Equity Return Dispersion and Stock Market Volatility: Evidence from Multivariate Linear and Nonlinear Causality Tests
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data
3.2. Methodology
3.2.1. Bivariate Linear Causality Tests
3.2.2. Nonlinearity Tests
3.2.3. Multivariate Granger Causality tests
Multivariate Linear Causality
- (1)
- ,
- (2)
- , and,
- (3)
- both and ,
Multivariate Nonlinear Causality
4. Empirical Results
4.1. Descriptive Statistics and Stationarity Test
4.2. Bivariate Causality Tests
4.3. Multivariate Granger Causality Tests
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Connolly, R.; Stivers, C. Information content and other characteristics of the daily cross-sectional dispersion in stock returns. J. Empir. Financ. 2006, 13, 79–112. [Google Scholar] [CrossRef]
- Angelidis, T.; Sakkas, A.; Tessaromatis, N. Stock market dispersion, the business cycle and expected factor returns. J. Bank. Financ. 2015, 59, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Maio, P. Cross-sectional return dispersion and the equity premium. J. Financ. Mark. 2016, 29, 87–109. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Lin, G. Stock market volatility and the business cycle. J. Appl. Econ. 1996, 11, 573–593. [Google Scholar] [CrossRef]
- Schwert, G.W. Stock Volatility during the Recent Financial Crisis. Eur. Financ. Manag. 2011, 17, 789–805. [Google Scholar] [CrossRef]
- Choudhry, T.; Papadimitriou, F.I.; Shabi, S. Stock market volatility and business cycle: Evidence from linear and nonlinear causality tests. J. Bank. Financ. 2016, 66, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.D.; Wong, W.K.; Zhang, B.Z. Multivariate linear and nonlinear causality tests. Math. Comput. Simul. 2010, 81, 5–17. [Google Scholar] [CrossRef]
- Bai, Z.D.; Li, H.; Wong, W.K.; Zhang, B.Z. Multivariate Causality Tests with Simulation and Application. Stat. Probab. Lett. 2011, 81, 1063–1071. [Google Scholar] [CrossRef]
- Bai, Z.; Hui, Y.; Jiang, D.; Lv, Z.; Wong, W.K.; Zheng, S. A new test of multivariate nonlinear causality. PLoS ONE 2018, 13, e0185155. [Google Scholar] [CrossRef]
- Chow, S.C.; Cunado, J.; Gupta, R.; Wong, W.K. Causal Relationships between Economic Policy Uncertainty and Housing Market Returns in China and India: Evidence from Linear and Nonlinear Panel and Time Series Models. Stud. Nonlinear Dyn. Econom. 2018, 22. [Google Scholar] [CrossRef]
- Christie, W.; Huang, R. Equity Return Dispersions; Work Paper; Vanderbilt University: Nashville, TN, USA, 1994. [Google Scholar]
- Duffee, G.R. Asymmetric Cross-Sectional Dispersion in Stock Returns: Evidence and Implications; U.C. Berkeley: Berkeley, CA, USA, 2001. [Google Scholar]
- Loungani, P.; Rush, R.; Tave, W. Stock market dispersion and unemployment. J. Monet. Econ. 1990, 25, 367–388. [Google Scholar] [CrossRef]
- Stivers, C.T. Firm-level return dispersion and the future volatility of aggregate stock market returns. J. Financ. Mark. 2003, 6, 389–411. [Google Scholar] [CrossRef]
