How Do Trade-Offs and Synergies between Ecosystem Services Change in the Long Period? The Case Study of Uxin, Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Quantification of Ecosystem Services
2.2.1. Data Sources
2.2.2. Livestock Breeding (SHEEP) and Grain Production (GRAIN)
2.2.3. Net Primary Productivity (NPP)
2.2.4. Sandstorm Prevention (SP)
2.2.5. Water Retention (WR)
2.3. Statistical Analysis
2.3.1. Trend Analysis of ES and Their Relationships
2.3.2. Driving Forces of Ecosystem Services Interactions
3. Results
3.1. Trends in Ecosystem Services
3.1.1. SHEEP
3.1.2. GRAIN
3.1.3. Net Primary Productivity
3.1.4. Sandstorm Prevention (SP)
3.1.5. Water Retention
3.2. Change Trajectories of ES Relationships
3.2.1. Temporal Dynamics of ES Relationships
3.2.2. Spatial Patterns of ES Relationships
3.3. Driving Forces of ES Relationship Changes
3.4. Temporal Dynamics of ES Relationships
4. Discussion
4.1. Trade-offs and Synergies, and ES Spatial Heterogeneity
4.2. Management Implications
4.3. Uncertainties in ES Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Fu, B.; Lv, Y.; Guangyao, G. Major research progresses on the ecosystem service and ecological safety of main terrestrial ecosystems in China. Chin. J. Nat. 2012, 34, 261–272. (In Chinese) [Google Scholar]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- MA. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, E.W.; Barbier, E.B.; Silliman, B.R.; Reed, D.J.; Perillo, G.M.E.; Hacker, S.D.; Granek, E.F.; Primavera, J.H.; Muthiga, N.; Polasky, S.; et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 2009, 7, 29–37. [Google Scholar] [CrossRef]
- Willemen, L.; Hein, L.; Mensvoort, M.E.F.V.; Verburg, P.H. Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecol. Indic. 2010, 10, 62–73. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
- Viglizzo, E.F.; Paruelo, J.M.; Laterra, P.; Jobbágy, E.G. Ecosystem service evaluation to support land-use policy. Agric. Ecosyst. Environ. 2012, 154, 78–84. [Google Scholar] [CrossRef]
- Jia, X.; Fu, B.; Feng, X.; Hou, G.; Liu, Y.; Wang, X. The tradeoff and synergy between ecosystem services in the grain-for-green areas in northern Shaanxi, China. Ecol. Indic. 2014, 43, 103–113. [Google Scholar] [CrossRef]
- Kleijn, D.; Baquero, R.A.; Clough, Y.; Díaz, M.; De Esteban, J.; Fernández, F.; Gabriel, D.; Herzog, F.; Holzschuh, A.; Jöhl, R.; et al. Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol. Lett. 2006, 9, 243–254. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Bryan, B.A. Incentives, land use, and ecosystem services: Synthesizing complex linkages. Environ. Sci. Policy 2013, 27, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Song, W.; Deng, X.; Xu, X. Trade-offs and synergies in ecosystem service within the three-rivers headwater region, China. Water 2017, 9, 588. [Google Scholar] [CrossRef]
- Lv, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the loess plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar]
- Zheng, Z.; Fu, B.; Hu, H.; Sun, G. A method to identify the variable ecosystem services relationship across time: A case study on Yanhe basin, China. Landsc. Ecol. 2014, 29, 1689–1696. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the loess plateau of China. Sci. Total Environ. 2017, 1250–1263. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef]
