Sustainable Construction Project Management (SCPM) Evaluation—A Case Study of the Guangzhou Metro Line-7, PR China
Abstract
:1. Introduction
- The existing studies for CPM mostly consider the financial, quality and schedule management. However, these dimensions are insufficient for sustainability evaluation from the social, environmental, and economic perspective.
- The complexity of processes results in difficulty in establishing a SCPM evaluation system because of the lack of an effective method. No coordination analysis was made in the existing sustainable evaluation systems, and the comprehensive optimal management for SCPM could not be obtained.
- This is a problem of how to establish a unified dimensional evaluation model for SCPM form integration from the perspective of sustainable development.
2. Literature Review
2.1. Traditional CPM Performance
2.2. Sustainable Development
2.3. SCPM Performance
3. Methodology
3.1. Index System of SCPM Performance
3.1.1. The Dimension of the Index System
3.1.2. The Secondary Indicators of the Index System
Indicators for Financial Management
Indicators for Safety Management
Indicators for Schedule Management
Indicators for Quality Management
Indicators for Informatization Management
Indicators for Greenization Management
3.2. Assessment Model
3.2.1. The iG1 Weight Method
3.2.2. The SPA Evaluation Model
3.3. Determination of the Weights
4. Data Collection
4.1. Survey Population
4.2. Survey Questionnaire
4.3. Data Analysis
5. Case Application
5.1. Project Background
5.2. The General Situation of SCPM
5.3. Performance Evaluation
5.3.1. Connectivity and Evaluation Level Analysis
5.3.2. Coordination Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, M.; Zhao, Z.-Y.; Li, H. Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. Sci. Total Environ. 2019, 657, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- National Statistics Bureau. China Statistical Yearbook—2018; China Statistics: Beijing, China, 2018.
- Edyta, P.; Michal, J.; Renata, K. Trends, costs, and benefits of green certification of office buildings: A Polish perspective. Sustainability 2019, 11, 2359. [Google Scholar]
- Ma, L.; Wang, L.; Wu, K.-J.; Tseng, M.-L. Assessing co-benefit barriers among stakeholders in Chinese construction industry. Resour. Conserv. Recycl. 2018, 137, 102–112. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Zhao, X.; Toh, L.P. Risk management in small construction projects in Singapore: Status, barriers and impact. J. Manag. Eng. 2014, 32, 116–124. [Google Scholar] [CrossRef]
- Ngowi, A.B. Creating Competitive Advantage by using environment-friendly building processes. Build. Environ. 2001, 36, 291–298. [Google Scholar] [CrossRef]
- Ma, G.; Jia, J.; Ding, J.; Shang, S.; Jiang, S. Interpretive structural model based factor analysis of BIM adoption in Chinese construction organizations. Sustainability 2019, 11, 1982. [Google Scholar] [CrossRef]
- He, L.; Zhang, L.; Zhong, Z.; Wang, D.; Wang, F. Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China. J. Clean. Prod. 2019, 208, 363–372. [Google Scholar] [CrossRef]
- Kelly, J.; Male, S.; Graham, D. Value Management of Construction Projects; Blackwell Science: Oxford, UK, 2008. [Google Scholar]
- PMI. A Guide to the Project Management Body of Knowledge, 5th ed.; Project Management Institute, Pennsylvania Inc.: Delaware, PA, USA, 2013; pp. 12–24. [Google Scholar]
- Brioso, X. Integrating ISO 21500 guidance on project management, Lean Construction and PMBOK. Procedia Eng. 2015, 123, 76–84. [Google Scholar] [CrossRef]
- Varajão, J.; Colomo-Palacios, R.; Silva, H. ISO 21500: 2012 and PMBoK 5 processes in information systems project management. Comp. Stand. Int. 2017, 50, 216–222. [Google Scholar] [CrossRef]
- Chan, A.C.; Scott, D.; Lam, E.M. Framework of success criteria for design/build projects. J. Manag. Eng. 2002, 18, 120–128. [Google Scholar] [CrossRef]
