Construction of the Ecological Security Pattern of Urban Agglomeration under the Framework of Supply and Demand of Ecosystem Services Using Bayesian Network Machine Learning: Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China
Abstract
:1. Introduction
2. Study Area and Methodologies
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methodology
2.3.1. Ecological Source Identification Based on Bayesian Network Machine Learning
Indicator Selection
Ecological Source Identification Model Construction
2.3.2. Ecological Corridor Construction Based on Minimum Cumulative Resistance (MCR) Model
2.3.3. Ecological Strategy Point Identification Based on Circuit Theory
3. Results
3.1. ES Supply and Demand Space Pattern
3.2. Ecological Sources
3.3. Ecological Corridors and Ecological Strategic Points
3.4. Ecological Security Pattern
4. Discussion
4.1. Effectiveness of Constructing an ESP for Urban Agglomerations
4.2. Supplement to the Relevant Urban Agglomeration Ecological Protection Planning
4.3. Limitations of Research
5. Conclusions
- Areas with high supply of ecosystem services (ES) were concentrated in the vegetation areas in the north and south of the urban agglomeration, while the high-demand areas of ES were concentrated in the built-up area at the center. Due to the differential impacts of developing factors such as urban construction, development policies, and development scale, the relationship between supply and demand of ES in urban agglomerations can demonstrate significant spatial decoupling, resulting in degradation in areas with high demand of ES.
- The simulation accuracy of the machine learning model reached 0.98, which suggests that the framework is suitable in simulating ecological sources for urban agglomeration. The ecological sources in the region had an area of 3686 km2, which accounted for 42.72% of the urban agglomeration and were mainly located on forestlands and water areas.
- The total length of the ecological corridor of the urban agglomeration was 870 km, with a 504 km terrestrial ecological corridor and a 366 km aquatic ecological corridor. The region’s ecological corridor presented an overall spatial pattern of “two horizontal and three vertical.” There were 37 ecological restoration sites, mainly located at the margins of the built-up area and along the intersections of construction land and ecological land.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Larson, K.L.; Nelson, K.C.; Samples, S.R.; Hall, S.J.; Bettez, N.; Cavender-Bares, J.; Groffman, P.M.; Grove, M.; Heffernan, J.B.; Hobbie, S.E.; et al. Ecosystem services in managing residential landscapes: priorities, value dimensions, and cross-regional patterns. Urban Ecosyst. 2016, 19, 95–113. [Google Scholar] [CrossRef]
- Li, H.L.; Li, D.H.; Li, T.; Qiao, Q.; Yang, J.; Zhang, H.M. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake—Case study of Wolong Nature Reserve in China. Ecol. Model. 2010, 221, 944–952. [Google Scholar] [CrossRef]
- Su, S.L.; Li, D.; Yu, X.; Zhang, Z.H.; Zhang, Q.; Xiao, R.; Zhi, J.J.; Wu, J.P. Assessing land ecological security in Shanghai (China) based on catastrophe theory. Stoch. Environ. Res. Risk A 2011, 25, 737–746. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.J.; Liu, Y.X.; Wu, J.S. Research progress and prospect on regional ecological security pattern construction. Geogr. Res. 2017, 36, 407–419. [Google Scholar]
- Fang, C.L. Important progress and prospects of China’s urbanization and urban agglomeration in the past 40 years of reform and opening-up. Econ. Geogr. 2018, 38, 1–9. [Google Scholar]