- Stivers, C.; Sun, L. Cross-Sectional Return Dispersion and Time Variation in Value and Momentum Premiums. J. Financ. Quant. Anal. 2010, 45, 987–1014. [Google Scholar] [CrossRef]
- Bhootra, A. Are momentum profits driven by the cross-sectional dispersion in expected stock returns? J. Financ. Mark. 2011, 14, 494–513. [Google Scholar] [CrossRef]
- Jiang, X. Return dispersion and expected returns. Financ. Mark. Portfol. Manag. 2010, 24, 107–135. [Google Scholar] [CrossRef]
- Demirer, R.; Jategaonkar, S. The Conditional Relation Between Dispersion and Return. Rev. Financ. Econ. 2013, 22, 125–134. [Google Scholar] [CrossRef]
- Demirer, R.; Jategaonkar, S.P.; Khalifa, A.A. Oil price risk exposure and the cross-section of stock returns: The case of net exporting countries. Energy Econ. 2015, 49, 132–140. [Google Scholar] [CrossRef]
- Lillo, F.; Mantegna, R.N. Variety and Volatility in Financial Markets. Phys. Rev. E 2000, 62, 6126–6134. [Google Scholar] [CrossRef]
- Solnik, B.; Roulet, J. Dispersion as cross-sectional correlation. Financ. Anal. J. 2000, 56, 54–61. [Google Scholar] [CrossRef]
- Baur, D. Multivariate market association and its extremes. J. Int. Financ. Markets Inst. Money 2006, 16, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Statman, M.; Scheid, J. Global Diversification. J. Invest. Manag. 2005, 3, 55–63. [Google Scholar] [CrossRef]
- Statman, M.; Scheid, J. Correlation, Return Gaps, and the Benefits of Diversification. J. Portfol. Manag. 2008, 34, 132–139. [Google Scholar] [CrossRef]
- Demirer, R. Can Advanced Markets Help Diversify Risks in Frontier Markets? Evidence from Gulf Arab Stock Markets. Res. Int. Bus. Financ. 2013, 29, 77–98. [Google Scholar] [CrossRef]
- Eiling, E.; Gerard, B. Dispersion, Equity Return Correlations and Market Integration; University of Toronto: Toronto, ON, Canada, 2011. [Google Scholar]
- Goyal, A.; Santa-Clara, P. Idiosyncratic risk matters. J. Financ. 2003, 58, 975–1006. [Google Scholar] [CrossRef]
- Bali, T.; Cakici, N.; Yan, X.; Zhang, Z. Does idiosyncratic risk really matter? J. Financ. 2005, 60, 905–929. [Google Scholar] [CrossRef]
- Pollet, J.; Wilson, M. Average correlation and stock market returns. J. Financ. Econ. 2010, 96, 364–380. [Google Scholar] [CrossRef]
- Garcia, R.; Mantilla-Garcia, D.; Martellini, L. A model-free measure of aggregate idiosyncratic volatility and the prediction of market returns. J. Financ. Quant. Anal. 2014, 49, 1133–1165. [Google Scholar] [CrossRef]
- Chichernea, D.C.; Holder, A.D.; Petkevich, A. Does return dispersion explain the accrual and investment anomalies? J. Account. Econ. 2015, 60, 133–148. [Google Scholar] [CrossRef]
- Demirer, R.; Omay, T.; Yuksel, A.; Yuksel, A. Global Risk Aversion and Emerging Market Return Comovements. Econ. Lett. 2018, 173, 118–121. [Google Scholar] [CrossRef]
- Aruoba, S.; Diebold, F.; Scotti, C. Real-time measurement of business condition. J. Bus. Econ. Stat. 2009, 27, 417–427. [Google Scholar] [CrossRef]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Hui, Y.C.; Wong, W.K.; Bai, Z.D.; Zhu, Z.Z. A New Nonlinearity Test to Circumvent the Limitation of Volterra Expansion with Application. J. Korean Stat. Soc. 2017, 46, 365–374. [Google Scholar] [CrossRef]