- Martin, D.M.; Piscopo, A.N.; Chintala, M.M.; Gleason, T.R.; Berry, W. Developing qualitative ecosystem service relationships with the driver-pressure-state-impact-response framework: A case study on cape cod, Massachusetts. Ecol. Indic. 2018, 84, 404–415. [Google Scholar] [CrossRef]
- Hicks, C.C.; Graham, N.A.J.; Cinner, J.E. Synergies and tradeoffs in how managers, scientists, and fishers value coral reef ecosystem services. Glob. Environ. Chang. 2013, 23, 1444–1453. [Google Scholar] [CrossRef]
- Swallow, B.M.; Sang, J.K.; Nyabenge, M.; Bundotich, D.K.; Duraiappah, A.K.; Yatich, T.B. Tradeoffs, synergies and traps among ecosystem services in the lake Victoria basin of East Africa. Environ. Sci. Policy 2009, 12, 504–519. [Google Scholar] [CrossRef]
- Qiu, J.; Carpenter, S.R.; Booth, E.G.; Motew, M.; Zipper, S.C.; Kucharik, C.J.; Loheide, S.P., II; Turner, M.G. Understanding relationships among ecosystem services across spatial scales and over time. Environ. Res. Lett. 2018, 13, 054020. [Google Scholar] [CrossRef]
- Brauna, D.; Damm, A.; Hein, L.; Petchey, O.L.; Schaepman, M.E. Spatio-temporal trends and trade-offs in ecosystem services: An earth observation based assessment for Switzerland between 2004 and 2014. Ecol. Indic. 2018, 89, 828–839. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the People’s Republic of China. Calculation of Rational Livestock Carrying Capacity on Natural Grassland (NY/T635-2002); China Standard Press: Beijing, China, 2003.
- ESRI. ArcGIS Desktop Help 10.2 Spatial Analyst. Available online: http://resources.arcgis.com/en /help/main/10.2/index.html (accessed on 20 September 2019).
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration–Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Zhu, W.; Pan, Y.; He, H.; Yang, M.; Long, Z.; Yu, D. Simulation of Maximum Radiation Conversion Efficiency for Different Vegetation Types. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium Proceedings, Seoul, Korea, 25–29 July 2005; IEEE: Seoul, Korea, 2005. [Google Scholar]
- Fryrcar, D.W.; Chen, W.N.; Lester, C. Revised wind erosion equation. Ann. Arid Zone 2001, 40, 265–279. [Google Scholar]
- Jiang, L.; Xiao, Y.; Zheng, H.; Ouyang, Z. Spatio-temporal variation of wind erosion in inner Mongolia of China between 2001 and 2010. Chin. Geogr. Sci. 2016, 26, 155–164. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.7.0.post23+ug.h4b7203f92fb8 User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy, and World Wildlife Fund: Washington, DC, USA, 2018. [Google Scholar]
- Minasny, B.; Mcbratney, A. The method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J. 2002, 66, 352–361. [Google Scholar]
- Droogers, P.; Allen, R. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, J.; Buyantuev, A.; Zhang, Q.; Dong, J.; Kang, S.; Zhang, J. Understanding grassland degradation and restoration from the perspective of ecosystem services: A case study of the Xilin River basin in inner Mongolia, China. Sustainability 2016, 8, 594. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Zhang, J.; Niu, J.; Buyantuev, A.; Wu, J. A multilevel analysis of effects of land use policy on land-cover change and local land use decisions. J. Arid Environ. 2014, 108, 19–28. [Google Scholar] [CrossRef]
