Intrinsic Environmental Vulnerability as Shallow Landslide Susceptibility in Environmental Impact Assessment
Abstract
:1. Introduction
2. Methodology
2.1. Reference Method
2.2. Definition of the Case Study
2.3. Analyzed Susceptibility Factors
2.4. The Test Event
- Landslides developed along pre-existing discontinuity surfaces, mostly between the crystal-lined rock substrate and the eluvio-colluvial layer. This type of instability is usually observed on granitic sandy coulters. Landslides of this type have a prevalence of flattened solids, with a smooth sliding surface, represented by a variable inclination plane;
- Landslides developed along sliding planes of neo formation. In this case, the failures are promoted by the progressive imbibition of the ground and other factors that lead to overcoming the resistance to the cutting. The phenomenon is typical of pasture or grassland, being favored by local slope variations, building works, or excavations. The movement occurs by the rotation and integral translation of the plate;
- Gully erosion due to the flow of surface runoff water either on the bottom of usually dry valleys or on their sides;
- Rapid earth flow.
2.5. Analysis of Instability Factors
2.5.1. Lithology
2.5.2. Morphology: Concavity and Convexity Slope
2.5.3. Slope
2.5.4. Aspect
2.5.5. Distance from Watercourses
2.5.6. Land Use
3. Results
3.1. Lithology
3.2. Morphology
3.3. Slope
3.4. Aspect
3.5. Distance from Watercourses
3.6. Final Landslide Susceptibility Map
3.7. Results Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gardner, J.S.; Dekens, J. Mountain hazards and the resilience of social–ecological systems: Lessons learned in India and Canada. Nat. Hazards 2007, 41, 317–336. [Google Scholar] [CrossRef]
- Flentje, P.N.; Chowdhury, R.N. Resilience and sustainability in the management of landslides. Eng. Sustain. 2018, 171, 3–4. [Google Scholar] [CrossRef]
- European Union (EU). Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 Amending Directive 2011/92/EU on the Assessment of the Effects of Certain Public and Private Projects on the Environment. Available online: eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32014L0052 (accessed on 28 October 2019).
- Del Campo, A.G. Mapping environmental sensitivity: A systematic online approach to support environmental assessment and planning. Environ. Impact Assess. Rev. 2017, 66, 86–98. [Google Scholar] [CrossRef]
- Herath, S.; Wang, Y. Case Studies and National Experiences. In Landslides—Disaster Risk Reduction; Springer Verlag: Berlin/Heidelberg, Germany, 2009; pp. 475–497. [Google Scholar]
- Kjekstad, O.; Highland, L. Economic and social impacts of landslides. In Landslides—Disaster Risk Reduction; Springer Verlag: Berlin/Heidelberg, Germany, 2009; pp. 573–587. [Google Scholar]
- Highland, L.M.; Godt, J.W.; Howell, D.G.; Savage, W.Z. El Nino 1997–98, Damaging Landslides in the San Francisco Bay Area; U.S. Geological Survey Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 1998; pp. 89–98.
- Highland, L.M. Landslide Types and Processes: U.S. Geological Survey Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 2004; pp. 2004–3072.