- Denker, M.; Keller, G. On U-statistics and v. mise’statistics for weakly dependent processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 1983, 64, 505–522. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Lam, K.; Liu, T.S.; Wong, W.K. A pseudo-Bayesian model in financial decision making with implications to market volatility, under- and overreaction. Eur. J. Oper. Res. 2010, 203, 166–175. [Google Scholar] [CrossRef]
- Lam, K.; Liu, T.S.; Wong, W.K. A New Pseudo Bayesian Model with Implications to Financial Anomalies and Investors’ Behaviors. J. Behav. Financ. 2012, 13, 93–107. [Google Scholar] [CrossRef]
- Fung, E.S.; Lam, K.; Siu, T.K.; Wong, W.K. A New Pseudo Bayesian Model for Financial Crisis. J. Risk Financ. Manag. 2011, 4, 42–72. [Google Scholar] [CrossRef]
- Guo, X.; McAleer, M.; Wong, W.K.; Zhu, L.X. A Bayesian approach to excess volatility, short-term underreaction and long-term overreaction during financial crises, North American. J. Econ. Financ. 2017, 42, 346–358. [Google Scholar]
Mean | Stdev | Skewness | Kurtosis | J-B | ADF Test | |
---|---|---|---|---|---|---|
0.627 *** | 0.275 | 4.057 *** | 35.136 *** | 732,071.353 *** | −8.9165 *** | |
1.000 *** | 1.778 | 8.723 | 101.069 *** | 5,921,984.155 *** | −9.4998 *** | |
0.025 *** | 0.988 | −0.508 *** | 15.633 *** | 138,157.710 *** | −82.3209 *** | |
−0.018 *** | 0.876 | −1.206 *** | 3.921 *** | 11,929.823 *** | −7.7651 *** |
Panel A: The Predictive Power of Equity Return Dispersion | ||||
→ | → | →| | →| | |
Lags | 15 | 9 | 16 | 16 |
F-Stat | 188.760 *** | 3.196 *** | 9.716 × 10−7 | 1.136 × 10−8 |
→| | →| | →| | →| | |
Lags | 9 | 9 | 9 | 9 |
F-Stat | 1.729 × 10−6 | 1.714 × 10−6 | 1.744 × 10−8 | 1.749 × 10−8 |
Panel B: The Predictive Power of Business Conditions | ||||
→ | → | → | → | |
Lags | 16 | 16 | 9 | 9 |
F-Stat | 1.146 | 3.579 *** | 0.738 | 1.768 |
→ | → | → | ||
Lags | 9 | 9 | 9 | |
F-Stat | 4.068 *** | 0.513 | 5.967 *** |
Lags | 11 | 10 | 16 | 10 | 15 | 2 |
T-Stat | 7.734 *** | 7.845 *** | 7.893 *** | 8.970 *** | 3.574 *** | 8.547 *** |
Panel A: The Predictability of Stock Market Volatility | ||||
Lags | → | →| | →| | →| |
1 | 7.879 *** | 7.8190 *** | 7.758 *** | 7.824 *** |
2 | 7.718 *** | 7.665 *** | 7.533 *** | 7.525 *** |
3 | 7.637 *** | 7.659 *** | 7.533 *** | 7.621 *** |
4 | 7.908 *** | 7.871 *** | 7.745 *** | 7.772 *** |
5 | 7.461 *** | 7.484 *** | 7.309 *** | 7.449 *** |
6 | 7.155 *** | 7.207 *** | 7.141 *** | 7.279 *** |
7 | 6.770 *** | 6.813 *** | 6.611 *** | 6.662 *** |
8 | 6.617 *** | 6.721 *** | 6.461 *** | 6.535 *** |
9 | 5.984 *** | 6.169 *** | 5.741 *** | 5.884 *** |
10 | 5.918 *** | 6.067 *** | 5.646 *** | 5.742 *** |
Panel B: The Predictability of Equity Market Premium | ||||
Lags | → | →| | →| | →| |
1 | 11.365 *** | 11.379 *** | 11.363 *** | 11.302 *** |
2 | 12.910 *** | 13.079 *** | 12.904 *** | 12.877 *** |
3 | 12.878 *** | 13.053 *** | 12.867 *** | 12.928 *** |
4 | 13.357 *** | 13.643 *** | 13.364 *** | 13.428 *** |
