Application of the Principal Component Analysis (PCA) Method to Assess the Impact of Meteorological Elements on Concentrations of Particulate Matter (PM10): A Case Study of the Mountain Valley (the Sącz Basin, Poland)
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kukkonen, J.; Pohjola, M.; Sokhi, R.S.; Luhana, L.; Kitwiroon, N.; Fragkou, L.; Rantamäki, M.; Berge, E.; Ødegaard, V.; Slørdal, L.H.; et al. Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atm. Environ. 2005, 39, 2759–2773. [Google Scholar] [CrossRef]
- Majewski, G.; Rogula-Kozłowska, W.; Rozbicka, K.; Rogula-Kopiec, P.; Mathews, B.; Brandyk, A. Concentration, Chemical Composition and Origin of PM1: Results from the first long-term measurement campaign in Warsaw. Aerosol Air Qual. Res. 2018, 18, 636–654. (In Polish) [Google Scholar] [CrossRef]
- Pascal, M.; Corso, M.; Chanel, O.; Declercq, C.; Badaloni, C.; Cesaroni, G.; Henschel, S.; Meister, K.; Haluza, D.; Martin-Olmedo, P. Assessing the public health impacts of urban air pollution in 25 European cities: Results of the Aphekom project. Sci. Total Environ. 2013, 449, 390–400. [Google Scholar] [CrossRef] [PubMed]
- American Meteorological Society. Glossary of Meteorology. 2014. Available online: http://glossary.ametsoc.org (accessed on 15 March 2019).
- Juda-Rezler, K.; Toczko, B.; Degórska, A.; Frączkowski, T.; Gierczak, T.; Iwanek, J.; Klejnowski, K.; Kobus, D.; Markowicz, K.M.; Mitosek, G.; et al. Pyły drobne w atmosferze. Kompendium wiedzy o zanieczyszczeniu powietrza pyłem zawieszonym w Polsce; Biblioteka Monitoringu Środowiska: Warszawa, Poland, 2016. [Google Scholar]
- Sówka, I.; Chlebowska-Styś, A.; Pachurka, Ł.; Rogula-Kozłowska, W.; Mathews, B. Analysis of particulate matter concentration variability and origin in selected urban areas in Poland. Sustainability 2019, 11, 5735. [Google Scholar] [CrossRef]
- Demuzere, M.; Trigo, R.M.; Vila-Guerau de Arellano, J.; van Lipzig, N.P.M. The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. Atmos. Chem. Phys. 2009, 9, 2695–2714. [Google Scholar] [CrossRef]
- Filleul, L.; Cassadou, S.; Medina, S.; Fabres, P.; Lefranc, A.; Eilstein, D. The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environ. Health Perspect. 2006, 114, 1344–1347. [Google Scholar] [CrossRef]
- Fischer, P.H.; Brunekreef, B.; Lebret, E. Air pollution related deaths during the 2003 heat wave in the Netherlands. Atm. Environ. 2004, 38, 1083–1085. [Google Scholar] [CrossRef]
- Stedman, J.R. The predicted number of air pollution related deaths in the UK during the August 2003 heatwave. Atm. Environ. 2004, 38, 1087–1090. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines, Global Update 2005; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Adamek, A.; Ziernicka-Wojtaszek, A. Variability of particulate matter PM10 concentration in Sosnowiec, Poland, depending on the type of atmospheric circulation. Appl. Ecol. Env. Res. 2017, 15, 1803–1813. [Google Scholar] [CrossRef]
- GUS. Przewodnik statystyczny—Miasto Nowy Sącz; 2008–2017. Available online: https://krakow.stat.gov.pl/files/gfx/krakow/pl/defaultaktualnosci/760/6/11/1/informator_nowy_sacz (accessed on 25 July 2019).