- Fang, C.L.; Wang, Z.B.; Ma, H.T. The theoretical cognition of the development law of China’s urban agglomeration and academic contribution. Acta Geogr. Sin. 2018, 73, 651–665. [Google Scholar]
- Su, Y.; Chen, X.; Liao, J.; Zhang, H.; Wang, C.; Ye, Y.; Wang, Y. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban. For. Urban. Gree. 2016, 19, 35–46. [Google Scholar] [CrossRef]
- Teng, M.; Wu, C.; Zhou, Z.; Lord, E.; Zheng, Z. Multipurpose greenway planning for changing cities: A framework integrating priorities and a least-cost path model. Landsc. Urban. Plan. 2011, 103, 1–14. [Google Scholar] [CrossRef]
- Long, Y.; Han, H.; Lai, S.; Mao, Q. Urban growth boundaries of the Beijing Metropolitan Area: Comparison of simulation and artwork. Cities 2013, 31, 337–348. [Google Scholar] [CrossRef]
- Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.I.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 292–325. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Xu, X.H. Research on landscape ecological security pattern in a Eucalyptus introduced region based on biodiversity conservation. Russ. J. Ecol. 2015, 46, 59–70. [Google Scholar] [CrossRef]
- Aminzadeh, B.; Khansefid, M. A case study of urban ecological networks and a sustainable city: Tehran’s metropolitan area. Urban. Ecosyst. 2010, 13, 23–36. [Google Scholar] [CrossRef]
- Vergnes, A.; Kerbiriou, C.; Clergeau, P. Ecological corridors also operate in an urban matrix: A test case with garden shrews. Urban. Ecosys. 2013, 16, 511–525. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, W.; Wang, Y.; Lien, W.; Huang, T.; Hsu, C.; Schmeller, D.S.; Crossman, N.D. Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environ. Modell. Softw. 2017, 90, 126–146. [Google Scholar] [CrossRef]
- Mandle, L.; Douglass, J.; Lozano, J.S.; Sharp, R.P.; Vogl, A.L.; Denu, D.; Walschburger, T.; Tanis, H. OPAL: An open-source software tool for integrating biodiversity and ecosystem services into impact assessment and mitigation decisions. Environ. Modell. Softw. 2016, 84, 121–133. [Google Scholar] [CrossRef]
- Pierik, M.; Dell’Acqua, M.; Confalonieri, R.; Bocchi, S.; Gomarasca, S. Designing ecological corridors in a fragmented landscape: A fuzzy approach to circuit connectivity analysis. Ecol. Indic. 2016, 67, 807–820. [Google Scholar] [CrossRef]
- Rouget, M.; Cowling, R.; Lombard, A.; Knight, A.; Kerley, G. Designing Large-Scale Conservation Corridors for Pattern and Process. Conserv. Biol. 2006, 20, 549–561. [Google Scholar]
- Parks, S.; McKelvey, K.; Schwartz, M. Effects of Weighting Schemes on the Identification of Wildlife Corridors Generated with Least-Cost Methods. Conserv. Biol. 2013, 27, 145–154. [Google Scholar] [CrossRef]
- Bras, R.; Cerdeira, J.; Alagador, D.; Araújo, M. Linking habitats for multiple species. Environ. Modell. Softw. 2013, 40, 336–339. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban. Plan. 2010, 95, 1–27. [Google Scholar] [CrossRef]
- Hepcan, Ç.C.; Özkan, M.B. Establishing ecological networks for habitat conservation in the case of Çeşme-Urla Peninsula, Turkey. Environ. Monit. Assess. 2011, 174, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, K.; Bridgman, C.; Lin, L. Habitat suitability modeling to correlate gene flow with landscape connectivity. Landscape Ecol. 2008, 23, 989–1000. [Google Scholar]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing-Tianjin-Hebei region, China. Urban. Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Xiong, Y.; Sun, W.J.; Wang, M.; Peng, Z.L.; Cui, Z.Z. Spatio-Temporal matching between water resource and economic development elements in Changsha-Zhuzhou-Xiangtan urban agglomeration. Econ. Geogr. 2019, 39, 88–95. [Google Scholar]