5 | 13.275 *** | 13.693 *** | 13.272 *** | 13.420 *** |
6 | 12.519 *** | 12.931 *** | 12.527 *** | 12.694 *** |
7 | 11.823 *** | 12.206 *** | 11.844 *** | 12.038 *** |
8 | 11.805 *** | 12.155 *** | 11.807 *** | 12.048 *** |
9 | 11.716 *** | 11.996 *** | 11.695 *** | 11.950 *** |
10 | 11.104 *** | 11.405 *** | 11.068 *** | 11.321 *** |
Panel C: The Predictive Power of Business Conditions | ||||
Lags | → | → | → | |
1 | −1.122 | −5.676 *** | 1.755 * | |
2 | −1.366 | −6.626 *** | 1.808 * | |
3 | −1.352 | −6.930 *** | 2.627 ** | |
4 | −2.015 * | −6.917 *** | 2.317 * | |
5 | −0.820 | −4.650 *** | 2.711 ** | |
6 | −1.718 * | −5.231 *** | 2.311 * | |
7 | −2.147 * | −5.412 *** | 2.425 ** | |
8 | −2.148 * | −4.913 *** | 1.708 * | |
9 | −1.919 * | −4.669 *** | 1.928 * | |
10 | −1.987 * | −4.427 *** | 1.053 |
Panel A: The Predictability of Stock Market Volatility | |||
+→ | +→ | +→ | |
Lags | 10 | 9 | 9 |
LR | 535.909 *** | 560.136 *** | 573.599 *** |
Panel B: The Predictability of Equity Market Premium | |||
+→ | +→ | +→ | |
Lags | 10 | 9 | 9 |
LR | 37.812 | 37.456 | 39.096 |
Panel A: The Predictability of Stock Market Volatility | |||
Lags | +→ | +→ | +→ |
1 | 7.706 *** | 7.661 *** | 7.614 *** |
2 | 7.529 *** | 7.454 *** | 7.217 *** |
3 | 7.140 *** | 7.286 *** | 7.037 *** |
4 | 6.736 *** | 7.496 *** | 6.565 *** |
5 | 6.321 *** | 6.954 *** | 5.967 *** |
6 | 5.818 *** | 6.610 *** | 5.694 *** |
7 | 5.380 *** | 6.107 *** | 4.963 *** |
8 | 5.447 *** | 6.016 *** | 4.969 *** |
9 | 4.731 *** | 5.387 *** | 4.095 *** |
10 | 4.665 *** | 5.168 *** | 4.108 *** |
Panel B: The Predictability of Equity Market Premium | |||
Lags | +→ | +→ | +→ |
1 | 11.271 *** | 11.296 *** | 11.260 *** |
2 | 12.523 *** | 12.655 *** | 12.280 *** |
3 | 12.557 *** | 12.594 *** | 12.370 *** |
4 | 13.092 *** | 12.988 *** | 12.846 *** |
5 | 12.590 *** | 12.727 *** | 11.980 *** |
6 | 11.753 *** | 11.797 *** | 11.288 *** |
7 | 10.6764 *** | 10.733 *** | 10.478 *** |
8 | 10.749 *** | 10.493 *** | 10.584 *** |
9 | 10.662 *** | 10.577 *** | 10.141 *** |
10 | 10.075 *** | 9.923 *** | 9.601 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirer, R.; Gupta, R.; Lv, Z.; Wong, W.-K. Equity Return Dispersion and Stock Market Volatility: Evidence from Multivariate Linear and Nonlinear Causality Tests. Sustainability 2019, 11, 351. https://doi.org/10.3390/su11020351
Demirer R, Gupta R, Lv Z, Wong W-K. Equity Return Dispersion and Stock Market Volatility: Evidence from Multivariate Linear and Nonlinear Causality Tests. Sustainability. 2019; 11(2):351. https://doi.org/10.3390/su11020351
Chicago/Turabian StyleDemirer, Riza, Rangan Gupta, Zhihui Lv, and Wing-Keung Wong. 2019. "Equity Return Dispersion and Stock Market Volatility: Evidence from Multivariate Linear and Nonlinear Causality Tests" Sustainability 11, no. 2: 351. https://doi.org/10.3390/su11020351
APA StyleDemirer, R., Gupta, R., Lv, Z., & Wong, W. -K. (2019). Equity Return Dispersion and Stock Market Volatility: Evidence from Multivariate Linear and Nonlinear Causality Tests. Sustainability, 11(2), 351. https://doi.org/10.3390/su11020351