- Siudek, P.; Frankowski, M. The role of sources and atmospheric conditions in the seasonal variability of particulate phase PAHs at the urban site in Central Poland. Aerosol Air Qual. Res. 2018, 18, 1405–1418. [Google Scholar] [CrossRef]
- Dacewicz, E.; Kopcińska, J.; Skowera, B.; Węgrzyn, A.; Wojkowski, J.; Ziernicka-Wojtaszek, A.; Zuśka, Z. Circulation conditions determining high PM10 concentrations in the Sącz Basin. Rocz. Ochr. Sr. 2019, 21. in press (In Polish) [Google Scholar]
- Palarz, A. Variability of air temperature inversions over Cracow in relation to the atmospheric circulation. PraceGeogr. IGiPZ PAN 2014, 138, 29–43. (In Polish) [Google Scholar]
- Palarz, A.; Celiński-Mysław, P. The effect of temperature inversions on the particulate matter PM10 and sulfur dioxide concentrations in selected basins in the Polish Carpathians. Carpath. J. Earth Env. 2017, 12, 629–640. [Google Scholar]
- Adamek, A.; Ziernicka-Wojtaszek, A. Comparison of regression models of PM10 particulate concentration in relation to selected meteorological elements based on the example of Sosnowiec, Poland. Q. J. Hung. Meteorol. Serv. 2019, 123, 127–133. [Google Scholar] [CrossRef]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. The impact of thermal inversion on the variability of PM10 concentration in winter seasons in Tricity. Environ. Prot. Eng. 2017, 43, 157–172. [Google Scholar] [CrossRef]
- Kalbarczyk, R.; Kalbarczyk, E.; Raszka, B. Temporal changes in concentration of PM10 dust in Poznań, middle-west Poland as dependent on meteorological conditions. Appl. Ecol. Env. Res. 2018, 16, 1999–2014. [Google Scholar] [CrossRef]
- Leśniok, M.; Małarzewski, Ł.; Niedźwiedź, T. Classification of circulation types for Southern Poland with an application to air pollution concentration in Upper Silesia. Phys. Chem. EarthParts A/B/C 2010, 35, 516–522. [Google Scholar] [CrossRef]
- Pilguj, N.; Kendzierski, S.; Kolendowicz, L. The role of the atmospheric circulation types on PM10 concentrations in Poznań. Przegl. Geogr. 2018, 90, 77–91. [Google Scholar] [CrossRef]
- Vecchi, R.; Bernardoni, V.; Fermo, P.; Lucarelli, F.; Mazzei, F.; Nava, S.; Prati, P.; Piazzalunga, A.; Valli, G. 4-hours resolution data to study PM10 in a “hot spot” area in Europe. Environ. Monit. Assess. 2009, 154, 283–300. [Google Scholar] [CrossRef]
- Cuccia, E.; Massabò, D.; Ariola, V.; Bove, M.C.; Fermo, P.; Piazzalunga, A.; Prati, P. Size-resolved comprehensive characterization of airborne particulate matter. Atmos. Environ. 2013, 67, 14–26. [Google Scholar] [CrossRef]
- Piazzalunga, A.; Anzano, M.; Collina, E.; Lasagni, M.; Lollobrigida, F.; Pannocchia, A.; Fermo, P.; Pitea, D. Contribution of wood combustion to PAH and PCDD/F concentration in two urban sites in Northern Italy. J. Aerosol Sci. 2013, 56, 30–40. [Google Scholar] [CrossRef]
- Vassura, I.; Venturini, E.; Marchetti, S.; Piazzalunga, A.; Bernardi, E.; Fermo, P.; Passarini, F. Markers and influence of open biomass burning on atmospheric particulate size and composition during a major bonfire event. Atmos. Environ. 2014, 82, 218–225. [Google Scholar] [CrossRef]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. Application of cluster analysis in defining the meteorological conditions shaping the variability of PM10 concentration. Rocz. Ochr. Sr. 2015, 17, 40–61. [Google Scholar]
- Kolasa-Więcek, A. Principal components analysis in evaluation of relation between land use and greenhouse gases emission from agriculture. InżynieriaRolnicza 2012, 2, 105–112. (In Polish) [Google Scholar]
- Stanisz, A. Accessible Statistics Course using STATISTICA PL on Examples from Medicine; StatSoft: Kraków, Poland, 2006; Volume 1. (in Polish) [Google Scholar]
- Wąsik, E.; Chmielowski, K.; Operacz, A. PCA as a data mining tools characterizing the work of nitrification reactors in the sewage treatment plant in Trepcza. Acta Sci. Pol. Formatio Circumiectus 2017, 16, 209–222. (In Polish) [Google Scholar] [CrossRef]
- Zgłobicki, W.; Telecka, M.; Skupiński, S.; Pasierbińska, A.; Kozieł, M. Assessment of heavy metal contamination levels of street dust in the city of Lublin, E Poland. Environ. Earth Sci. 2018, 77, 774. [Google Scholar] [CrossRef]
- Tutiempo.net. Available online: https://en.tutiempo.net/climate/ws-126600.html (accessed on 29 October 2018).
