Moldboard Plowing with Direct Seeding Improves Soil Properties and Sustainable Productivity in Ratoon Rice Farmland in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Treatment and Experimental Design
2.3. Measurement of Soil Bulk Density
2.4. Measurement of Biological Activity
2.5. Measurement of Ratoon Rice Grain Yield
2.6. Statistical Analysis
3. Results
3.1. Soil Bulk Density
3.2. Soil Biological Activities
3.3. Ratoon Rice Grain Yield
4. Discussion
4.1. Soil Bulk Density
4.2. Soil Biological Indicators
4.3. Ratoon Rice Grain Yield
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Crop Production. 2014–2016. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 November 2019).
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.J.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2011, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Jiang, X. Ratooning in China. In Rice Ratooning; Chauhan, J.S., Vergara, B.S., Lopez, F.S., Eds.; International Rice Research Institute: Makita, Philippines, 1988; pp. 79–85. [Google Scholar]
- Fei, Z.; Dong, H.; Wu, X.; Zhou, P. The development status and potential of ratoon rice in Hubei Province. Hubei Agric. Sci. 2013, 52, 5977–5978. (In Chinese) [Google Scholar]
- Xu, F.; Xiong, H.; Zhang, L.; Zhu, Y.; Jiang, P.; Guo, X.; Liu, M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci. Agric. Sin. 2015, 48, 1702–1717. (In Chinese) [Google Scholar]
- Li, Y.; Zhang, W.; Ma, L.; Wu, L.; Shen, J.; Davies, W.J.; Oenema, O.; Zhang, F.; Dou, Z. An analysis of China’s grain production: Looking back and looking forward. Food Energy Secur. 2014, 3, 19–32. [Google Scholar] [CrossRef]
- Luo, K. The development status and strategy of ratooning rice industry in Hubei Province. Hubei Agric. Sci. 2016, 55, 3001–3002. (In Chinese) [Google Scholar]
- Tu, J.; Cao, Z.; Chen, J.; Peng, S.; Huang, J.; Cheng, J.; Fang, X.; Qian, T.; Zhang, Q. Comparative experiment results and evaluation of 16 varieties as ratooning rice. Hubei Agric. Sci. 2017, 56, 4475–4478. (In Chinese) [Google Scholar]
- Liu, K.; Qin, J.; Zhang, B.; Zhao, Y. Physiological traits, yields and nitrogen translocation of ratoon rice in response to different cultivations and planting periods. Afr. J. Agric. Res. 2012, 7, 2539–2545. [Google Scholar]
- Bhushan, L.; Ladha, J.K.; Gupta, R.K.; Singh, S.; Tirol-Padre, A.; Saharawat, Y.S.; Gathala, M.; Pathak, H. Saving of water and labor in a rice—wheat system with no-tillage and direct seeding technologies. Agron. J. 2007, 99, 1288–1296. [Google Scholar] [CrossRef]
- Jiang, Q.W.; Wang, W.Q.; Chen, Q.; Peng, S.B.; Huang, J.L.; Cui, K.H.; Nie, L.X. Response of first flood irrigation timing after rice dry-direct-seeding: Productivity and greenhouse gas emissions in Central China. Agric. Water Manag. 2016, 177, 241–247. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, Q.; Peng, S.B.; Wang, W.Q.; Nie, L.X. Lower global warming potential and higher yield of wet direct-seeded rice in Central China. Agron. Sustain. Dev. 2016, 36, 24. [Google Scholar] [CrossRef]
- Farooq, M.; Siddique, K.H.M.; Rehman, H.; Aziz, T.; Lee, D.-J.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Liu, H.; Hussain, S.; Zheng, M.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Dry seeded-rice as an alternative to transplanted-flooded rice in Central China. Agron. Sustain. Dev. 2015, 35, 285–294. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Q.; Wang, W.; Peng, S.; Huang, J.; Cui, K.; Nie, L. The growth and yield of a wet-seeded rice-ratoon rice system in central China. Field Crops Res. 2017, 208, 55–59. [Google Scholar] [CrossRef]
