A Sustainability Assessment of Five Major Food Crops’ Water Footprints in China from 1978 to 2010
Abstract
:1. Introduction
1.1. WF and Its Sustainability Assessment
1.2. Sustainability Assessment
1.3. Sustainability Measurement
1.4. The Study in the Context of SDGs (Sustainability Development Goals)
2. Methodology
2.1. Sustainability Assessment Model Structure and Indicators
2.1.1. Proper Scale Analysis Classification
2.1.2. Equity Distribution Analysis
2.1.3. Allocation Efficiency Analysis
2.1.4. Case Study
2.2. Data Sources
3. Sustainability Assessment and Results
3.1. Sustainability Assessment and Results
3.1.1. Scale Assessment
National-Level Scale Assessment
Provincial Level Scale Assessment
3.1.2. Distribution Assessment
Between Generation Equity Distribution Assessment
Within-Generation Equity-Distribution Assessment
3.1.3. Efficiency Assessment
3.1.4. A Three-Dimensional Sustainability System Foundation
3.1.5. Case Study of Water Governance in Jilin and Fujian Provinces
Scale Sustainability
Distribution Sustainability
Efficiency Sustainability
3.2. Discussion
3.2.1. Sustainability Evaluation System
3.2.2. Achieving the Long-Term WF Sustainability for Main Food Crops
3.2.3. Policy Supporting System Foundation
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tian, Y.H.; Ruth, M.; Zhu, D.J. Using the IPAT identity and decoupling analysis to estimate WF variations for five major food crops in China from 1978 to 2010. Environ. Dev. Sustain. 2017, 19, 2355–2375. [Google Scholar] [CrossRef]
- Skouteris, G.; Ouki, S.; Foo, D.; Saroj, D.; Altini, M.; Melidis, P.; Cowley, B.; Ells, G.; Palmer, S.; O’Dell, S. WF and water pinch analysis techniques for sustainable water management in brick-manufacturing industry. J. Clean. Prod. 2018, 172, 786–794. [Google Scholar] [CrossRef]
- Murphy, E.; De Boer, I.J.M.; Van Middelaar, C.E.; Holden, N.M.; Shalloo, L.; Curran, T.P.; Upton, J. WF of dairy farming in Ireland. J. Clean. Prod. 2017, 140, 547–555. [Google Scholar] [CrossRef]
- Northey, S.A.; Mudd, G.M.; Saarivuori, E.; Wessman-Jääskeläinen, H.; Haque, N. Water footprint and mining: Where are the limitations and opportunities? J. Clean. Prod. 2016, 135, 1098–1116. [Google Scholar] [CrossRef]
- Sekyere, E.O.; Jordaan, H.; Chouchane, H. Evaluation of WF and economic water productivities of diary products of South Africa. Ecol. Indic. 2017, 83, 32–40. [Google Scholar] [CrossRef]
- Pires, A.; Morato, J.; Peixoto, H.; Botero, V.; Zuluaga, L.; Figueroa, A. Sustainability Assessment of indicators for integrated water resources management. Sci. Total Environ. 2017, 578, 139–147. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water footprint of crop productions: A review. Sci. Total Environ. 2016, 548, 236–251. [Google Scholar] [CrossRef]
- ISO 14046. ISO 14046: Environmental Management-Water Footprint-Principles, Requirements and Guidelines; International Organization for Standardization (ISO): Geneva, Switzerland, 2014. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, D.; Gutman, A.; Leet, W.; Drewnowski, A.; Fanzo, J.; Ingram, J. Seven food system metrics of sustainable nutrition security. Sustainability 2016, 8, 196. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The WF assessment manual: Setting the global standard. In WF Network, 1st ed.; Earthscan: New York, NY, USA, 2011. [Google Scholar]
- Zhao, X.; Tillotson, M.R.; Liu, Y.W.; Guo, W.; Yang, A.H.; Li, Y.F. Index decomposition analysis of urban crop water footprint. Ecol. Model. 2017, 348, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Muratoglu, A. Water footprint assessment within a catchment: A case study for Upper Tigris River Basin. Ecol. Indic. 2019, 106, 105–467. [Google Scholar] [CrossRef]
- Zhai, Y.J.; Tan, X.F.; Ma, X.T.; An, M.G.; Zhao, Q.L.; Shen, X.X.; Hong, J.L. Water footprint analysis of wheat production. Ecol. Indic. 2019, 102, 95–102. [Google Scholar] [CrossRef]
- Cao, X.; Huang, X.; Huang, H.; Liu, J.; Guo, X.; Wang, W.; She, D. Changes and driving mechanism of water footprint scarcity in crop production: A study of Jiangsu Province, China. Ecol. Indic. 2018, 95, 444–454. [Google Scholar] [CrossRef]
- Luan, X.; Wu, P.; Sun, S.; Wang, Y.; Gao, X. Quantitative study of the crop production water footprint using the SWAT model. Ecol. Indic. 2018, 89, 1–10. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Wu, S.R.; Gong, M.; Du, Y.; Wang, J.; Li, Y.; Liu, J. Spatial-temporal assessment of water footprint, water scarcity and water productivity in a major crop production region. J. Clean. Prod. 2019, 224, 375–383. [Google Scholar] [CrossRef]