- Główny Inspektorat Ochrony Środowiska. Raport o stanie środowiska w Polsce 2008; Biblioteka Monitoringu Środowiska: Warszawa, Poland, 2010. (In Polish) [Google Scholar]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Radzka, E.; Rymuza, K. The effect of meteorological conditions on PM10 and PM2.5 pollution of the air. Rocz. Ochr. Sr. 2019, 21. in press. [Google Scholar]
- Bąk, A. Application of multidimensional analysis methods comparative to environmental assessment in the Lower Silesian Voivodeship. Wiad. Statyst. 2018, LXIII, 7–20. (In Polish) [Google Scholar]
- Aczel, A.D. Statystyka w Zarządzaniu [Statistics in Management]; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2000. (In Polish) [Google Scholar]
- Niedźwiedź, T.; Olecki, Z. Wpływ sytuacji synoptycznych na zanieczyszczenie powietrza w Krakowie. Prace Geogr. IGiPZ PAN 1994, 96, 55–67. (In Polish) [Google Scholar]
- Skowera, B.; Wojkowski, J. The influence of synoptic situations on air temperature in the south part of the Krakowsko-Czestochowska Upland. PAN Oddział w Krakowie, Infrastruktura i Ekologia Terenów Wiejskich 2009, 5, 123–135. (In Polish) [Google Scholar]
- Walczewski, J. Niektóre dane o występowaniu całodziennych warstw inwersyjnych w atmosferze Krakowa i uwarunkowania tego zjawiska. Przegl. Geofiz. 2009, 3, 183–191. (In Polish) [Google Scholar]
- Bokwa, A. Zanieczyszczenie powietrza pyłem zawieszonym PM10 a sytuacje synoptyczne i warunki termiczne w Krakowie, W: Rola cyrkulacji atmosferycznej w kształtowaniu klimatu; Bielec-Bąkowska, Z., Łupikasza, E., Widawski, A., Eds.; Wydział Nauk Przyrodniczych Uniwersytetu Śląskiego: Sosnowiec, Poland, 2012; pp. 275–286. (In Polish) [Google Scholar]
Spring | PM10 | T | TM (max) | Tm (min) | Po50N 20E | H | PP | V | VM |
---|---|---|---|---|---|---|---|---|---|
T | −0.41 | 1 | |||||||
TM (max) | −0.26 | 0.95 | 1 | ||||||
Tm (min) | −0.55 | 0.87 | 0.70 | 1 | |||||
Po50N20E | 0.37 | −0.18 | −0.08 | −0.30 | 1 | ||||
H | −0.13 | −0.28 | −0.41 | 0.07 | −0.18 | 1 | |||
PP | −0.25 | −0.01 | −0.09 | 0.14 | −0.13 | 0.32 | 1 | ||
V | −0.27 | −0.14 | −0.23 | −0.03 | −0.29 | −0.15 | 0.11 | 1 | |
VM | −0.22 | −0.05 | −0.08 | −0.01 | −0.25 | −0.19 | 0.07 | 0.83 | 1 |
Summer | PM10 | T | TM (max) | Tm (min) | Po50N 20E | H | PP | V | VM |
T | 0.49 | 1 | |||||||
TM (max) | 0.51 | 0.93 | 1 | ||||||