- Li, T.; Wang, S. Landslide Hazards and their Mitigation in China; China Science Press: Beijing, China, 1992. [Google Scholar]
- Mandle, L.; Bryant, B.P.; Ruckelshaus, M.; Geneletti, D.; Kiesecker, J.M.; Pfaff, A. Entry points for considering ecosystem services within infrastructure planning: How to integrate conservation with development in order to aid them both. Conserv. Lett. 2016, 9, 221–227. [Google Scholar] [CrossRef]
- Alimohammadlou, Y.; Najafi, A.; Yalcin, A. Landslide process and impacts: a proposed classification method. Catena 2013, 104, 219–232. [Google Scholar] [CrossRef]
- Camici, S.; Brocca, L.; Melone, F.; Moramarco, T. Impact of climate change on flood frequency using different climate models and downscaling approaches. J. Hydrol. Eng. 2014, 19, 04014002. [Google Scholar] [CrossRef]
- Willeit, M.; Ganopolski, A.; Dalmonech, D.; Foley, A.M.; Feulner, G. Time-scale and state dependence of the carbon-cycle feedback to climate. Clim. Dyn. 2014, 42, 1699–1713. [Google Scholar] [CrossRef]
- Scafetta, N. Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques. Astrophys. Space Sci. 2014, 354, 275–299. [Google Scholar] [CrossRef] [Green Version]
- Casazza, M.; Alessio, S. Modeling theoretical radiative-dynamic response of tropospheric clouds to cosmic ray changes associated with Forbush Decrease events. Adv. Space Res. 2015, 55, 2678–2682. [Google Scholar] [CrossRef]
- Scafetta, N. High resolution coherence analysis between planetary and climate oscillations. Adv. Space Res. 2016, 57, 2121–2135. [Google Scholar] [CrossRef]
- Targulian, V.O.; Krasilnikov, P.V. Soil system and pedogenic processes: Self-organization, time scales, and environmental significance. Catena 2007, 71, 373–381. [Google Scholar] [CrossRef]
- Morris, P.; Therivel, R. Methods of Environmental Impact Assessment, 3rd ed.; Routledge: London, UK; New York, NY, USA, 2009. [Google Scholar]
- Lee, S.; Min, K. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 2001, 40, 1095–1113. [Google Scholar] [CrossRef]
- Roodposhti, M.S.; Aryal, J.; Pradhan, B. A Novel Rule-Based Approach in Mapping Landslide Susceptibility. Sensors 2019, 19, 2274. [Google Scholar] [CrossRef] [PubMed]
- Sabokbar, H.F.; Roodposhti, M.S.; Tazik, E. Landslide susceptibility mapping using geographically-weighted principal component analysis. Geomorphology 2014, 226, 15–24. [Google Scholar] [CrossRef]
- Harrison, J.F.; Chang, C.H. Sustainable Management of a Mountain Community Vulnerable to Geohazards: A Case Study of Maolin District, Taiwan. Sustainability 2019, 11, 4107. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Roccati, A.; Faccini, F.; Luino, F.; Ciampalini, A.; Turconi, L. Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy). Water 2019, 11, 605. [Google Scholar] [CrossRef]
- Marrazzi, S. Orographic Atlas of Alps (In Italian: Altante Orografico delle Alpi); Priuli & Verlucca: Pavone Canavese, Italy, 2005. [Google Scholar]
- Tropeano, D.; Turconi, L. Using historical documents for landslide, debris flow and stream flood prevention. Applications in Northern Italy. Nat. Hazards 2004, 31, 663–679. [Google Scholar] [CrossRef]
- Tropeano, D.; Turconi, L. Geomorphic classification of alpine catchments for debris-flow hazard reduction. In Proceedings of the Third International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Davos, Switzerland, 10–12 September 2003; pp. 1221–1232. [Google Scholar]
- Palladino, M.R.; Viero, A.; Turconi, L.; Brunetti, M.T.; Peruccacci, S.; Melillo, M.; Luino, F.; Deganutti, A.M.; Guzzetti, F. Rainfall thresholds for the activation of shallow landslides in the Italian Alps: The role of environmental conditioning factors. Geomorphology 2018, 303, 53–67. [Google Scholar] [CrossRef]
- Romeo, R.W.; Mari, M.; Floris, M.; Pappafico, G.; Gori, U. An Approach to Join the Spatial and Temporal Components of Landslide Susceptibility: An Application to The Marche Region (Central Italy). Italy J. Eng. Geol. Environ. 2011, 2, 63–78. [Google Scholar]
- Lee, S.; Hong, S.M.; Jung, H.S. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef]
- Govi, M.; Sorzana, P.F. Landslide susceptibility as a function of critical rainfall amount in Piedmont basin (Northwestern Italy). Studia Geomorphol. Carpatho-Balc. 1980, 14, 43–61. [Google Scholar]
- Luino, F. Sequence of instability processes triggered by heavy rainfall in the Northern Italy. Geomorphology 2005, 66, 13–39. [Google Scholar] [CrossRef]
- Roccati, A.; Luino, F.; Turconi, L.; Piana, P.; Watkins, C.; Faccini, F. Historical geomorphological research of a ligurian coastal floodplain (Italy) and its value for management of flood risk and environmental sustainability. Sustainability 2018, 10, 3727. [Google Scholar] [CrossRef]
- Luino, F.; Nigrelli, G.; Turconi, L.; Faccini, F.; Agnese, C.; Casillo, F. A proper land-use planning through the use of historical research. Disaster Adv. 2016, 9, 8–19. [Google Scholar]
- Italconsult. Studi Preliminari Agli Interventi Di Ricostruzione e Sistemazione Delle Zone Alluvionate In Provincia Di Vercelli; Ministero dei Lavori Pubblici: Provveditorato Regionale alle Opere pubbliche per il Piemonte: Torino, Italy, 1969.
