Supply Chain Risk of Obsolescence at Simultaneous Robust Perturbations
Abstract
:1. Introduction
1.1. The Perturbed Flows in Global Supply Chains
1.2. Supply Chain Finances and Recommendations of the World Economic Forum
2. Literature Review
Economic and Technological Components of Sustainable Development
3. Methods
3.1. Disruption of Supply Chains on the Infinite Horizon
- What are potential sources of disruption; and
- How can this disruption be avoided or mitigated?
- Specifying sources of risk and vulnerabilities in a chain;
- Risk assessment; and
3.2. Extended MRP Theory as a Framework for Risk Analysis in an SC
3.3. The Analysis of the Simultaneously Realised Risks in a Global Supply Chain
3.4. The Infinite Time Horizon and the NPV of the Costs as Presented in Bogataj et al. (2016)
3.5. The Risk Realisation on the Finite Horizon as a New Approach—The Network Simulation Model
4. Results—Mitigating the Supply Chain Risk of Obsolescence at the Simultaneous Robust Perturbations on the Finite Horizon
4.1. The SC without Perturbations of Lead Times on the Infinite Time Horizon—Numerical Example
4.2. The SC with Perturbations of the Lead Times and Expected Obsolescence on the Finite-Time Horizon
5. Discussion
6. Conclusions and Further Research
- (a)
- To study the impact of obsolescence, together with environmental issues, the extension of the presented network is needed, as explained by Bogataj and Grubbström in the article “On the representation of timing for different structures within MRP theory”, where the close loop analysis is given on the infinite horizon [2]. In such cases, some considerations by Kwak and Kim, regarding green profit maximisation through integrated pricing and production planning [48], would also be further studied and evaluated with the NPV criterion, and environmental constraints and penalties.
- (b)
- Among the social sustainability issues, the main challenges are rising because of the ageing of the European workforce. Therefore, the trade-off between investments in ergonomics and pension schemes for earlier retirement, as presented by Bogataj et al. [49], and other ergonomic improvements should be studied on the finite horizon, which might give different optimal policies for the cases with a smaller ratio between the obsolescence horizon and the value of the length of a cycle. In this case, as well as some other solutions, listed in the articles of Calzavara et al. [50], Battini et al. [51], and Andriolo et al. [52], would be included in the model.
Author Contributions
Funding
Conflicts of Interest
References
- Cabernard, L.; Pfister, S.; Hellweg, S. A new method for analyzing sustainability performance of global supply chains and its application to material resources. Sci. Total Environ. 2019, 684, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Bogataj, M.; Grubbström, R.W. On the representation of timing for different structures within MRP theory. Int. J. Prod. Econ. 2012, 140, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Bogataj, M.; Grubbström, R.W. Transportation delays in reverse logistics. Int. J. Prod. Econ. 2013, 143, 395–402. [Google Scholar] [CrossRef]
- Bogataj, D.; Aver, B.; Bogataj, M. Supply chain risk at simultaneous robust perturbations. Int. J. Prod. Econ. 2016, 181, 68–78. [Google Scholar] [CrossRef]
- Despeisse, M.; Baumers, M.; Brown, P.; Charnley, F.; Ford, S.J.; Garmulewiczx, A.; Knowles, S.; Minshall, T.H.W.; Mortara, L.; Reed-Tsochas, F.P.; et al. Unlocking value for a circular economy through 3D printing: A research agenda. Technol. Forecast. Soc. Chang. 2017, 115, 75–84. [Google Scholar] [CrossRef]
- Battini, D.; Calzavara, M.; Isolan, I.; Sgaebossa, F.; Zangaro, F. Sustainability in Material Purchasing: A Multi-Objective Economic Order Quantity Model under Carbon Trading. Sustainability 2018, 10, 4438. [Google Scholar] [CrossRef]