Tm (min) | 0.24 | 0.69 | 0.48 | 1 | |||||
Po50N20E | 0.09 | −0.03 | 0.01 | −0.19 | 1 | ||||
H | −0.23 | −0.46 | −0.54 | 0.14 | −0.16 | 1 | |||
PP | −0.25 | −0.20 | −0.26 | 0.07 | −0.15 | 0.36 | 1 | ||
V | −0.29 | −0.14 | −0.19 | −0.04 | −0.21 | −0.16 | 0.08 | 1 | |
VM | −0.18 | −0.06 | −0.07 | 0.00 | −0.16 | −0.12 | −0.01 | 0.73 | 1 |
Autumn | PM10 | T | TM (max) | Tm (min) | Po50N 20E | H | PP | V | VM |
T | −0.38 | 1 | |||||||
TM (max) | −0.24 | 0.93 | 1 | ||||||
Tm (min) | −0.47 | 0.91 | 0.73 | 1 | |||||
Po50N20E | 0.34 | −0.16 | −0.07 | −0.21 | 1 | ||||
H | 0.23 | −0.35 | −0.44 | −0.12 | 0.19 | 1 | |||
PP | −0.22 | −0.05 | −0.15 | 0.08 | −0.14 | 0.26 | 1 | ||
V | −0.44 | −0.03 | −0.15 | 0.02 | −0.38 | −0.41 | 0.13 | 1 | |
VM | −0.39 | 0.02 | −0.06 | 0.02 | −0.39 | −0.46 | 0.08 | 0.88 | 1 |
Winter | PM10 | T | TM (max) | Tm (min) | Po50N 20E | H | PP | V | VM |
T | −0.54 | 1 | |||||||
TM (max) | −0.39 | 0.94 | 1 | ||||||
Tm (min) | −0.59 | 0.94 | 0.80 | 1 | |||||
Po50N20E | 0.29 | −0.38 | −0.35 | −0.34 | 1 | ||||
H | 0.28 | −0.28 | −0.37 | −0.13 | 0.08 | 1 | |||
PP | −0.11 | 0.01 | −0.01 | 0.06 | −0.07 | 0.09 | 1 | ||
V | −0.57 | 0.38 | 0.32 | 0.36 | −0.22 | −0.54 | 0.01 | 1 | |
VM | −0.51 | 0.39 | 0.36 | 0.34 | −0.23 | −0.55 | 0.00 | 0.90 | 1 |
Spring | Summer | |||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
Eigenvalue | 2.81 | 2.02 | 1.60 | 2.73 | 1.86 | 1.58 |
% variance | 35 | 25 | 20 | 34 | 23 | 20 |
% cumulative variance | 35 | 60 | 80 | 34 | 57 | 77 |
Autumn | Winter | |||||
Eigenvalue | 2.93 | 2.35 | 1.30 | 3.75 | 1.59 | 1.06 |
% variance | 37 | 29 | 16 | 41 | 29 | 14 |
% cumulative variance | 37 | 66 | 82 | 41 | 70 | 84 |
Meteorological Elements | Spring | Summer | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
T | −0.99 | 0.08 | 0.01 | −0.96 | −0.13 | −0.20 |
TM (max) | −0.96 | −0.03 | 0.17 | −0.95 | −0.08 | −0.03 |
Tm (min) | −0.86 | 0.22 | −0.32 | −0.57 | −0.19 | −0.70 |
H | 0.29 | −0.06 | −0.84 | 0.57 | 0.25 | −0.63 |
V | 0.23 | 0.89 | 0.23 | 0.25 | −0.88 | 0.15 |
PP | 0.04 | 0.28 | −0.62 | 0.38 | −0.03 | −0.57 |
VM | 0.14 | 0.88 | 0.30 | 0.16 | −0.88 | 0.16 |
Po50N20E | 0.13 | −0.56 | 0.49 | −0.18 | 0.44 | 0.56 |
Autumn | Winter | |||||
T | −0.95 | −0.28 | 0.09 | −0.88 | −0.40 | 0.22 |
TM (max) | −0.89 | −0.35 | −0.09 | −0.87 | −0.22 | 0.25 |
Tm (min) | −0.85 | −0.23 | 0.33 | −0.77 | −0.51 | 0.22 |