- Carraro, F.; Dal Piaz, G.V.; Govi, M.; Sacchi, R. Il Dissesto Idrogeologico Del 2 Novembre 1968 Nel Bacino Della Strona a Monte Di Cossato; Comitato Regionale per la Programmazione Economica del Piemonte: Torino, Italy, 1970; pp. 143–175. [Google Scholar]
- Varnes, D.J. Landslide Hazard Zonation a Review of Principles and Practice; UNESCO: Paris, France, 1984. [Google Scholar]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z.; On behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Pierson, T.C. Piezometric response to rainstorms in forested hillslope drainage depressions. J. Hydrol. N. Z. 1980, 19, 1–10. [Google Scholar]
- Stanchi, S.; Freppaz, M.; Zanini, E. The influence of Alpine soil properties on shallow movement hazards, investigated through factor analysis. Nat. Hazards Earth Syst. Sci. 2012, 12. [Google Scholar] [CrossRef]
- D’Agostino, V.; Marchi, L. Debris flow magnitude in the Alps: Data collection and analysis. Phys. Chem. Earth Part C 2001, 26, 657–663. [Google Scholar]
- Crosta, G.B.; Dal Negro, P.; Frattini, P. Soil slips and debris flows on terraced slopes. Nat. Hazards Earth Syst. Sci. 2003, 3, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Jenks, G.F. Optimal Data Classification for Choropleth Maps, Occasional Paper No. 2; Department of Geography, University of Kansas: Lawrence, MA, USA, 1977. [Google Scholar]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Carrara, A.; Guzzetti, F. Techniques and Tools for Mapping Natural Hazards and Risk Impact on the Developed Environment. Nat. Haz. 1999, 20, 93–324. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landf. 1991, 16, 427–445. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Honk Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Huabin, W.; Gangjun, L.; Gonghui, W. GIS-based landslides hazard assessment: An overview. Prog. Phys. Geogr. 2005, 29, 548–567. [Google Scholar] [CrossRef]
- Cachon, J.; Irigaray, C.; Fernandez, T.; El Hamdouni, R. Engineering geology maps: Landslides and geographical information systems. Bull. Eng. Geol. Environ. 2006, 65, 341–411. [Google Scholar]
- Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issue. Nat. Hazard Earth Syst. Sci. 2013, 13, 2815–2831. [Google Scholar] [CrossRef]
- Baeza, C.; Corominas, J. Assessment of shallow landslide susceptibility by means of multivariate techniques. Earth Surf. Process. Landf. 2001, 26, 1251–1263. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Wang, P.; Bai, X.; Wu, X.; Yu, H.; Hao, Y.; Hu, B.X. GIS-based random forest weight for rainfall-induced landslide susceptibility assessment at a humid region in Southern China. Water 2018, 10, 1019. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modelling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Guzzetti, F.; Stark, C.P.; Salvati, P. Evaluation of flood and landslide risk to the population of Italy. Environ. Manag. 2005, 36, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Zêzere, J.L.; Pereira, S.; Melo, R.; Oliveira, S.C.; Garcia, R.A.C. Mapping landslides susceptibility using data-driven methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Long, N.T.; De Smedt, F. Analysis and mapping of rainfall-induced landslide susceptibility in a Luoi District, Thua Thien Hue Province, Vietnam. Water 2018, 11, 51. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J. Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada. Nat. Hazards 2007, 42, 75–89. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S.; Buchroithner, M.F. A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analysis. Comput. Environ. Urban Syst. 2010, 34, 216–235. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Valencia Ortiz, J.A.; Martínez-Graña, A.M. A neural network model applied to landslide susceptibility analysis (Capitanejo, Colombia). Geomat. Nat. Hazards Risk 2018, 9, 1106–1128. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Yansari, Z.T.; Panagos, P.; Pradhan, B. Analysis and evaluation of landslide susceptibility: A review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab. J. Geosci. 2018, 11, 193. [Google Scholar] [CrossRef]