- Zhao, D.; Mccoy, A.; Kleiner, B.; Mills, T.; Lingard, H. Stakeholder perceptions of risk in construction. Saf. Sci. 2016, 82, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Krzemiński, M. The scheduling of construction work under the assumption of brigade multitasking. Procedia Eng. 2017, 208, 63–68. [Google Scholar] [CrossRef]
- Kong, L.; Li, H.; Luo, H.; Ding, L.; Zhang, X. Sustainable performance of just-in-time (JIT) management in time-dependent batch delivery scheduling of precast construction. J. Clean. Prod. 2018, 193, 684–701. [Google Scholar] [CrossRef]
- Bassioni, H.A.; Price, A.D.F.; Hassan, T.M. Performance measurement in construction. J. Manag. Eng. 2004, 20, 42–50. [Google Scholar] [CrossRef]
- Papke-Shields, K.E.; Beise, C.; Quan, J. Do project managers practice what they preach, and does it matter to project success? J. Manag. Eng. 2010, 28, 650–662. [Google Scholar] [CrossRef]
- Ibarrondo-Dávila, M.P.; López-Alonso, M.; Rubio-Gámez, M.C. Managerial accounting for safety management. The case of a Spanish construction company. Saf. Sci. 2015, 79, 116–125. [Google Scholar] [CrossRef]
- Didkovskaya, O.V.; Mamayeva, O.A.; Ilyina, M.V. Development of cost engineering system in construction. Procedia Eng. 2016, 153, 131–135. [Google Scholar] [CrossRef]
- Tam, C.M.; Tong, T.K.L.; Chiu, G.C.W.; Fung, I.W.H. Non-structural fuzzy decision support system for evaluation of construction safety management system. J. Manag. Eng. 2002, 20, 303–313. [Google Scholar] [CrossRef]
- Törner, M.; Pousette, A. Safety in construction—A comprehensive description of the characteristics of high safety standards in construction work, from the combined perspective of supervisors and experienced workers. J. Saf. Res. 2009, 40, 399–409. [Google Scholar] [CrossRef]
- Li, H.; Lu, M.; Hsu, S.C.; Gray, M.; Huang, T. Proactive behavior-based safety management for construction safety improvement. Saf. Sci. 2015, 75, 107–117. [Google Scholar] [CrossRef]
- Chen, L.J.; Luo, H. A BIM-based construction quality management model and its applications. Autom. Const. 2014, 46, 64–73. [Google Scholar] [CrossRef]
- Bragadin, M.A.; Kähkönen, K. Safety, space and structure quality requirements in construction scheduling. Proc. Econ. Financ. 2015, 21, 407–414. [Google Scholar] [CrossRef]
- Lukichev, S.; Romanovich, M. The quality management system as a key factor for sustainable development of the construction companies. Procedia Eng. 2016, 165, 1717–1721. [Google Scholar] [CrossRef]
- United Nations. Working Arrangements for the 2016 Session of the Economic and Social Council, 24 July 2015–27 July 2016. Available online: http://www.un.org/ecosoc/en/sustainable-development (accessed on 8 May 2017).
- Zemigala, M. Tendencies in research on sustainable development in management Sciences. J. Clean. Prod. 2019, 218, 796–809. [Google Scholar] [CrossRef]
- WCED. Our Common Future; Oxford University Press: Oxford, NY, USA, 1987. [Google Scholar]
- Chan, R.; Yao, S. Urbanization and sustainable metropolitan development in China: Patterns, problems and prospects. Geojournal 1999, 49, 269–277. [Google Scholar] [CrossRef]
- Rose, D.C.; Sutherland, W.J.; Barnes, A.P.; Borthwick, F.; Ffoulkes, C.; Hall, C.; Moorby, J.M.; Nicholas-Davies, P.; Twining, S.; Dicks, L.V. Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy. Land Use Policy 2019, 81, 834–842. [Google Scholar] [CrossRef]
- Uehara, T.; Mineo, K. Regional sustainability assessment framework for integrated coastal zone management: Satoumi, ecosystem services approach, and inclusive wealth. Ecol. Indic. 2017, 73, 716–725. [Google Scholar] [CrossRef]
- Baba, C.; Hack, J. Economic valuation of ecosystem services for the sustainable management of agropastoral dams. A case study of the Sakabansi dam, northern Benin. Ecol. Indic. 2019, 107, 105648. [Google Scholar] [CrossRef]
