Application of Export Coefficient Model and QUAL2K for Water Environmental Management in a Rural Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Pollutant Load Estimation
2.4. QUAL2K Model
2.5. Model Application
3. Results
3.1. Estimation of Pollutant Loads from Various Sources
3.2. Water Quality Simulation
3.3. Spatiotemporal Analysis and Source Attribution of Pollutant Load
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, H.; Liu, L.; Huang, G.; Fuller, G.; Zou, R.; Yin, Y. A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin. J. Environ. Manag. 2001, 61, 93–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Liu, R.; Bao, Y.; Wang, J.; Yu, W. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Res. 2014, 53, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jiang, Y.; Liu, Q.; Dong, M.; Xu, D.; Liu, Y.; Xu, X. Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Sci. Total Environ. 2019, 667, 142–151. [Google Scholar] [CrossRef] [PubMed]
- China Water Risk. New “Water Ten Plan” to Safeguard China’s Waters. 2015. Available online: http://www.chinawaterrisk.org/notices/new-water-ten-plan-to-safeguard-chinas-waters/ (accessed on 5 October 2019).
- Kampas, A.; Edwards, A.C.; Ferrier, R.C. Joint pollution control at a catchment scale: Compliance costs and policy implications. J. Environ. Manag. 2002, 66, 281–291. [Google Scholar] [CrossRef]
- Edwards, A.C.; Withers, P.A. Policy measures to reduce phosphorus loss and site-specific environmental impacts. IAHS Publ. 2002, 273, 85–88. [Google Scholar]
- Yang, X.; Liu, Q.; Fu, G.; He, Y.; Luo, X.; Zheng, Z. Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources. Water Res. 2016, 94, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Chapra, S.C. Surface Water-Quality Modeling. 1997. Available online: https://www.researchgate.net/publication/48447645_Surface_Water-Quality_Modeling (accessed on 1 October 2019).
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT model special section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Bouraoui, F.; Grizzetti, B. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total Environ. 2014, 468–469, 1267–1277. [Google Scholar] [CrossRef]
- Devi, G.; Ganasri, B.; Dwarakish, G. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Cox, B. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Sci. Total Environ. 2003, 314–316, 335–377. [Google Scholar] [CrossRef]
- Delkash, M.; Al-Faraj, F.A.M.; Scholz, M. Comparing the export coefficient approach with the soil and water assessment tool to predict phosphorous pollution: The Kan Watershed case study. Water Air Soil Pollut. 2014, 225, 60–69. [Google Scholar] [CrossRef]
- Johnes, P.J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. J. Hydrol. 1996, 183, 323–349. [Google Scholar] [CrossRef]
- Grizzetti, B.; Bouraoui, F.; De Marsily, G. Assessing nitrogen pressures on European surface water. Glob. Biogeochem. Cycl. 2008, 22, GB4023. [Google Scholar] [CrossRef]
- Behrendt, H.; Huber, P.; Kornmilch, M.; Opitz, D.; Schmoll, O.; Scholz, G.; Uebe, R. Nutrient Emissions into River Basins of Germany. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/short/k1837.pdf (accessed on 1 October 2019).
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Griensven, A.V.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2014, 55, 1491–1508. [Google Scholar] [CrossRef]
- Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173. [Google Scholar]
- Chapra, S.C.; Pelletier, G.J.; Tao, H. QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality, Version 2.12: Documentation and Users Manual; Civil and Environmental Engineering Dept., Tufts University: Medford, MA, USA, 2012. [Google Scholar]
- Cho, H.J.; Ha, S.R. Parameter optimization of the QUAL2K model for a multiple-reach river using an influence coefficient algorithm. Sci. Total Environ. 2010, 408, 1985–1991. [Google Scholar] [CrossRef]
- Fan, C.; Ko, C.H.; Wang, W.S. An innovative modeling approach using QUAL2K and HEC-RAS integration to assess the impact of tidal effect on river water quality simulation. J. Environ. Manag. 2009, 90, 1824–1832. [Google Scholar] [CrossRef]
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Pelletier, G.J. Application of automated QUAL2Kw for water quality modeling and management in the Bagmati river. Nepal. Ecol. Model. 2007, 202, 503–517. [Google Scholar] [CrossRef]
- Park, S.S.; Lee, Y.S. A water quality modeling study of the Nakdong River, Korea. Ecol. Model. 2002, 152, 65–75. [Google Scholar] [CrossRef]
- Rehana, S.; Mujumdar, P.P. River water quality response under hypothetical climate change scenarios in Tunga-Bhadra river, India. Hydrol. Process. 2011, 25, 3373–3386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Qian, X.; Li, H.; Yuan, X.; Ye, R. Selection of optimal river water quality improvement programs using QUAL2K: A case study of Taihu Lake Basin, China. Sci. Total Environ. 2012, 431, 278–285. [Google Scholar] [CrossRef] [PubMed]
- State Environmental Protection Administration of the China (SEPA). Environmental Quality Standards for Surface Water (GB3838-2002); China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Chinese Academy for Environmental Planning (CAEP). Technical Guidelines of National Water Environmental Capacity; CAEP: Beijing, China, 2003. [Google Scholar]
- Ministry of Environmental Protection of the China (MEP); National Bureau of Statistics of the China (NBS); Ministry of Agriculture of the China (MOA). The First National Survey of Pollution Sources Bulletin; MEP, NBS, MOA: Beijing, China, 2010.