- Xiong, W.; Matthews, R.; Holman, I.; Lin, E.; Xu, Y. Modelling China’s potential maize production at regional scale under climate change. Clim. Chang. 2007, 85, 433–451. [Google Scholar] [CrossRef]
- Qiao, J.; Yu, D.; Wu, J. How do climatic and management factors affect agricultural ecosystem services? A case study in the agro-pastoral transitional zone of northern China. Sci. Total Environ. 2018, 613–614, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Qiu, J.; Yan, J.; Wan, L.; Wang, P.; Hu, N.; Cheng, W.; Fu, B. Spatially explicit quantification of the interactions among ecosystem services. Landsc. Ecol. 2017, 32, 1181–1199. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Wang, X.; Zhang, G. Scale effect on spatial patterns of ecosystem services and associations among them in semi-arid area: A case study in Ningxia Hui autonomous region, China. Sci. Total Environ. 2017, 598, 297–306. [Google Scholar] [CrossRef]
- Yang, G.; Ge, Y.; Xue, H.; Yang, W.; Shi, Y.; Peng, C.; Du, Y.; Fan, X.; Ren, Y.; Chang, J. Using ecosystem service bundles to detect trade-offs and synergies across urban-rural complexes. Landsc. Urban Plan. 2015, 135, 110–121. [Google Scholar] [CrossRef]
- Turner, K.G.; Odgaard, M.V.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.-C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Rau, A.-L.; Wehrden, H.V.; Abson, D.J. Temporal dynamics of ecosystem services. Ecol. Econ. 2018, 151, 122–130. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s loess plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019. [Google Scholar] [CrossRef]
- Engel, V.; Jobbagy, E.G.; Stieglitz, M.; Williams, M.; Jackson, R.B. Hydrological consequences of eucalyptus afforestation in the argentine pampas. Water Resour. Res. 2005, 41, W10409. [Google Scholar] [CrossRef]
- Pretty, J.N.; Noble, A.D.; Bossio, D.; Dixon, J.; Hine, R.E.; Penning De Vries, F.W.T.; Morison, J.I.L. Resource-conserving agriculture increases yields in developing countries. Environ. Sci. Technol. 2006, 40, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
Data | Data Description | Data Source |
---|---|---|
Climate data | Daily mean temperature; daily mean wind speed; daily rainfall | China Meteorological Data Service Center (http://data.cma.cn/) |
Normalized Difference Vegetation Index (NDVI) | NOAA/AVHRR NDVI at 2000 m spatial resolution (1979–2001); MODIS MOD13Q1 NDVI at 250 m spatial resolution (2000–2016) | Chinese Academy of Agricultural Sciences; The Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/search) |
Soil data | Sand fraction; silt fraction; clay fraction; organic carbon; calcium carbonate; bulk density | Harmonized World Soil Database V1.2 (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/) |
DEM | SRTM 90 m Digital Elevation Data Digital Elevation Model | The CGIAR Consortium for Spatial Information (srtm.csi.cgiar.org) |
Land use and land cover (LULC)/vegetation map | Landsat 3 MSS at 90 m spatial resolution (1978); Landsat 5 TM at 30 m spatial resolution (1987, 1992, 1997, 2002, 2007); HJ-1B at 30 m spatial resolution (2012); Landsat 8 OLI at 30 m spatial resolution (2014, 2016) | LULC was classified into 9 categories; vegetation was classified into 6 categories and 16 sub-categories (the details are shown in Table 2). Those layers were visually interpreted and digitized on screen in ArcGIS 10.3 |