- Strudley, M.W.; Green, T.R.; Ascough, J.C. Tillage effects on soil hydraulic properties in space and time. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes, and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Vakali, C.; Zaller, J.G.; Köpke, U. Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil Tillage Res. 2011, 111, 133–141. [Google Scholar] [CrossRef]
- Riley, H.; Pommereche, R.; Eltun, R.; Hansen, S.; Korsaeth, A. Soil structure, organic matter and earthworm activity in a comparison of cropping systems with contrasting tillage, rotations, fertilizer levels and manure use. Agric. Ecosyst. Environ. 2008, 124, 275–284. [Google Scholar] [CrossRef]
- Gong, Z.T.; Zhang, G.L.; Chen, Z.C. Pedogenesis and Soil Taxonomy; Science Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Arshad, M.A.; Franzluebbers, A.J.; Azooz, R.H. Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil Tillage Res. 1999, 53, 41–47. [Google Scholar] [CrossRef]
- Ferraro, D.O.; Ghersa, C.M. Quantifying the crop management influences on arable soil condition in the Inland Pampa (Argentina). Geoderma 2007, 141, 43–52. [Google Scholar] [CrossRef]
- Parkinson, D.; Gray, T.R.G.; Williams, S.T. Methods for studying ecology of soil microorganisms. In IBP Hand Book 19; Blackwells Science Publication Limited: Oxford, UK, 1971. [Google Scholar]
- Wellingtonn, E.M.H.; Toth, I.K. Microbiological and Biochemical Properties; University of Warwick: Coventry, UK, 1963. [Google Scholar]
- Searle, P.L.; Speir, T.W. An automated colorimetric method for the determination of urease activity in soil and plant material. Commun. Soil Sci. Plant Anal. 1976, 7, 365–374. [Google Scholar] [CrossRef]
- Yan, C.S. Research Methods of Soil Fertility; Chinese Agricultural Press: Beijing, China, 1988; pp. 277–279. (In Chinese) [Google Scholar]
- Luchter-Wasylewska, E. Continuous assay for acid phosphatase using phenyl phosphate. Anal. Biochem. 1996, 241, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Erbach, D.C.; Benjamin, J.G.; Cruse, R.M.; Elamin, M.A.; Mukhtur, S.; Choi, C.H. Soil and corn response to tillage with paraplow. Trans. ASAE 1992, 35, 1347–1354. [Google Scholar] [CrossRef]
- Melero, S.; Porras, J.C.R.; Herencia, J.F.; Madejon, E. Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Tillage Res. 2006, 90, 162–170. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities. Appl. Environ. Soil Sci. 2012, 2012, 548620. [Google Scholar] [CrossRef]
- Chan, H.; Liang, Q.; Gong, Y.; Kuzyakov, Y.; Fan, M.; Plante, A.F. Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil Tillage Res. 2019, 194, 104296. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Jin, K.; Sleutel, S.; Buchan, D.; De Neve, S.; Cai, D.X.; Gabriels, D.; Jin, J.Y. Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil Tillage Res. 2009, 104, 115–120. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995; pp. 311–373. [Google Scholar]
- Trasar-Cepeda, C.; Camiña, F.; Leirós, M.C.; Gil-Sotres, F. An improved method to measure catalase activity in the soils. Soil Biol. Biochem. 1999, 31, 483–485. [Google Scholar] [CrossRef]
- Gupta, R.K.; Naresh, R.K.; Hobbs, P.R.; Jiaguo, Z.; Ladha, J.K. Sustainability of Post-Green Revolution Agri-culture. The Rice-Wheat Cropping Systems of the Indo—Gangetic Plains and China. In Improving the Productivity and Sustainability of Rice-Wheat Systems: Issues and Impacts; ASA Special Publication: Washington, DC, USA, 2003; Volume 65, pp. 1–25. [Google Scholar]