- Wang, X.; Hao, F.; Cheng, H.; Yang, S.; Zhang, X.; Bu, Q. Estimating non-point source pollutant loads for the large-scale basin of the Yangtze River in China. Environ. Earth Sci. 2011, 63, 1079–1092. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, L.; Ding, X.; Hong, Q.; Liu, R. Long-term variation (1960–2003) and causal factors of non-point-source nitrogen and phosphorus in the upper reach of the Yangtze River. J. Hazard. Mater. 2013, 252-253, 45–56. [Google Scholar] [CrossRef]
- Ding, X.; Shen, Z.; Hong, Q.; Yang, Z.; Wu, X.; Liu, R. Development and test of the export coefficient model in the upper reach of the Yangtze River. J. Hydrol. 2010, 383, 233–244. [Google Scholar] [CrossRef]
- Liu, B.; Liu, H.; Zhang, B.; Bi, J. Modeling nutrient release in the Tai Lake Basin of China: Source identification and policy implications. Environ. Manag. 2013, 51, 724–737. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). 1997. Available online: https://www.ars.usda.gov/ARSUserFiles/64080530/RUSLE/AH_703.pdf (accessed on 1 October 2019).
- Renard, K.G.; Yoder, D.C.; Lightle, D.T.; Dabney, S.M. Universal soil loss equation and revised universal soil loss equation. In Morgan RPC, Nearing MA Handbook of Erosion Modelling; Blackwell Publishing Ltd.: Cambridge, UK, 2011. [Google Scholar]
- Didoné, E.J.; Minella, J.P.G.; Merten, G.H. Quantifying soil erosion and sediment yield in a catchment in southern Brazil and implications for land conservation. J. Soil Sediment. 2015, 15, 2334–2346. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Jiao, J.; Xie, Y. Sediment delivery ratios of typical watersheds on different spatial scales in Songhua River Basin and its affecting factors. Sci. Soil Water Conserv. 2016, 14, 21–27. [Google Scholar]
- Guo, X.; Song, F.; Gao, Y.; Ma, F. Characteristics of lost sediment and its mutrient enriched effect on three types soil slope under simulated rainfall. J. Soil Water Conserv. 2014, 28, 23–28. [Google Scholar]
- Wiscjmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; US Department of Agriculture: Washington, DC, USA, 1978.
- Wischmeier, W.H. A soil erodibility nomograph for farmland and construction sites. J. Soil Water Conserv. 1971, 26, 189–193. [Google Scholar]
- Liu, B.; Bi, X.; Fu, S. Soil Loss Model for Beijing; Science Press: Beijing, China, 2010. [Google Scholar]
- Cai, C.; Ding, S.; Shi, Z.; Huang, L.; Zhang, G. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed. J. Soil Water Conserv. 2000, 14, 19–24. [Google Scholar]
- Chen, L.; Xie, G.; Zhang, C. Spatial distribution characteristics of soil erosion in Lancang River Basin. Res. Sci. 2012, 34, 1240–1247. [Google Scholar]
- Chen, D.; Lu, J.; Huang, H.; Liu, M.; Gong, D.; Chen, J. Stream nitrogen sources apportionment and pollution control scheme development in and agricultural watershed in Eastern China. Environ. Manag. 2013, 52, 450–466. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, G.A.; Wrede, S.; Seibert, J.; Wallin, M. Nitrogen source apportment modeling and the effect of land-use class related runoff contributions. Hydrol. Res. 2007, 38, 317–331. [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T. The hydraulic geometry channels and some physiographic implications. In Geological Survey Professional Paper 252; US Government Printing Office: Washington, DC, USA, 1953. [Google Scholar]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- US Environmental Protection Agency (USEPA). Rates, Constants and Kinetics Formulations in Surface Water Quality, 2nd ed.; EPA 600/3-85-040; USEPA: Athens, GA, USA, 1985.