Vegetation Categories Level I | Vegetation Categories Level II | Land-use and Land-Cover Categories | Area Ratio of 2016(%) | Maximum Root Depth (mm) | Kc |
---|---|---|---|---|---|
Forest vegetation | Artificial forest | Forest | 0.70% | 3000 | 0.2993 |
Shrubs and herbaceous vegetation in sandy land | Artemisia ordosica community on fixed sandy land | Fixed sand land | 27.80% | 600 | 0.2073 |
Sabina vulgaris community | 2.46% | 2000 | 0.2373 | ||
Caragana intermedia Kuang et H.C.Fu and A. ordosica community | 4.44% | 2000 | 0.2236 | ||
A. ordosica, Sophora alopecuroides L., Cynanchum hancockianum (Maxim.) Al. Iljinski. community | 0.24% | 600 | 0.2004 | ||
Salix cheilophila, S. psammophila community | Semi-fixed sand land | 7.77% | 1000 | 0.2220 | |
Artemisia ordosica community on semi-fixed sandy land | 9.65% | 600 | 0.2034 | ||
C. hancockianum (Maxim.) Al., S. alopecuroides L., Iljinski., Agriophyllum squarrosum (Linn.) Moq. and A. ordosica community | 0.67% | 300 | 0.2722 | ||
Pioneer community on moving sand Land | Moving sand Land | 27.74% | 200 | 0.1941 | |
Meadow and marshes | Carex duriuscula C.A.Mey. community | Marshland | 7.17% | 200 | 0.2149 |
Achnatherum splendens community | 2.13% | 300 | 0.2459 | ||
Halophyte vegetation | Suaeda glauca (Bunge) Bunge and Salicornia europaea community | Saline alkali land | 1.04% | 300 | 0.3104 |
Kalidium foliatum (Pall.) Moq. and Nitraria sibirica Pall community | 0.04% | 1000 | 0.6047 | ||
Agricultural vegetation | Cropland | Cropland | 6.29% | 300 | 0.3991 |
Others | Water body | Water body | 1.11% | 0 | 0.6446 |
Town or Village | Town or Village | 0.75% | 0 | 0.2083 |
Variable Type | Variable Name | Abbreviation | Unit | Description |
---|---|---|---|---|
Climate change | Growing season precipitation | PRCP | mm | Cumulative value of precipitation during 3–10 months |
Cumulative temperature | TEM | °C | Cumulative value of annual temperature over 10 °C | |
Cumulative wind speed | WIN | m·s−1 | Annual cumulative value of wind speed over 5 m/s | |
Land use changes | Land use intensity change | FAM_LUI | – | Equal to grain yield divided by sown area of each year. The greater the value, the greater the intensity of land use, representing the improvement of the intensification level of crop planting |
Grazing pressure | GRS_PRS | – | Equal to the annual number of breeding livestock divided by the annual NDVI cumulative value (minus the area of cultivated land). The greater the value, the greater the grazing pressure of natural grassland utilization, which may result in grassland degradation | |
Technical progress | Total mechanical power of agriculture and animal husbandry | AGMACH | ×104 KW | Mechanical input in crop farming and irrigation for artificial grassland, and in animal husbandry |
Population change | Total population | POP | People | The demand for ecosystem services from population growth |
Dependent Variable | Model | Coefficient | t Value | Pr(>|t|) | Model Summary |
---|---|---|---|---|---|
SHEEP–GRAIN | (Intercept) | 0.334 *** | 4.624 | 0.000 | R2 = 0.61 F = 12.86 p = 0.00 |
GRS_PRS | 0.353 ** | 2.739 | 0.010 | ||
AGMACH | 0.605 * | 2.446 | 0.020 | ||