- Kourula, A.; Pisani, N.; Kolk, A. Corporate sustainability and inclusive development: Highlights from international business and management research. Curr. Opin. Environ. Sustain. 2017, 24, 14–18. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Y.; Xia, M.; Zhang, Y. The influence of social embeddedness on organizational legitimacy and the sustainability of the globalization of the sharing economic platform: Evidence from Uber China. Resour. Conserv. Recycl. 2019, 151, 104490. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, Y.; Lei, Z.; Jia, H. Understanding the evolution of sustainable consumption research. Sustain. Dev. 2017, 25, 414–430. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Amato, A.; Becci, A.; Birloaga, I.; De Michelis, I.; Ferella, F.; Innocenzi, V.; Ippolito, N.M.; Pillar Jimenez Gomez, C.; Vegliò, F.; Beolchini, F. Sustainability analysis of innovative technologies for the rare earth elements recovery. Renew. Sustain. Energy Rev. 2019, 106, 41–53. [Google Scholar] [CrossRef]
- Joyram, H. A critical evaluation on the factors impacting the adoption of eco-block as a green construction material: From a Mauritian perspective. J. Build. Eng. 2019, 25, 100789. [Google Scholar] [CrossRef]
- Ding, G.K.C. Sustainable construction—The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef]
- Whang, S.W.; Kim, S. Balanced sustainable implementation in the construction industry: The perspective of Korean contractors. Energy Build. 2015, 96, 76–85. [Google Scholar] [CrossRef]
- Trotta, G. The determinants of energy efficient retrofit investments in the English residential sector. Energy Policy 2018, 120, 175–182. [Google Scholar] [CrossRef]
- Bryde, D.; Broquetas, M.; Volm, J.M. The project benefits of building information modelling (BIM). Int. J. Proj. Manag. 2013, 31, 971–980. [Google Scholar] [CrossRef]
- Cao, D.; Li, H.; Wang, G.; Luo, X.; Tan, D. Relationship network structure and organizational competitiveness: Evidence from BIM implementation practices in the construction industry. J. Manag. Eng. 2018, 34, 04018005. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building information modeling (BIM) for green buildings: A critical review and future directions. Autom. Constr. 2017, 83, 134–148. [Google Scholar] [CrossRef]
- Isikdag, U.; Underwood, J. Two design patterns for facilitating building information model-based synchronous collaboration. Autom. Constr. 2010, 19, 544–553. [Google Scholar] [CrossRef]
- Chen, H.-M.; Hou, C.-C. Asynchronous online collaboration in BIM generation using hybrid client-server and P2P network. Autom. Constr. 2014, 45, 72–85. [Google Scholar] [CrossRef]
- Silvius, G.; Tharp, J.; Silvius, G.; Tharp, J. Sustainability Integration for Effective Project Management; Business Science Reference: Hershey, PA, USA, 2013. [Google Scholar]
- Xu, S.; Xu, D.; Liu, L. Construction of regional informatization ecological environment based on the entropy weight modified AHP hierarchy model. Sustain. Comput. Inf. 2019, 22, 26–31. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Zhang, Q. Research on construction schedule management based on BIM technology. Procedia Eng. 2017, 174, 657–667. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhong, R.Y.; Xue, F.; Xu, G.; Chen, K.; Huang, G.G.; Shen, G.Q. Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. J. Clean. Prod. 2017, 165, 1048–1062. [Google Scholar] [CrossRef]
- Azar, E.; Nikolopoulou, C.; Papadopoulos, S. Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling. Appl. Energy 2016, 183, 926–937. [Google Scholar] [CrossRef]
- Oke, A.; Aghimien, D.; Aigbavboa, C.; Musenga, C. Drivers of sustainable construction practices in the zambian construction industry. Energy Proc. 2019, 158, 3246–3252. [Google Scholar] [CrossRef]