- Sterling, S.; Slaymaker, O. Lithologic control of debris torrent occurrence. Geomorphology 2007, 86, 307–319. [Google Scholar] [CrossRef]
- Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.P. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology 2018, 301, 10–20. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Turconi, L. Yet another disaster flood of the Bisagno stream in Genoa (Liguria, Italy): October the 9th–10th 2014 event. Rend. Online Soc. Geol. Italy 2015, 35, 128–131. [Google Scholar] [CrossRef]
- Maraga, F.; Turconi, L.; Pellegrini, L.; Anselmo, V. Scouring in the Po river basin at the upper plain (Italy). In Proceedings of the Engineering Geology for Society and Territory, IAEG XII Congress, Torino, Italy, 15–19 September 2014; Springer: Cham, Switzerland, 2015; Volume 3, pp. 489–493. [Google Scholar]
- Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Turconi, L.; de Jong, C. Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Appl. Geogr. 2018, 98, 224–241. [Google Scholar] [CrossRef]
- Paliaga, G.; Faccini, F.; Luino, F.; Turconi, L. A spatial multicriteria prioritizing approach for geohydrological risk mitigation planning in small and densely urbanized Mediterranean basins. Nat. Hazards Earth Syst. Sci. 2018, 19, 53–69. [Google Scholar] [CrossRef]
- Roccati, A.; Faccini, F.; Luino, F.; De Graff, J.V.; Turconi, L. Morphological changes and human impact in the Entella River floodplain (Northern Italy) from the 17th century. Catena 2019, 182, 104–122. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V. Conditioning factor determination for mapping and prediction of landslide susceptibility using machine learning algorithms. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications X, SPIE Remote Sensing, Strasbourg, France, 9–12 September 2019; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11156. 111560K. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Sefry, S.A.; Abu Abdullah, M.M. Use of geological and geomorphological parameters in potential suitability assessment for urban planning development at Wadi Al-Asla basin, Jeddah, Kingdom of Saudi Arabia. Arab. J. Geosci. 2015, 8, 5617–5630. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, W.X.; Guo, J.Y.; Zhao, H.Q.; Yang, Q.C.; Chen, M. Geo-Environmental impact assessment and management information system for the mining area, northeast China. Environ. Earth Sci. 2015, 74, 7173–7185. [Google Scholar] [CrossRef]
- Chen, L.; Li, L.; Yang, X.; Zheng, J.; Chen, L.; Shen, Z.; Kervyn, M. A worst-case scenario based methodology to assess the environmental impact of land use planning. Habitat Int. 2017, 67, 148–163. [Google Scholar] [CrossRef]
- Xue, J.; Liu, G.; Casazza, M.; Ulgiati, S. Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning. Energy 2018, 164, 475–495. [Google Scholar] [CrossRef]
- Janssen, M.; Wimmer, M.A. Introduction to Policy-Making in the Digital Age. In Policy Practice and Digital Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–14. [Google Scholar]
- Lega, M.; Casazza, M.; Teta, R.; Zappa, C.J. Environmental impact assessment: A multi-level, multi-parametric framework for coastal waters. Int. J. Sustain. Dev. Plan. 2018, 13, 1041–1049. [Google Scholar] [CrossRef]
- Liu, G.; Yin, X.; Pengue, W.; Benetto, E.; Huisingh, D.; Schnitzer, H.; Wang, Y.; Casazza, M. Environmental accounting: In between raw data and information use for management practices. J. Clean. Prod. 2018, 197, 1056–1068. [Google Scholar] [CrossRef]
Source | Original Data Format | Obtained Information/Map |
---|---|---|
Digital Elevation Model (cell size 10 m) | Raster File | Aspect (File.Raster) Slope (File.Raster) Contour’s Curvatures (File.Raster) |
Geological maps (scale 1:5000 and 1:10,000) | .PDF File Paper | Lithologic map (File.Shape) Lithologic map (File.Raster) |