- Kwak, M. Optimal Line Design of New and Remanufactured Products: A Model for Maximum Profit and Market Share with Environmental Consideration. Sustainability 2018, 10, 4283. [Google Scholar] [CrossRef]
- Lin, T.T.; Hsu, S.Y.; Chang, C.C. Evaluation of Decision-Making for the Optimal Value of Sustainable Enterprise Development under Global 100 Index Thinking. Sustainability 2019, 11, 1106. [Google Scholar] [CrossRef]
- Alac, P.; Culik, M. Multi-Criteria Decision-Making Model for the Material Flow of Resonant Wood Production. Sustainability 2017, 9, 502. [Google Scholar] [CrossRef]
- Harvey, D. The Enigma of Capital and the Crises of Capitalism; Profile Books: London, UK, 2010. [Google Scholar]
- Xu, X.; Chen, X.; Jia, F.; Brown, S.; Gong, Y.; Xu, Y. Supply chain finance: A systematic literature review and bibliometric analysis. Int. J. Prod. Econ. 2018, 204, 160–173. [Google Scholar] [CrossRef]
- Yan, N.; Sun, B.; Zhang, H.; Liu, C. A partial credit guarantee contract in a capital-constrained supply chain: Financing equilibrium and coordinating strategy. Int. J. Prod. Econ. 2016, 173, 122–133. [Google Scholar] [CrossRef]
- Culp, S. Supply Chain Disruption a Major Threat to Business. Forbes 2013. [Google Scholar]
- WCED. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- UN. World Summit Outcome; The United Nations General Assembly; The United Nations: New York, NY, USA, 2005. [Google Scholar]
- Faezipour, M.; Ferreira, S. A System Dynamics Approach for Sustainable Water Management in Hospitals. IEEE Syst. J. 2018, 12, 1278–1285. [Google Scholar] [CrossRef]
- Eslami, Y.; Dassisti, M.; Lezoche, M.; Panetto, H. A survey on sustainability in manufacturing organisations: Dimensions and future insights. Int. J. Prod. Res. 2019, 57, 5194–5214. [Google Scholar] [CrossRef]
- Haanstra, W.; Toxopeus, M.E.; van Gerrevink, M.R. Product life cycle planning for sustainable manufacturing: Translating theory into business opportunities. Procedia CIRP 2017, 61, 46–51. [Google Scholar] [CrossRef]
- Dewulf, J.; Mancini, L.; Blengini, G.A.; Sala, S.; Latunussa, C.; Pennington, D. Toward an Overall Analytical Framework forthe Integrated Sustainability Assessment of the Production and Supply of Raw Materials and Primary Energy Carriers. J. Ind. Ecol. 2015, 19, 963–977. [Google Scholar] [CrossRef]
- Joung, C.B.; Carrell, J.; Sarkar, P.; Feng, S.C. Categorization of Indicators for Sustainable Manufacturing. Ecol. Indic. 2013, 24, 148–157. [Google Scholar] [CrossRef]
- Holton, I.; Glass, J.; Price, A.D.F. Managing for Sustainability: Findings from Four Company Case Studies in the UK Precast Concrete Industry. J. Clean. Prod. 2010, 18, 152–160. [Google Scholar] [CrossRef]
- Arena, M.; Duque Ciceri, N.; Terzi, S.; Bengo, I.; Azzone, G.; Garetti, M. A State-of-the-art of Industrial Sustainability: Definitions, Tools and Metrics. Int. J. Prod. Lifecycle Manag. 2009, 4. [Google Scholar] [CrossRef]
- Balkema, A.; Preisig, H.; Otterpohl, R.; Lambert, A.J.D. Augmenting Design with Sustainability. Comput. Aided Chem. Eng. 2003, 15, 714–719. [Google Scholar]
- Kovačić, D.; Bogataj, M. Net present value evaluation of energy production and consumption in repeated reverse logistics. Technol. Econ. Dev. Econ. 2017, 23, 877–894. [Google Scholar]
- Waters, D. Supply Chain Risk Management: Vulnerability and Resilience in Logistics; Kogan Page: Philadelphia, PA, USA, 2007. [Google Scholar]
- Yorulmazer, T. Case Studies on Disruptions During the Crisis. In Economic Policy Review; Federal Reserve Bank: New York, NY, USA, 2014; Available online: http://www.newyorkfed.org/research/epr/2014/1402yor1.pdf (accessed on 1 October 2019).