- Zhou, G.H.; Chen, L.; Tang, C.L.; He, Y.H.; Ran, Z. Research progress and prospects on Changsha-Zhuzhou-Xiangtan urban agglomeration. Econo Geogr. 2018, 38, 52–61. [Google Scholar]
- He, Y.H.; Tang, C.L.; Zhou, G.H.; He, S.; Qiu, Y.H.; Shi, L.; Zhang, H.Z. The analysis of spatial conflict measurement in fast urbanization region from the perspective of geography: A case study of Changsha-Zhuzhou-Xiangtan Urban agglomeration. J. Nat. Resour. 2014, 29, 1660–1674. [Google Scholar]
- He, Y.H.; Zhou, G.H. Delimination of the Changsha-Zhuzhou-Xiangtan city-and-town concentrated area. Trop. Geogr. 2007, 27, 521–525, 547. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Jing, Y.C.; Chen, L.D.; Sun, R.H. A theoretical research framework for ecological security pattern construction based on ecosystem services supply and demand. Acta Ecol. Sin. 2018, 38, 4121–4131. [Google Scholar]
- Tian, G.; Qiao, Z. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environ. Pollut. 2014, 184, 320–326. [Google Scholar] [CrossRef]
- Frondoni, R.; Mollo, B.; Capotorti, G. A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban. Plan. 2011, 100, 117–128. [Google Scholar] [CrossRef]
- Huang, L.Y.; Liu, S.H.; Fang, Y.; Zou, L. Construction of Wuhan’s ecological security pattern under the “quality-risk-requirement” framework. Chin. J. App. Ecol. 2019, 30, 615–626. [Google Scholar]
- Peng, J.; Zhao, M.; Guo, X.; Pan, Y.; Liu, Y. Spatial-temporal dynamics and associated driving forces of urban ecological land: A case study in Shenzhen City, China. Habitat Int. 2017, 60, 81–90. [Google Scholar] [CrossRef]
- Pantus, F.J.; Dennison, W.C. Quantifying and Evaluating Ecosystem Health: A Case Study from Moreton Bay, Australia. Environ. Manag. 2005, 36, 757–771. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; He, J.H.; Qu, S.; Huang, J.L.; Li, Y.H. A method of delimiting urban ecological red line protection area based on Bayesian network. Acta Ecol. Sin. 2018, 38, 800–811. [Google Scholar]
- Chen, X.; Peng, J.; Liu, Y.X.; Yang, Y.; Li, G.C. Constructing ecological security patterns in Yunfu City based on the framework of importance-sensitivity-connectivity. Geogr. Res. 2017, 36, 471–484. [Google Scholar]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhu, X.; He, Q.H. Spatial interaction between urbanisation and ecosystem services: A case study in Changsha-Zhuzhou-Xiangtan urban agglomeration. Acta Ecol. Sin. 2019, 39, 1–12. [Google Scholar]
- Lin, J.; Li, X. Large-scale ecological red line planning in urban agglomerations using a semi-automatic intelligent zoning method. Sust. Cit. Soc. 2019, 46, 101410. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zheng, H. Ecological network analysis of energy metabolism in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) urban agglomeration. Ecol. Model. 2017, 351, 51–62. [Google Scholar] [CrossRef]
- Bai, X.; Shi, P.; Liu, Y.S. Society: Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.A.L.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Valle Junior, R.F. Soil losses in rural watersheds with environmental land use conflicts. Sci. Total Environ. 2014, 485–486, 110–120. [Google Scholar] [CrossRef]
- Valle Junior, R.F.; Varandas, S.G.P.; Pacheco, F.A.L.; Pereira, V.R.; Santos, C.F.; Cortes, R.M.V.; Sanches Fernandes, L.F. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 2015, 43, 48–62. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef]
- Maragno, D.; Gaglio, M.; Robbi, M.; Appiotti, F.; Fano, E.A.; Gissi, E. Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows. Ecol. Model. 2018, 386, 1–10. [Google Scholar] [CrossRef]