- Zheng, M.; Cai, J. Study on construction industry’s sustainable development based on factor and cluster analysis. Sci. Technol. Manag. Res. 2014, 310, 223–227. (In Chinese) [Google Scholar]
- Banihashemi, S.; Hosseini, M.R.; Golizadeh, H.; Sankaran, S. Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. Int. J. Proj. Manag. 2017, 35, 1103–1119. [Google Scholar] [CrossRef]
- Kiani, M.R.; Standing, C. Critical success factors of sustainable project management in construction: A fuzzy DEMATEL-ANP approach. J. Clean. Prod. 2018, 194, 751–765. [Google Scholar] [CrossRef]
- Pham, K.; Kim, S.-Y. The effects of sustainable practices and managers’ leadership competences on sustainability performance of construction firms. Sustain. Prod. Consum. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Bamgbade, J.A.; Kamaruddeen, A.M.; Nawi, M.N.M. Malaysian construction firms’ social sustainability via organizational innovativeness and government support: The mediating role of market culture. J. Clean. Prod. 2017, 154, 114–124. [Google Scholar] [CrossRef]
- Tan, T.; Xiong, Z. Comparative study on the evaluation indicator system of project performance. Sci. Technol. Manag. Res 2014, 23, 81–90. (In Chinese) [Google Scholar]
- Salem, D.; Bakr, A.; El Sayad, Z. Post-construction stages cost management: Sustainable design approach. Alex. Eng. J. 2018, 57, 3429–3435. [Google Scholar] [CrossRef]
- Poshdar, M.; González, V.A.; Raftery, G.M.; Orozco, F.; Cabrera-Guerrero, G.G. A multi-objective probabilistic-based method to determine optimum allocation of time buffer in construction schedules. Autom. Constr. 2018, 92, 46–58. [Google Scholar] [CrossRef]
- De Soto, B.G.; Rosarius, A.; Rieger, J.; Chen, Q.; Adey, B.T. Using a Tabu-search algorithm and 4D models to improve construction project schedules. Procedia Eng. 2017, 196, 698–705. [Google Scholar] [CrossRef]
- Demirkesen, S.; Ozorhon, B. Impact of integration management on construction project management performance. Int. J. Proj. Manag. 2017, 35, 1639–1654. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. Evaluation study of large scale construction project safety risk based on gray-shaplely. Archit. Technol. 2017, 48, 289–292. (In Chinese) [Google Scholar]
- Kim, J.; Koo, C.; Kim, C.-J.; Hong, T.; Park, H.S. Integrated CO2, cost, and schedule management system for building construction projects using the earned value management theory. J. Clean. Prod. 2015, 103, 275–285. [Google Scholar] [CrossRef]
- Xia, N.; Zou, P.X.W.; Griffin, M.A.; Wang, X.; Zhong, R. Towards integrating construction risk management and stakeholder management: A systematic literature review and future research agendas. Int. J. Proj. Manag. 2018, 36, 701–715. [Google Scholar] [CrossRef]
- Yiu, N.S.N.; Chan, D.W.M.; Shan, M.; Sze, N.N. Implementation of safety management system in managing construction projects: Benefits and obstacles. Saf. Sci. 2019, 117, 23–32. [Google Scholar] [CrossRef]
- Niu, Y.; Lu, W.; Xue, F.; Liu, D.; Chen, K.; Fang, D.; Anumba, C. Towards the “third Wave”: An SCO-enabled occupational health and safety management system for construction. Saf. Sci. 2019, 111, 213–223. [Google Scholar] [CrossRef]
- Tang, N.; Hu, H.; Xu, F.; Zhu, F. Personalized safety instruction system for construction site based on internet technology. Saf. Sci. 2019, 116, 161–169. [Google Scholar] [CrossRef]
- Krzemiński, M. Chosen criteria of construction schedule evaluation. Procedia Eng. 2016, 153, 345–348. [Google Scholar] [CrossRef]
- Krzemiński, M. Optimization of the construction schedule for paving a parking area with concrete. Procedia Eng. 2016, 153, 349–354. [Google Scholar] [CrossRef]
- Chin, L.S.; Hamid, A.R.A. The practice of time management on construction project. Procedia Eng. 2015, 125, 32–39. [Google Scholar] [CrossRef]
- Ma, Z.; Cai, S.; Mao, N.; Yang, Q.; Feng, J.; Wang, P. Construction quality management based on a collaborative system using BIM and indoor positioning. Autom. Constr. 2018, 92, 35–45. [Google Scholar] [CrossRef]