Aerial photos of the flood event 1968 | Black and White Photos | Land use map (File.Shape) Land use map (File.Raster) Map of the stream network processes due to the 1968 flood (File.Shape) |
Drainage network (scale 1:10,000) | Shape File | Map of the distances from stream incisions (File.Raster) |
Event Date (year, month, day) | Main Stream | Municipality | Geo-hydrological Processes |
---|---|---|---|
1854, July 2 | Strona | VM | Landslide |
1857, October 21–22 | Strona | VM | Flood |
1878, August 3 | Sessera, Strona | CO, VM | Flood |
1879, May 29 | Strona | VM | Flood, Landslide |
1907, October | Strona | VM | Landslide |
1908, May 26 | Sessera, Strona | CO, VM | Flood, Landslide |
1922, September 5 | Sessera | CO | Landslide |
1924, October 7–10 | Sessera | CO | Flood, Landslide |
1926, May 26 | Sessera | CO | Flood, Landslide |
1927, June 28 | Sessera, Strona | CO, VM | Flood, Landslide |
1928, April 1 | Sessera | P | Landslide |
1930, July 24 | Sessera | P | Flood |
1937, November 2 | Sessera | P | Landslide |
1938, June 14 | Sessera | CO | Landslide |
1948, September 7 | Strona | VM | Flood, Landslide |
1951, November 10–11 | Sessera, Strona | CO, VM | Flood, Landslide |
1953, September/October | Sessera | P | Flood |
1956, November 28 | Sessera | CO | Flood |
1959, May 3 | Strona | VM | Landslide |
1966, October 11 | Strona | VM | Landslide |
1967, June 10 | Sessera | P | Flood, Landslide |
1967, September 14 | Sessera | P | Flood, Landslide |
1968, June | Sessera | CO | Flood, Landslide |
1968, November 2–3 | Sessera, Strona | CO, P, VM | Flood, Landslide |
1976, November 26 | Sessera | CO, P | Landslide |
1977, May 1–3 | Sessera, Strona | CO, P, VM | Flood, Landslide |
1977, June 18 | Sessera | CO | Landslide |
1977, July 28–31 | Sessera | P | Flood |
1977, October 10 | Sessera | CO, P | Flood, Landslide |
1979, October 14–15 | Sessera, Strona | CO, P, VM | Flood, Landslide |
1981, September 22–23 | Sessera | CO, P | Flood, Landslide |
1985, May 16 | Strona | VM | Landslide |
1985, June 3–4 | Sessera | CO | Flood, Landslide |
1987, August 23–25 | Sessera | P | Landslide |
1988, July 1 | Sessera | P | Landslide |
1993 May 20 | Sessera | P | Landslide |
1994, May 18 | Sessera | CO | Landslide |
1994, November 5 | Sessera, Strona | CO, VM | Landslide |
1998, July 1 | Sessera | P | Landslide |
2000, October 13–17 | Sessera | P | Landslide |
2002, May 2–3 | Sessera | P | Landslide |
2002, June 6 | Sessera | P | Flood, Landslide |
Lithology | IFrel |
---|---|
Biotitic gneiss | 76 |
Leucogranites | 39 |
Gabbros | 82 |
Ultrafemic rocks | 0 |
Alluvial deposits | 12 |
Gravel deposits | 33 |
Gravitative deposits | 34 |
Kinzigite rocks | 100 |
Morphology of Slopes | IFrel |
---|---|
Concave | 100 |
Plane | 89 |
Convex | 75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turconi, L.; Luino, F.; Gussoni, M.; Faccini, F.; Giardino, M.; Casazza, M. Intrinsic Environmental Vulnerability as Shallow Landslide Susceptibility in Environmental Impact Assessment. Sustainability 2019, 11, 6285. https://doi.org/10.3390/su11226285
Turconi L, Luino F, Gussoni M, Faccini F, Giardino M, Casazza M. Intrinsic Environmental Vulnerability as Shallow Landslide Susceptibility in Environmental Impact Assessment. Sustainability. 2019; 11(22):6285. https://doi.org/10.3390/su11226285
Chicago/Turabian StyleTurconi, Laura, Fabio Luino, Mattia Gussoni, Francesco Faccini, Marco Giardino, and Marco Casazza. 2019. "Intrinsic Environmental Vulnerability as Shallow Landslide Susceptibility in Environmental Impact Assessment" Sustainability 11, no. 22: 6285. https://doi.org/10.3390/su11226285
APA StyleTurconi, L., Luino, F., Gussoni, M., Faccini, F., Giardino, M., & Casazza, M. (2019). Intrinsic Environmental Vulnerability as Shallow Landslide Susceptibility in Environmental Impact Assessment. Sustainability, 11(22), 6285. https://doi.org/10.3390/su11226285