- Vanham, D.; Hoekstra, A.Y.; Wada, Y.; Bouraoui, F.; De Roo, A.; Mekonnen, M.M.; Van de Bund, W.J.; Batelaan, O.; Pavelic, P.; Bastiaanssen, W.G.M.; et al. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicators 6.4.2 Level of water stress. Sci. Total Environ. 2018, 614, 218–232. [Google Scholar] [CrossRef]
- Novoa, V.; Rudolph, R.A.; Rojas, O.; Munizaga, J.; Sáez, K.; Arumí, J.L. Sustainability assessment of the agricultural water footprint in the Cachapoal River Basin, Chile. Ecol. Indic. 2019, 98, 19–28. [Google Scholar] [CrossRef]
- Sokolow, J.; Kennedy, G.; Attwood, S. Managing crop tradeoffs: A methodology for comparing the water footprint and nutrient density of crops for food system sustainability. J. Clean. Prod. 2019, 225, 913–927. [Google Scholar] [CrossRef]
- Richter, B.D.; Davis, M.M.; Apse, C.; Konrad, C.A. A presumptive standard for environmental flow protection. River Res. Appl. 2011, 8, 1312–1321. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y. Assessing water footprint at river basin level: A case study for the Heine River Basin in northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2771–2781. [Google Scholar] [CrossRef]
- Juwana, I.; Muttil, B.J.C.; Perera, B.J.C. Indicator-based water sustainability assessment—A review. Sci. Total Environ. 2012, 438, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Farley, J.; Daly, H.E. Ecological Economics: Principles and Applications; Island Press: Washington, DC, USA, 2003; Available online: http://library.uniteddiversity.coop/Measuring_Progress_and_Eco_Footprinting/Ecological_Economics-Principles_and_Applications.pdf (accessed on 31 October 2019).
- Esty, D.C.; Levy, M.; Srebotnjak, T.; De Sherbinin, A. 2005 Environmental Sustainability Index: Benchmarking national environmental stewardship. New Haven Yale Cent. for Environ. Law Policy 2005. Available online: https://sedac.ciesin.columbia.edu/es/esi/ESI2005_Main_Report.pdf (accessed on 31 October 2019).
- Spangenberg, J.H. Reconciling sustainability and growth: Criteria, indicators, policies. Sustain. Dev. 2004, 12, 74–86. [Google Scholar] [CrossRef]
- Yale Center for Environmental Law & Policy, Yale University and Center for International Earth Science Information Network, Columbia University 2018 Environmental Performance index. Available online: https://epi.envirocenter.yale.edu/downloads/epi2018reportv06191901.pdf (accessed on 31 October 2019).
- Allen, R.P. The wellbeing of nations. Soc. Indic. Res. 2002, 91, 5–21. [Google Scholar]
- Wakernagel, M.; Rees, W.E. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, BC, Canada, 1996; ISBN 9780865713123. [Google Scholar]
- Cobb, J.B.; Daly, H.E. For the Common Good: Redirecting the Economy Towards Community, the Environment, and A Sustainable Future; Beacon Press: Boston, MA, USA, 1989; ISBN 0-8070-3702-3. [Google Scholar]
- Rodríguez-Serrano, I.; Caldés, N.; De la Rúa, C.; Lechón, Y. Assessing the three sustainability pillars through the Framework for Integrated Sustainability Assessment (FISA): Case study of a Solar Thermal Electricity project in Mexico. J. Clean. Prod. 2017, 149, 1127–1143. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M.; Turner, K.; Barrett, J. Examining the global environmental impact of regional consumption activities-Part 2; review of input-output models for the assessment of environmental impacts embodied in trade. Ecol. Econ. 2007, 61, 15–26. [Google Scholar] [CrossRef]
- Daly, H.E. The return of Lauderdale’s paradox. Ecol. Econ. 1998, 25, 21–23. [Google Scholar] [CrossRef]
- Farley, J.; Daly, H.E. Natural capital: The limiting factor—A reply to Aronson, Blignaut, Milton and Clewell. Ecol. Econ. 2006, 28, 6–10. [Google Scholar]
- Carraro, C.; Campagnolo, L.; Eboli, F.; Lanzi, E.; Parrado, R.; Portale, E. Quantifying Sustainability: A New Approach and World Rankings; Fondazione Eni Enrico Mattei (FEEM): Venice, Italy, 2012. [Google Scholar]
- Zhang, X.; Wang, Y.; Qi, Y.; Wu, J.; Liao, W.; Shui, W.; Zhang, Y.; Deng, S.; Peng, H.; Yu, X.; et al. Evaluating the trends of China’s ecological civilization construction using a novel indicator system. J. Clean. Prod. 2016, 133, 910–923. [Google Scholar] [CrossRef]