- Gaglio, M.; Aschonitis, V.; Pieretti, L.; Santos, L.; Gissi, E.; Castaldelli, G.; Fano, E.A. Modelling past, present and future Ecosystem Services supply in a protected floodplain under land use and climate changes. Ecol. Model. 2019, 403, 23–34. [Google Scholar] [CrossRef]
Key Indicators | Definition | Explanation |
---|---|---|
Ecosystem service (ES) supply | is the ecosystem service value (ESV) of each land-use type (k). is the area (in hectares) for each land-use type. is the value parameter (in Yuan/hectare) for land-use types. | |
Ecosystem organization | is the structural stability of ecosystems, determined by landscape patterns. is the landscape connectivity. is landscape heterogeneity. is the patch connectivity of important land (e.g., forest, wetland). | |
Ecosystem vitality | Ecosystem vitality is the ecosystem’s metabolism or primary productivity. The net primary production (NPP) is used to assess ecosystem vigor, which has been proven useful in assessing the primary productivity of ecosystems [30]. | |
ES demand | is the demand for ESV. is the proportion of developed land. is the population density. is the economic density. |
Variable Name | Grade Code | Variance Reduction/% | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
ES supply | 0–0.4 | 0.4–0.7 | 0.7–1.0 | ≥1.0 | 12.3 |
Ecosystem organization | 0–0.22 | 0.22–0.27 | 0.27–0.31 | ≥0.31 | 12 |
Ecosystem vitality | <0.46 | 0.46–0.66 | 0.66–0.75 | ≥0.75 | 11.07 |
Elevation | <70 | 70–150 | 150–250 | ≥250 | 2.03 |
slope | 0–5 | 5–10 | 10–15 | ≥15 | 2.27 |
Distance to the road | <5000 | 5000–10,000 | 10,000–20,000 | ≥20,000 | 0.0707 |
Distance to water body | <4000 | 4000–8000 | 8000–15,000 | ≥15,000 | 3.27 |
Distance to construction land | <750 | 750–1950 | 1950–4500 | ≥4500 | 0.77 |
Population density | <1450 | 1450–4500 | 4500–9000 | ≥9000 | 0.723 |
Gross domestic product (GDP) density | <20,000 | 20,000–60,000 | 60,000–150,000 | ≥150,000 | 0.554 |
Severity of water erosion | 1 | 2 | 3 | 0.025 | |
Soil sand content | <36 | 36–43 | 44–53 | ≥54 | 0.315 |
Soil particle content | <21 | 21–28 | 29–34 | ≥35 | 0.281 |
Soil clay content | <26 | 26–32 | 33–39 | ≥40 | 0.252 |
Average rainfall | <1600 | 1600–1670 | 1670–1700 | 1700–1780 | 0.58 |
Average temperature | <18 | 18–18.5 | 18.5–18.8 | ≥18.8 | 0.49 |
ES demand | <2 | 2–7 | 7–14 | ≥14 | 0.74 |
Ecological land | Yes (1) | No (0) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, X.; Wang, Z.; Zhu, X. Construction of the Ecological Security Pattern of Urban Agglomeration under the Framework of Supply and Demand of Ecosystem Services Using Bayesian Network Machine Learning: Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China. Sustainability 2019, 11, 6416. https://doi.org/10.3390/su11226416
Ouyang X, Wang Z, Zhu X. Construction of the Ecological Security Pattern of Urban Agglomeration under the Framework of Supply and Demand of Ecosystem Services Using Bayesian Network Machine Learning: Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China. Sustainability. 2019; 11(22):6416. https://doi.org/10.3390/su11226416
Chicago/Turabian StyleOuyang, Xiao, Zhenbo Wang, and Xiang Zhu. 2019. "Construction of the Ecological Security Pattern of Urban Agglomeration under the Framework of Supply and Demand of Ecosystem Services Using Bayesian Network Machine Learning: Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China" Sustainability 11, no. 22: 6416. https://doi.org/10.3390/su11226416
APA StyleOuyang, X., Wang, Z., & Zhu, X. (2019). Construction of the Ecological Security Pattern of Urban Agglomeration under the Framework of Supply and Demand of Ecosystem Services Using Bayesian Network Machine Learning: Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China. Sustainability, 11(22), 6416. https://doi.org/10.3390/su11226416