedings of the 6th International Conference on Sustainable Techniques and Strategies in Urban Water Management, Lyon, France, 25–28 June 2007; pp. 24–28. [Google Scholar]
- Endut, A.; Jusoh, A.; Ali, N.; Nik, W.N.S.W.; Hassan, A. Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalin. Water Treat. 2009, 5, 19–28. [Google Scholar] [CrossRef]
- Qiu, F.; Zhao, S.; Zhao, D.; Wang, J.; Fu, K. Enhanced nutrient removal in bioretention systems modified with water treatment residuals and internal water storage zone. Environ. Sci. Water Res. Technol. 2019, 5, 993–1003. [Google Scholar] [CrossRef]
- Fan, G.; Li, Z.; Wang, S.; Huang, K.; Luo, J. Migration and transformation of nitrogen in bioretention system during rainfall runoff. Chemosphere 2019, 232, 54–62. [Google Scholar] [CrossRef]
Parameter | Unit | Classes * | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
TSS | mg/L | <25 | 25–50 | 50–150 | 150–300 | >300 |
TP | mg/L | ≤0.05 | ≤0.15 | ≤0.6 | ≤1.2 | >1.2 |
PO43− | mg/L | ≤0.02 | ≤0.1 | ≤0.4 | ≤0.8 | >0.8 |
TN | mg/L | ≤1 | ≤3 | ≤12 | ≤24 | >24 |
NH4-N | mg/L | ≤0.04 | ≤0.3 | ≤1.2 | ≤2.4 | >2.4 |
NO3-N | mg/L | ≤1 | ≤2.5 | ≤10 | ≤20 | >20 |
NO2-N | mg/L | ≤0.01 | ≤0.1 | ≤0.4 | ≤0.8 | >0.8 |
Pollutant | Low | Medium | High |
---|---|---|---|
TSS | Less than 40% of particulates greater than 0.125 mm retained | 40%–70% of particulates greater than 0.125 mm retained | >70% of particulates greater than 0.125 mm retained |
Nutrients (TN & TP) | Less than 10% reduction | 10%–40% reduction | >40% reduction |
System Description | NH4+ (%) | NO3− (%) | TN (%) | Reference |
---|---|---|---|---|
Bioretention planted with different types of water tolerant plants | −39 | −384 to −57 | −48 | [13] |
Bioretention filled with sandy loam soil and shredded wood and planted with different plant spices | (−205) ± 181 | [5] | ||
Bioretention planted with high diversity and low-diversity plant- mix of iron and aluminum oxide | −46 | −14 | [104] | |
Bioretention amended by compost | −37 to −216,000 | [35] | ||
Bioretention with no saturation zone planted with Microlaena stipoides and Dianella revoluta | −300 to −400 | [105] | ||
Bioretention box filled with a sandy loam soil and topped with a thin layer of mulch with different plant spices | (−73) ± 18 | [11] |
Design Features to Improve Nitrogen Removal | TN (%) | NH4+ (%) | NO3− (%) | Ranking | Reference |
---|---|---|---|---|---|
Bioretention column with less permeable soil layer | 82 | 83 | 84 | High | [94] |
Wood chips | 88 | High | [127] | ||
Saturation zone | 49.8 | Medium | [128] | ||
Different depths of saturation zone | 80 | 62 | Medium-high | [124] | |
Combination of saturated to unsaturated sequence | 91 | High | [129] | ||
Newspapers | 80.4 | High | [130] | ||
Planted bioretention with saturation zone | 93 | 95 | 67 | High | [75] |
Bioretention with biochar and poultry litter | 90 | High | [131] | ||
Bioretention planted with vegetables | 47 | Low | [74] | ||
Saturation zone containing shredded newspaper | 99 | High | [111] | ||
A large-scale column study with different plant species, filter media types and depths, and pollutant concentrations | 93 | High | [70] | ||
Box prototype bioretention system filled with sandy loam soil and mulch | 60–80 | Medium-high | [9] | ||
Bioretention contains carbon source and anoxic zone | 71.1 | Medium | [63] | ||
Two-layered bioretention system amended with wood chips | 80 | High | [110] | ||
Bioretention columns with filter media contains 8% organic material | 60–90 | Medium-high | [119] | ||
Saturated zone containing woodchips | 61.9 | 82.4 | Medium-high | [95] | |
Bioretention amended with biochar | 30.6–95.7 | Low-high | [117] | ||
Columns study for anoxic sand packed amended with wheat straw, wood chips, and sawdust | 95 | High | [132] | ||
Saturated zone combined with carbon source | 85–94 | High | [133] | ||
Bioretention amended with biochar coupled with saturated zone | 20–30 | 50–60 | 50–60 | Low-medium | [123] |
Bioretention combined with saturated and unsaturated conditions | 42–63 | Medium- high | [90] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, M.; Wan Yusof, K.; Takaijudin, H.; Goh, H.W.; Abdul Malek, M.; Azizan, N.A.; Ab. Ghani, A.; Sa’id Abdurrasheed, A. A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. Sustainability 2019, 11, 5415. https://doi.org/10.3390/su11195415
Osman M, Wan Yusof K, Takaijudin H, Goh HW, Abdul Malek M, Azizan NA, Ab. Ghani A, Sa’id Abdurrasheed A. A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. Sustainability. 2019; 11(19):5415. https://doi.org/10.3390/su11195415
Chicago/Turabian StyleOsman, Manal, Khamaruzaman Wan Yusof, Husna Takaijudin, Hui Weng Goh, Marlinda Abdul Malek, Nor Ariza Azizan, Aminuddin Ab. Ghani, and Abdurrasheed Sa’id Abdurrasheed. 2019. "A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System" Sustainability 11, no. 19: 5415. https://doi.org/10.3390/su11195415
APA StyleOsman, M., Wan Yusof, K., Takaijudin, H., Goh, H. W., Abdul Malek, M., Azizan, N. A., Ab. Ghani, A., & Sa’id Abdurrasheed, A. (2019). A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. Sustainability, 11(19), 5415. https://doi.org/10.3390/su11195415