- Grubbström, R.W. On the Application of the Laplace Transform to Certain Economic Problems. Manag. Sci. 1967, 13, 558–567. [Google Scholar] [CrossRef]
- Grubbström, R.W. Stochastic Properties of a Production-Inventory Process with Planned Production Using Transform Methodology. Int. J. Prod. Econ. 1996, 45, 407–419. [Google Scholar] [CrossRef]
- Grubbström, R.W.; Tang, O. An Overview of Input-Output Analysis Applied to Production-Inventory Systems. Econ. Syst. Rev. 2000, 12, 3–25. [Google Scholar] [CrossRef]
- Grubbström, R.W. Transform Methodology Applied to Some Inventory Problems. Z. Betr. 2007, 77, 297–324. [Google Scholar] [CrossRef]
- Bogataj, D.; Bogataj, M. NPV approach to material requirements planning theory: A 50-year review of these research achievements. Int. J. Prod. Res. 2019, 57, 5137–5153. [Google Scholar] [CrossRef]
- Bogataj, L.; Bogataj, M. The study of optimal additional investments in capacities for reduction of delays in the value chain. Int. J. Prod. Econ. 2007, 108, 281–290. [Google Scholar] [CrossRef]
- Bogataj, M.; Bogataj, L. Supply chain coordination in spatial games. Int. J. Prod. Econ. 2001, 71, 277–286. [Google Scholar] [CrossRef]
- Bogataj, M.; Bogataj, L. On the compact presentation of the lead time perturbations in distribution networks. Int. J. Prod. Econ. 2003, 88, 145–155. [Google Scholar] [CrossRef]
- Bogataj, M.; Grubbström, R.W.; Bogataj, L. Efficient location of industrial activity cells in a global supply chain. Int. J. Prod. Econ. 2011, 133, 243–250. [Google Scholar] [CrossRef]
- Hudnurkar, M.; Deshpande, S.; Rathod, U.; Jakhar, S.K. Supply Chain Risk Classification Schemes: A Literature Review. Oper. Supply Chain Manag. 2017, 10, 182–199. [Google Scholar] [CrossRef] [Green Version]
- Peusner, L. The Principles of Network Thermodynamics: Theory and Biophysical Applications; Entropy Limited: Lincoln, MA, USA, 1987. [Google Scholar]
- González-Fernández, C.F. Network simulation method for solving phase-change heat transfer problems with variable thermal properties. Heat Mass Transf. 2002, 38, 327–335. [Google Scholar]
- Alhama, F.; Marín, F.; Moreno, J.A. An efficient and reliable model to simulate microscopic mechanical friction in the Frenkel-Kontorova-Tomlinson model. Comput. Phys. Commun. 2011, 182, 2314–2325. [Google Scholar] [CrossRef]
- Marín, F.; Alhama, F.; Moreno, J.A. Modelling of stick-slip behaviour with different hypotheses on friction forces. Int. J. Eng. Sci. 2012, 60, 13–24. [Google Scholar] [CrossRef]
- Marín, F.; Alhama, F.; Moreno, J.A. Modelling of stick-slip behaviour in a Girling brake using network simulation method. Nonlinear Dyn. 2016, 84, 153–162. [Google Scholar] [CrossRef]
- Sanchez-Perez, J.F.; Marín, F.; Morales, J.L.; Canovas, M.; Alhama, F. Modeling and simulation of different and representative engineering problems using Network Simulation Method. PLoS ONE 2018, 13, e0193828. [Google Scholar] [CrossRef]
- Basel Committee on Banking Supervision. Guidance on the Application of the Core Principles for Effective Banking Supervision to the Regulation and Supervision of Institutions Relevant to Financial Inclusion; Basel Committee on Banking Supervision: Basel, Switzerland, 2016; Available online: https://www.bis.org/bcbs/publ/d351.pdf (accessed on 1 October 2019).