- Buyukozkan, G.; Karabulut, Y. Energy project performance evaluation with sustainability perspective. Energy 2017, 119, 549–560. [Google Scholar] [CrossRef]
- Martínez, F.P.; Paz, J.M.M. The WF as an indicator of environmentalsustainability in water use at the river basin level. Sci. Total Environ. 2016, 571, 561–574. [Google Scholar] [CrossRef]
- Spiller, M. Adaptive capacity indicators to assess sustainability of urban water systems—Current application. Sci. Total Environ. 2016, 569, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M. Framework to assess city-scale sustainability. Procedia Eng. 2016, 145, 1440–1447. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.Q.; Liu, G.; Zhu, D.J. Economic growth and the evaluation of material cycles: An analytical framework integration material flow and stock indicators. Ecol. Econ. 2017, 140, 263–274. [Google Scholar] [CrossRef]
- Kang, P.; Xu, L.Y. Water environmental carrying capacity assessment of an industrial park. Procedia Environ. Sci. 2012, 13, 879–890. [Google Scholar] [CrossRef]
- Young, P.H. Equity: In Theory and Practice; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Hu, Z.N.; Chen, Y.Z.; Yao, L.M.; Wei, C.; Li, C. Optimal allocation of regional water resources: From a perspective of equity-efficiency trade off. Resour. Conserv. Recycl. 2016, 109, 102–113. [Google Scholar] [CrossRef]
- Gunn, E.L.; Zorrilla, P.; Prieto, F.; Llamas, M.R. Lost in translation? Water efficiency in Spanish agriculture. Agric. Water Manag. 2016, 108, 83–95. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; Wang, Q.F.; Hu, Z.M.; Zheng, H.; Li, S.G.; Sun, X.M.; Zhang, Y.P.; Yan, J.H.; Wang, H.M.; et al. Spatial variability of water use efficiency in China’s terrestrial eco-systems. Glob. Planet. Chang. 2015, 129, 37–44. [Google Scholar] [CrossRef]
- Halsema, G.E.; Vincent, L. Efficiency and productivity terms of water management: A matter of contextual relativism versus general absolutism. Agric. Water Manag. 2012, 108, 9–15. [Google Scholar] [CrossRef]
- Wang, L.Z.; Fang, L.P.; Hipel, K.W. Basin-wide cooperative water resources allocation. Eur. J. Oper. Res. 2008, 190, 798–817. [Google Scholar] [CrossRef]
- Jarillo, M.P.; Pedraza, L.; Ger, P.M.; Bocos, E. Challenges of online higher education in the face of the sustainability objectives of the United Nations: Carbon footprint, accessibility and social inclusions. Sustainability 2019, 11, 5580. [Google Scholar] [CrossRef]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- CAS. Report on the Sustainable Development Goals Supported by Big Data of the Earth; Chinese Academy of Sciences: Beijing, China, 2019. [Google Scholar]
- National Bureau of Statistics of China (NBSC). China Statistical Yearbook; China Statistics Press: Beijing, China, 2012. [Google Scholar]
- Zhang, C.; Anadon, L.D. A multi-regional input-output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Leung, H.L. The Cultural DNA of Western Civilization; Sdxjoint Publishing Company: Shanghai, China, 2014. [Google Scholar]
- Guan, J.W.; Liu, W.C. Forecast of Africa’s food problems in 2030 and its impacts on China. Territ. Resour. Inf. 2017, 8, 31–38. [Google Scholar]
- Garau, G.; Ranchhod, A. The futures of genetically-modified foods: Global threaten or panacea? Futures 2016, 83, 24–36. [Google Scholar] [CrossRef]
- Xu, H.J. U.S grain production subsidies and its revelation to China. Price Issue 2010, 3, 6–18. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Ruth, M.; Zhu, D.; Ding, J.; Morris, N. A Sustainability Assessment of Five Major Food Crops’ Water Footprints in China from 1978 to 2010. Sustainability 2019, 11, 6179. https://doi.org/10.3390/su11216179
Tian Y, Ruth M, Zhu D, Ding J, Morris N. A Sustainability Assessment of Five Major Food Crops’ Water Footprints in China from 1978 to 2010. Sustainability. 2019; 11(21):6179. https://doi.org/10.3390/su11216179
Chicago/Turabian StyleTian, Yuanhong, Matthias Ruth, Dajian Zhu, Jinfeng Ding, and Nicholas Morris. 2019. "A Sustainability Assessment of Five Major Food Crops’ Water Footprints in China from 1978 to 2010" Sustainability 11, no. 21: 6179. https://doi.org/10.3390/su11216179
APA StyleTian, Y., Ruth, M., Zhu, D., Ding, J., & Morris, N. (2019). A Sustainability Assessment of Five Major Food Crops’ Water Footprints in China from 1978 to 2010. Sustainability, 11(21), 6179. https://doi.org/10.3390/su11216179