H | 0.56 | −0.39 | 0.56 | −0.12 | 0.84 | 0.44 |
V | 0.08 | 0.91 | −0.01 | −0.72 | −0.32 | −0.52 |
PP | −0.21 | 0.18 | 0.83 | −0.07 | 0.16 | 0.43 |
VM | −0.26 | 0.90 | −0.07 | −0.72 | 0.41 | 0.49 |
Po 50N20E | 0.28 | −0.53 | −0.41 | −0.31 | 0.89 | 0.24 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Eigenvalue | 3.07 | 2.08 | 1.62 |
% variance | 38 | 26 | 15 |
% cumulative variance | 38 | 64 | 79 |
Meteorological Elements | PC1 | PC2 | PC3 |
---|---|---|---|
T | −0.96 | 0.21 | 0.16 |
TM (max) | −0.90 | 0.17 | 0.17 |
Tm (min) | −0.91 | 0.27 | 0.14 |
H | 0.05 | 0.78 | 0.07 |
PP | −0.20 | 0.13 | −0.82 |
V | −0.40 | −0.82 | −0.03 |
VM | −0.35 | −0.80 | 0.04 |
Po 50N20E | 0.43 | −0.06 | 0.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuśka, Z.; Kopcińska, J.; Dacewicz, E.; Skowera, B.; Wojkowski, J.; Ziernicka–Wojtaszek, A. Application of the Principal Component Analysis (PCA) Method to Assess the Impact of Meteorological Elements on Concentrations of Particulate Matter (PM10): A Case Study of the Mountain Valley (the Sącz Basin, Poland). Sustainability 2019, 11, 6740. https://doi.org/10.3390/su11236740
Zuśka Z, Kopcińska J, Dacewicz E, Skowera B, Wojkowski J, Ziernicka–Wojtaszek A. Application of the Principal Component Analysis (PCA) Method to Assess the Impact of Meteorological Elements on Concentrations of Particulate Matter (PM10): A Case Study of the Mountain Valley (the Sącz Basin, Poland). Sustainability. 2019; 11(23):6740. https://doi.org/10.3390/su11236740
Chicago/Turabian StyleZuśka, Zbigniew, Joanna Kopcińska, Ewa Dacewicz, Barbara Skowera, Jakub Wojkowski, and Agnieszka Ziernicka–Wojtaszek. 2019. "Application of the Principal Component Analysis (PCA) Method to Assess the Impact of Meteorological Elements on Concentrations of Particulate Matter (PM10): A Case Study of the Mountain Valley (the Sącz Basin, Poland)" Sustainability 11, no. 23: 6740. https://doi.org/10.3390/su11236740
APA StyleZuśka, Z., Kopcińska, J., Dacewicz, E., Skowera, B., Wojkowski, J., & Ziernicka–Wojtaszek, A. (2019). Application of the Principal Component Analysis (PCA) Method to Assess the Impact of Meteorological Elements on Concentrations of Particulate Matter (PM10): A Case Study of the Mountain Valley (the Sącz Basin, Poland). Sustainability, 11(23), 6740. https://doi.org/10.3390/su11236740