POP | −0.431 | −1.348 | 0.187 | ||
SHEEP–NPP | (Intercept) | 0.773 *** | 12.367 | 0.000 | R2 = 0.42 F = 5.95 p = 0.00 |
GRS_PRS | 0.276 * | 2.470 | 0.019 | ||
AGMACH | 0.820 *** | 3.831 | 0.001 | ||
POP | −0.934 ** | −3.371 | 0.002 | ||
SHEEP–SP | (Intercept) | −0.022 | −0.427 | 0.672 | R2 = 0.46 F = 14.70 p = 0.00 |
WIN | −0.534 *** | −5.366 | 0.000 | ||
AGMACH | −0.228 ** | −3.243 | 0.003 | ||
SHEEP–WR | (Intercept) | 0.070 * | 2.270 | 0.029 | R2 = 0.19 F = 8.53 p = 0.01 |
AGMACH | −0.195 ** | −2.921 | 0.006 | ||
GRAIN−NPP | (Intercept) | 0.339 *** | 14.042 | 0.000 | R2 = 0.326 |
FAM_LUI | 0.211 *** | 3.800 | 0.001 | F = 8.46 | |
AGMACH | −0.093 | −1.626 | 0.113 | p = 0.00 | |
GRAIN–SP | (Intercept) | −0.236 *** | −13.412 | 0.000 | R2 = 0.17 F = 7.35 p = 0.01 |
TEM | 0.093 ** | 2.711 | 0.010 | ||
GRAIN–WR | (Intercept) | 0.149 *** | 3.217 | 0.003 | R2 = 0.57 F = 13.64 p = 0.00 |
PRCP | −0.110 | −1.612 | 0.116 | ||
GRS_PRS | −0.122 | −1.677 | 0.103 | ||
AGMACH | −0.185 * | −2.180 | 0.036 | ||
NPP–SP | (Intercept) | −0.413 *** | −19.878 | 0.000 | R2 = 0.61 F = 12.84 p = 0.00 |
TEM | 0.115 * | 2.222 | 0.033 | ||
FAM_LUI | −0.127 | −1.505 | 0.142 | ||
GRS_PRS | 0.143 | 1.487 | 0.146 | ||
POP | 0.081 | 1.370 | 0.180 | ||
NPP–WR | (Intercept) | 0.088 *** | 2.729 | 0.010 | R2 = 0.11 F = 4.52 p = 0.04 |
GRS_PRS | −0.105 * | −2.126 | 0.040 | ||
SP–WR | (Intercept) | −0.931 ** | −3.415 | 0.002 | R2 = 0.34 F = 3.33 p = 0.02 |
WIN | 1.061 ** | 3.464 | 0.002 | ||
FAM_LUI | −0.478 | −1.903 | 0.066 | ||
GRS_PRS | 0.610 * | 2.520 | 0.017 | ||
AGMACH | −1.379 ** | −3.151 | 0.004 | ||
POP | 2.146 ** | 3.409 | 0.002 |
Dependent Variable | Driving Force | Direct Driver | Indirect Driver |
---|---|---|---|
SHEEP–GRAIN | GRS_PRS | SHEEP | |
AGMACH | SHEEP, GRAIN | ||
SHEEP–NPP | GRS_PRS | SHEEP, NPP | |
AGMACH | SHEEP | NPP | |
POP | SHEEP | NPP | |
SHEEP–SP | WIN | SP | |
AGMACH | SHEEP | SP | |
SHEEP–WR | AGMACH | SHEEP, WR | |
GRAIN–NPP | FAM_LUI | GRAIN | |
GRAIN–SP | TEM | GRAIN | SP |
GRAIN–WR | AGMACH | GRAIN, WR | |
NPP–SP | TEM | NPP | SP |
NPP–WR | GRS_PRS | NPP | |
SP–WR | WIN | SP | |
GRS_PRS | SP, WR | ||
AGMACH | WR | SP | |
POP | WR | SP |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, X.; Buyantuev, A.; Bao, T.; Zhang, X. How Do Trade-Offs and Synergies between Ecosystem Services Change in the Long Period? The Case Study of Uxin, Inner Mongolia, China. Sustainability 2019, 11, 6041. https://doi.org/10.3390/su11216041
Zhang J, Li X, Buyantuev A, Bao T, Zhang X. How Do Trade-Offs and Synergies between Ecosystem Services Change in the Long Period? The Case Study of Uxin, Inner Mongolia, China. Sustainability. 2019; 11(21):6041. https://doi.org/10.3390/su11216041
Chicago/Turabian StyleZhang, Jing, Xueming Li, Alexander Buyantuev, Tongliga Bao, and Xuefeng Zhang. 2019. "How Do Trade-Offs and Synergies between Ecosystem Services Change in the Long Period? The Case Study of Uxin, Inner Mongolia, China" Sustainability 11, no. 21: 6041. https://doi.org/10.3390/su11216041
APA StyleZhang, J., Li, X., Buyantuev, A., Bao, T., & Zhang, X. (2019). How Do Trade-Offs and Synergies between Ecosystem Services Change in the Long Period? The Case Study of Uxin, Inner Mongolia, China. Sustainability, 11(21), 6041. https://doi.org/10.3390/su11216041