- Hua, Z.; Sun, Y.; Xu, X. Operational causes of bankruptcy propagation in supply chain. Decis. Support. Syst. 2011, 51, 671–681. [Google Scholar] [CrossRef]
- Kleindorf, P.R.; Saad, G.H. Managing Disruption Risks in Supply Chains. Prod. Oper. Manag. 2005, 14, 53–68. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Storneli, V. Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability 2018, 10, 3117. [Google Scholar] [CrossRef]
- Bogataj, D.; Bogataj, M. Measuring the supply chain risk and vulnerability in frequency space. Int. J. Prod. Econ. 2004, 108, 291–301. [Google Scholar] [CrossRef]
- Kwak, M.; Kim, H. Green profit maximization through integrated pricing and production planning for a line of new and remanufactured products. J. Clean. Prod. 2017, 142, 3454–3470. [Google Scholar] [CrossRef] [Green Version]
- Bogataj, D.; Battini, D.; Calzavara, M.; Persona, A. The ageing workforce challenge: Investments in collaborative robots or contribution to pension schemes, from the multi-echelon perspective. Int. J. Prod. Econ. 2019, 210, 97–106. [Google Scholar] [CrossRef]
- Calzavara, M.; Battini, D.; Bogataj, D.; Sgarbossa, F.; Zennaro, I. Ageing workforce management in manufacturing systems: State of the art and future research agenda. Int. J. Prod. Res. 2019. [Google Scholar] [CrossRef]
- Battini, D.; Glock, C.H.; Grosse, E.H.; Persona, A.; Sgarbossa, F. Ergo-lot-sizing: An approach to integrate ergonomic and economic objectives in manual materials handling. Int. J. Prod. Econ. 2017, 185, 230–239. [Google Scholar] [CrossRef]
- Andriolo, A.; Battini, D.; Persona, A.; Sgarbossa, F. A new bi-objective approach for including ergonomic principles into EOQ model. Int. J. Prod. Res. 2016, 54, 2610–2627. [Google Scholar] [CrossRef]
H;H | Input matrix (bill-of-materials) describing how many items () from activity cell i are needed to produce or to package one item in activity cell j |
Index of fixed activity cell in a supply chain | |
G;G | Output matrix. In our model, we shall assume that G is the identity matrix I |
Pj ∈ P | The intensity of activities in j-th activity cell as a component of production vector P |
Pj | The intensity of flow from to |
Lead time for the manipulation of the item inside activity cell | |
Lead time for transportation of items from to | |
Diagonal lead time matrix with element in its -th diagonal position | |
Perturbed diagonal lead time matrix | |
The Laplace (complex) frequency in the Laplace transformed frequency domain | |
, | Additional delays inside the activity cell and transportation line, respectively |
Generalised input matrix and the generalised perturbed input matrix | |
Length of the j-th cycle | |
, , | Price vector, setup cost vector, and transportation cost vector, respectively |
, D, | Vector of delivery, the vector of demand and reduction of demand respectively |
R(0) | Initial available inventory level and the available interest rate at s |
Continuous and yearly interest rate, respectively | |
λ | The correction factor for the NPV for various time to obsolescence and various values of the interest rate |
ϑ | The correction factor for the NPV at different perturbations of lead times and increasing time to the obsolescence |