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ciofalo, V.; Barton, N.; Kretz, K. Safety evaluation of aphytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Regul. Toxicol. Pharmacol. 2003, 37, 286–292. [Google Scholar] [CrossRef]
- Risal, A.; Parajuli, P.B. Quantification and simulation of nutrient sources at watershed scale in Mississippi. Sci. Total Environ. 2019, 670, 633–643. [Google Scholar] [CrossRef]
- China Council for International Cooperation on Environment and Development (CCICED). Special Policy Study: Environmental Issues and Countermeasures Facing New Rural Development in China; CCICED: Beijing, China, 2006.
- Peng, S.B.; Tang, Q.Y.; Zou, Y.B. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Yang, X.; Fang, S. Practices, perceptions, and implications of fertilizer use in East-Central China. Ambio 2015, 44, 647–652. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Ran, L.; Lu, X.; Xu, J. Effects of vegetation restoration on soil conservation and sediment loads in China: A critical review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1384–1415. [Google Scholar] [CrossRef]
- Hudson, N.W. Soil and Water Conservation in Semi-Arid Areas; FAO Soils Bulletin: Rome, Italy, 1987. [Google Scholar]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Can payment for ecosystem services schemes be an alternative solution to achieve sustainable environmental development? A critical comparison of implementation between Europe and China. Resources 2018, 7, 40. [Google Scholar] [CrossRef]
- Zhen, L.; Zhang, H. Payment for Ecosystem Services in China: An Overview. 2011. Available online: http://lrlr.landscapeonline.de/Articles/lrlr-2011-2/download/lrlr-2011-2BW.pdf (accessed on 24 October 2019).
Parameter | Unit | Method | Value |
---|---|---|---|
Cs | g/kg | China Soil Database; Soil testing | NH4-N: (2.24−2.82) × 10−3 TP: 0.02–0.4 |
Dr | — | Didoné et al. [36]; Gao et al. [37] | 0.04–0.18 |
η | — | Guo et al. [38] | 1.01–1.20 |
R | MJ·mm·ha−1·h−1 | Wischmeier and Smith [39] | 0–1640.70 |
K | t·ha·h·ha−1·MJ−1·mm−1 | Wischmeier [40] | 0.01–0.02 |
LS | — | Liu et al. [41]; Wischmeier and Smith [39] | 0–64.00 |
C | — | Cai et al. [42] | 0–0.31 |
P | — | Chen et al. [43] | 0–0.25 |
Pollutant Load (t/year) | Industry | Rural Household | Animal Feedlots | Crop Production | Soil Erosion | Annual Total | |
---|---|---|---|---|---|---|---|
Upper part | NH4-N | 0.40 | 2.93 | 17.12 | 2.93 | 0.21 | 23.59 |
TP | 0.02 | 0.23 | 3.42 | 4.57 | 5.70 | 13.94 | |
Lower part | NH4-N | 0.59 | 2.34 | 3.47 | 2.87 | 0.06 | 9.33 |
TP | 0.03 | 0.19 | 0.69 | 4.04 | 1.59 | 6.54 |
Parameters | Calibrated Values | Unit | Symbol | Range | |
---|---|---|---|---|---|
Upper Part | Lower Part | ||||
Organic-N hydrolysis | 0.30 | 0.25 | day−1 | Khn | 0–5 |
Organic-N settling velocity | 0.29 | 0.21 | m/day | Von | 0–2 |
Ammonium nitrification rate | 0.28 | 0.22 | day−1 | Kna | 0–10 |
Organic-P hydrolysis | 0.45 | 0.42 | day−1 | Khp | 0–5 |
Organic-P settling velocity | 0.30 | 0.31 | m/day | Vop | 0–2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Z.; Ye, L.; Zhang, C. Application of Export Coefficient Model and QUAL2K for Water Environmental Management in a Rural Watershed. Sustainability 2019, 11, 6022. https://doi.org/10.3390/su11216022
Xin Z, Ye L, Zhang C. Application of Export Coefficient Model and QUAL2K for Water Environmental Management in a Rural Watershed. Sustainability. 2019; 11(21):6022. https://doi.org/10.3390/su11216022
Chicago/Turabian StyleXin, Zhuohang, Lei Ye, and Chi Zhang. 2019. "Application of Export Coefficient Model and QUAL2K for Water Environmental Management in a Rural Watershed" Sustainability 11, no. 21: 6022. https://doi.org/10.3390/su11216022
APA StyleXin, Z., Ye, L., & Zhang, C. (2019). Application of Export Coefficient Model and QUAL2K for Water Environmental Management in a Rural Watershed. Sustainability, 11(21), 6022. https://doi.org/10.3390/su11216022