- San-oh, Y.; Mano, Y.; Ookawa, T.; Hirasawa, T. Comparison of dry matter production and associated characteristics between direct-sown and transplanted rice plants in a submerged paddy field and relationships to planting pattern. Field Crops Res. 2004, 87, 43–58. [Google Scholar] [CrossRef]
- Tabbal, D.F.; Bouman, B.A.M.; Bhuiyan, S.I.; Sibayan, E.B.; Sattar, M.A. On-farm strategies for reducing water input in irrigated rice: Case studies in the Philippines. Agric. Water Manag. 2002, 56, 93–112. [Google Scholar] [CrossRef]
- Ali, M.A.; Ladha, J.K.; Rickman, J.; Lales, J.S. Comparison of different methods of rice establishment and nitrogen management strategies for lowland rice. J. Crop Improv. 2006, 16, 173–189. [Google Scholar] [CrossRef]
- Singh, G.; Singh, O.P. Effect of method of seeding and level of nitrogen on yield and yield attributes of rice under flood-affected conditions. Indian J. Agron. 1993, 38, 551–554. [Google Scholar]
- Yoshinaga, S.; Wakimoto, K.; Tasaka, K.; Matsushima, K.; Togashi, T.; Shimotsubo, K. Growth characteristics of submerged hill-seeded rice (Oryza sativa L.) in warmer regions of Japan: Differences of growth as compared with broadcast-seeded rice. Jpn. J. Crop Sci. 2001, 70, 541–547. [Google Scholar] [CrossRef]
- Hayashi, S.; Kamoshita, A.; Yamagishi, J.; Kotchasatit, A.; Jongdee, B. Genotypic differences in grain yield of transplanted and direct-seeded rainfed lowland rice (Oryza sativa L.) in northeastern Thailand. Field Crops Res. 2007, 102, 9–21. [Google Scholar] [CrossRef]
Sand (%) | Silt (%) | Clay (%) | Soil Textural Class | Bulk Density (g∙cm−3) | |
---|---|---|---|---|---|
57 | 9 | 34 | Sandy clay loam | 1.16 | |
Bacteria (×105 cfu∙g−1 dry soil) | Fungi (×103 cfu∙g−1 dry soil) | Actinomycetes (×104 cfu∙g−1 dry soil) | Catalase [0.1NKMnO4 (mL∙g−1)] | Phosphatase [P2O5 (mg∙kg−1)] | Urease [NH4+-N (mg∙kg−1)] |
2.79 | 0.08 | 5.41 | 43.39 | 159.66 | 1211.50 |
Soil Depth | Plowing Methods | Bacteria (×105 cfu∙g−1 Dry Soil) | Fungi (×103 cfu∙g−1 Dry Soil) | Actinomycetes (×104 cfu∙g−1 Dry Soil) | |||
2017 (1H) | 2017 (2H) | 2017 (1H) | 2017 (2H) | 2017 (1H) | 2017 (2H) | ||
0–10 cm | MPMT | 3.61c | 0.61c | 0.14b | 0.14c | 2.84d | 6.56c |
RTMT | 2.37d | 1.81c | 0.09b | 0.13c | 4.50c | 7.07b | |
MPDS | 5.40a | 2.67a | 0.35a | 0.35a | 6.39a | 7.84a | |
RTDS | 4.96b | 2.64a | 0.28a | 0.22b | 5.81b | 7.09b | |
10–20 cm | MPMT | 1.90b | 0.73d | 0.08b | 0.08b | 1.99d | 3.88c |
RTMT | 1.74c | 1.13c | 0.08b | 0.08b | 2.27c | 3.42d | |
MPDS | 2.08a | 1.83a | 0.17a | 0.14a | 5.03a | 5.23a | |
RTDS | 1.78c | 1.32b | 0.16a | 0.09b | 2.39b | 4.86b | |
20–30 cm | MPMT | 1.29a | 0.72d | 0.06b | 0.09a | 0.84d | 2.69d |
RTMT | 1.12b | 0.83c | 0.08b | 0.08a | 1.01c | 3.21c | |
MPDS | 1.07b | 1.63a | 0.14a | 0.09a | 3.24a | 3.99a | |
RTDS | 0.75c | 1.04b | 0.09b | 0.08a | 2.43b | 3.86b | |
Bacteria (×105 cfu∙g−1 dry soil) | Fungi (×103 cfu∙g−1 dry soil) | Actinomycetes (×104 cfu∙g−1 dry soil) | |||||
2018 (1H) | 2018 (2H) | 2018 (1H) | 2018 (2H) | 2018 (1H) | 2018 (2H) | ||
0–10 cm | MPMT | 3.89c | 0.76c | 0.15b | 0.16c | 2.89d | 6.73c |
RTMT | 2.62d | 1.85b | 0.10b | 0.16c | 4.80c | 7.16b | |
MPDS | 5.15b | 2.75a | 0.40a | 0.45a | 6.49a | 7.87a | |
RTDS | 5.73a | 2.74a | 0.31a | 0.34b | 5.85b | 7.22b | |
10–20 cm | MPMT | 1.94b | 0.73d | 0.09b | 0.09b | 2.01c | 3.93c |
RTMT | 1.86b | 1.15c | 0.09b | 0.08b | 2.46b | 3.46d | |