- Acıkara, T.; Aynur, K.; Ulubeyli, S. Evaluations of construction project participants’ attitudes toward quality management in Turkey. Procedia Eng. 2017, 196, 203–210. [Google Scholar] [CrossRef]
- Mazari, M.; Nazarian, S. Mechanistic approach for construction quality management of compacted geomaterials. Transp. Geotech. 2017, 13, 92–102. [Google Scholar] [CrossRef]
- Zhao, K.; Xuan, A. Set pair theory-a new theory method of non-define and its applications. Syst. Eng. 1996, 14, 18–23. (In Chinese) [Google Scholar]
- Jiang, Y.-L.; Xu, C.-F.; Yao, Y.; Zhao, K.-Q. Systems information of set pair analysis and its applications. In Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, China, 26–29 August 2004; pp. 1717–1722. [Google Scholar]
- Li, C.; Sun, L.; Jia, J.; Cai, Y.; Wang, X. Risk assessment of water pollution sources based on an integrated K–means clustering and set pair analysis method in the region of Shiyan, China. Sci. Total Environ. 2016, 557, 307–316. [Google Scholar] [CrossRef] [PubMed]
Indicator | Level Standards | Actual Value | Association Degree | Level | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Poor IV (0, S3) | Fair III (S3, S2) | Good II (S2, S1) | Excellent I (S1, -) | |||||||
GM1 | (0,70) | (70,80) | (80,90) | (90,100) | 92 | −1 | −1 | 0.6 | 1 | I |
GM2 | (0,70) | (70,85) | (85,95) | (95,100) | 91 | −1 | −0.2 | 1 | 0.2 | II |
GM3 | (0,70) | (70,80) | (80,90) | (90,100) | 65 | 1 | 0.85 | −1 | −1 | IV |
GM4 | (0,0.1) | (0.1,0.2) | (0.2,0.3) | (0.3, -) | 0.22 | −1 | 0.6 | 1 | −0.6 | II |
GM5 | (0,0.1) | (0.1,0.2) | (0.2,0.3) | (0.3, -) | 0.26 | −1 | −0.2 | 1 | 0.2 | II |
GM6 | (0,0.7) | (0.7,0.8) | (0.8,0.9) | (0.9,1) | 0.85 | −1 | 0 | 1 | 0 | II |
GM7 | (0,70) | (70,80) | (80,90) | (90,100) | 77 | −0.4 | 1 | 0.4 | −1 | III |
comprehensive score/association degree | 63.58 | −0.67 | 0.05 | 0.60 | −0.07 | II | ||||
IM1 | (0,70) | (70,80) | (80,90) | (90,100) | 96 | −1 | −1 | 0.8 | 1 | I |
IM2 | (0,70) | (70,80) | (80,90) | (90,100) | 87 | −1 | −0.4 | 1 | 0.4 | II |
IM3 | (0,70) | (70,80) | (80,90) | (90,100) | 95 | −1 | −1 | 0 | 1 | II |
IM4 | (0,70) | (70,80) | (80,90) | (90,100) | 85 | −1 | 0 | 1 | 0 | II |
IM5 | (0,70) | (70,80) | (80,90) | (90,100) | 88 | −1 | −0.6 | 1 | 0.6 | II |
IM6 | (0,64) | (64,80) | (80,96) | (96,100) | 97 | −1 | −1 | 0.5 | 1 | I |
IM7 | (0,64) | (64,80) | (80,96) | (96,100) | 85 | −1 | 0.37 | 1 | −0.37 | II |
comprehensive score/association degree | 90.51 | −1 | −0.55 | 0.75 | 0.55 | II |
NO. | IM | GM | FM | SM | SCM | QM |
---|---|---|---|---|---|---|
level | II | II | I | I | I | I |
Dimension | a | b1 | b2 | c |
---|---|---|---|---|
Greenization management | 0.57 | 0.14 | 0.14 | 0.14 |
Informatization management | 0.71 | 0.29 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, N.; Fu, Y.; Xiong, F.; Li, L.; Ao, Y.; Martek, I. Sustainable Construction Project Management (SCPM) Evaluation—A Case Study of the Guangzhou Metro Line-7, PR China. Sustainability 2019, 11, 5731. https://doi.org/10.3390/su11205731
Dong N, Fu Y, Xiong F, Li L, Ao Y, Martek I. Sustainable Construction Project Management (SCPM) Evaluation—A Case Study of the Guangzhou Metro Line-7, PR China. Sustainability. 2019; 11(20):5731. https://doi.org/10.3390/su11205731
Chicago/Turabian StyleDong, Na, Yanting Fu, Feng Xiong, Lujie Li, Yibin Ao, and Igor Martek. 2019. "Sustainable Construction Project Management (SCPM) Evaluation—A Case Study of the Guangzhou Metro Line-7, PR China" Sustainability 11, no. 20: 5731. https://doi.org/10.3390/su11205731
APA StyleDong, N., Fu, Y., Xiong, F., Li, L., Ao, Y., & Martek, I. (2019). Sustainable Construction Project Management (SCPM) Evaluation—A Case Study of the Guangzhou Metro Line-7, PR China. Sustainability, 11(20), 5731. https://doi.org/10.3390/su11205731