Interest Rate | Time to Obsolescence [Time Units] | |||||
---|---|---|---|---|---|---|
[%] | 100 | 200 | 300 | 400 | 500 | 1000 |
1 | 39.5 | 53.8 | 59.2 | 61.3 | 62.0 | 62.5 |
2 | 26.2 | 29.7 | 30.2 | 30.3 | 30.3 | 30.3 |
3 | 18.6 | 19.5 | 19.6 | 19.6 | 19.6 | 19.6 |
4 | 14.0 | 14.2 | 14.3 | 14.3 | 14.3 | 14.3 |
5 | 11.0 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 |
6 | 8.95 | 8.97 | 8.97 | 8.97 | 8.97 | 8.97 |
7 | 7.48 | 7.49 | 7.49 | 7.49 | 7.49 | 7.49 |
8 | 6.38 | 6.38 | 6.38 | 6.38 | 6.38 | 6.38 |
9 | 5.53 | 5.53 | 5.53 | 5.53 | 5.53 | 5.53 |
10 | 4.86 | 4.86 | 4.86 | 4.86 | 4.86 | 4.86 |
Interest | Time to Obsolescence [Time Units] | |||||
---|---|---|---|---|---|---|
Rate | 100 | 200 | 300 | 400 | 500 | 1000 |
0.01 | 0.63 | 0.86 | 0.95 | 0.98 | 0.99 | 1.00 |
0.02 | 0.86 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 |
0.03 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
0.04 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
0.05 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.06 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.07 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.08 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.09 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Lead Time | Time to the Obsolescence TTO [Time Units] | |||||
---|---|---|---|---|---|---|
[Time Units] | 100 | 200 | 300 | 400 | 500 | 1000 |
3.00 | 3.95 | 5.38 | 5.92 | 6.13 | 6.20 | 6.25 |
3.60 | 3.63 | 5.12 | 5.67 | 5.86 | 5.94 | 5.98 |
4.20 | 3.52 | 4.95 | 5.43 | 5.62 | 5.6 | 5.73 |
4.80 | 3.42 | 4.71 | 5.22 | 5.40 | 5.46 | 5.50 |
5.40 | 3.35 | 4.57 | 5.02 | 5.19 | 5.25 | 5.29 |
Lead Time | Time to the Obsolescence TTO [Time Units] | |||||
---|---|---|---|---|---|---|
[Time Units] | 100 | 200 | 300 | 400 | 500 | 1000 |
3.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
3.60 | 0.919 | 0.952 | 0.958 | 0.956 | 0.958 | 0.957 |
4.20 | 0.891 | 0.920 | 0.917 | 0.917 | 0.918 | 0.917 |
4.80 | 0.866 | 0.875 | 0.882 | 0.881 | 0.881 | 0.880 |
5.40 | 0.848 | 0.849 | 0.848 | 0.847 | 0.847 | 0.846 |
6.00 | 0.777 | 0.809 | 0.814 | 0.814 | 0.815 | 0.814 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campuzano-Bolarín, F.; Marín-García, F.; Moreno-Nicolás, J.A.; Bogataj, M.; Bogataj, D. Supply Chain Risk of Obsolescence at Simultaneous Robust Perturbations. Sustainability 2019, 11, 5484. https://doi.org/10.3390/su11195484
Campuzano-Bolarín F, Marín-García F, Moreno-Nicolás JA, Bogataj M, Bogataj D. Supply Chain Risk of Obsolescence at Simultaneous Robust Perturbations. Sustainability. 2019; 11(19):5484. https://doi.org/10.3390/su11195484
Chicago/Turabian StyleCampuzano-Bolarín, Francisco, Fulgencio Marín-García, José Andrés Moreno-Nicolás, Marija Bogataj, and David Bogataj. 2019. "Supply Chain Risk of Obsolescence at Simultaneous Robust Perturbations" Sustainability 11, no. 19: 5484. https://doi.org/10.3390/su11195484
APA StyleCampuzano-Bolarín, F., Marín-García, F., Moreno-Nicolás, J. A., Bogataj, M., & Bogataj, D. (2019). Supply Chain Risk of Obsolescence at Simultaneous Robust Perturbations. Sustainability, 11(19), 5484. https://doi.org/10.3390/su11195484