MPDS | 2.12a | 1.89a | 0.18a | 0.16a | 5.25a | 5.35a | |
RTDS | 1.86b | 1.44b | 0.18a | 0.09b | 2.48b | 4.88b | |
20–30 cm | MPMT | 1.38a | 0.65d | 0.07b | 0.08a | 0.88c | 2.73c |
RTMT | 1.17b | 0.87c | 0.08b | 0.08a | 1.11c | 3.41b | |
MPDS | 1.24b | 1.73a | 0.15a | 0.10a | 2.50b | 4.05a | |
RTDS | 0.83c | 1.18b | 0.09b | 0.09a | 3.65a | 3.89b |
Soil Depth (cm) | 2017 (1H) | 2017 (2H) | |||||||
---|---|---|---|---|---|---|---|---|---|
MPMT | RTMT | MPDS | RTDS | MPMT | RTMT | MPDS | RTDS | ||
Catalase | 0–10 | 46.99c | 45.06d | 51.56a | 50.18b | 22.22d | 24.31c | 26.95a | 26.25b |
[0.1NKMnO4 (mL∙g−1)] | 10–20 | 42.84c | 41.19d | 46.56a | 44.14b | 22.80c | 20.39d | 24.79b | 26.40a |
20–30 | 35.06c | 36.13d | 36.86a | 36.69a | 21.62c | 19.44d | 22.28a | 22.04b | |
Phosphatase | 0–10 | 216.06d | 220.84c | 224.23a | 222.84b | 172.46d | 177.94c | 204.71a | 197.71b |
[P2O5 (mg∙kg−1)] | 10–20 | 211.94b | 217.09ab | 223.70a | 217.67ab | 116.04c | 109.95d | 144.42a | 121.47b |
20–30 | 220.66a | 210.68b | 222.42a | 221.09a | 60.03c | 63.84c | 86.74a | 78.01b | |
Urease | 0–10 | 860.64b | 1021.80a | 1013.48a | 876.08b | 1446.58b | 1242.64c | 1558.58a | 1543.30a |
[NH4+-N (mg∙kg−1)] | 10–20 | 476.14d | 518.10c | 648.18a | 587.86b | 926.26c | 978.08b | 1157.36a | 988.34b |
20–30 | 352.54a | 108.66d | 293.92b | 263.80c | 523.34c | 514.18d | 605.68a | 587.46b | |
2018 (1H) | 2018 (2H) | ||||||||
MPMT | RTMT | MPDS | RTDS | MPMT | RTMT | MPDS | RTDS | ||
Catalase | 0–10 | 47.84b | 45.80b | 53.10a | 51.54a | 23.46c | 24.99b | 27.53a | 26.97b |
[0.1NKMnO4 (mL∙g−1)] | 10–20 | 43.40c | 42.13d | 48.70a | 45.63b | 23.21c | 20.93d | 25.20b | 26.97a |
20–30 | 35.93b | 37.36ab | 38.30a | 38.12ab | 21.96b | 19.88c | 23.25a | 22.99b | |
Phosphatase | 0–10 | 219.87c | 222.08bc | 225.25a | 224.13ab | 173.45d | 178.74c | 205.58a | 198.93b |
[P2O5 (mg∙kg−1)] | 10–20 | 219.74a | 218.81a | 227.75a | 219.30a | 117.13c | 111.15d | 145.19a | 122.65b |
20–30 | 221.62a | 212.22b | 224.96a | 222.03a | 60.94c | 65.09b | 87.15a | 78.79b | |
Urease | 0–10 | 861.49b | 1024.09a | 1016.41a | 879.05b | 1448.34b | 1243.47c | 1560.10a | 1545.29b |
[NH4+-N (mg∙kg−1)] | 10–20 | 470.28d | 519.30c | 589.18b | 651.01a | 928.73c | 979.79c | 1158.21a | 990.08b |
20–30 | 353.22a | 109.81d | 295.26b | 265.18c | 525.05c | 515.11d | 607.28 a | 588.11b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asenso, E.; Zhang, L.; Tang, L.; Issaka, F.; Tian, K.; Li, J.; Hu, L. Moldboard Plowing with Direct Seeding Improves Soil Properties and Sustainable Productivity in Ratoon Rice Farmland in Southern China. Sustainability 2019, 11, 6499. https://doi.org/10.3390/su11226499
Asenso E, Zhang L, Tang L, Issaka F, Tian K, Li J, Hu L. Moldboard Plowing with Direct Seeding Improves Soil Properties and Sustainable Productivity in Ratoon Rice Farmland in Southern China. Sustainability. 2019; 11(22):6499. https://doi.org/10.3390/su11226499
Chicago/Turabian StyleAsenso, Evans, Luyong Zhang, Lingmao Tang, Fuseini Issaka, Kai Tian, Jiuhao Li, and Lian Hu. 2019. "Moldboard Plowing with Direct Seeding Improves Soil Properties and Sustainable Productivity in Ratoon Rice Farmland in Southern China" Sustainability 11, no. 22: 6499. https://doi.org/10.3390/su11226499
APA StyleAsenso, E., Zhang, L., Tang, L., Issaka, F., Tian, K., Li, J., & Hu, L. (2019). Moldboard Plowing with Direct Seeding Improves Soil Properties and Sustainable Productivity in Ratoon Rice Farmland in Southern China. Sustainability, 11(22), 6499. https://doi.org/10.3390/su11226499