ANN for Assessment of Energy Consumption of 4 kW PV Modules over a Year Considering the Impacts of Temperature and Irradiance
Abstract
:1. Introduction
- the development of solar energy systems to increase the solar energy captured to connect them to the grid, or
- the implementation of a hybrid system between solar energy and any source of other renewable energy sources and then connecting the hybrid system to the grid.
2. Methodology and Design Analysis
3. System Configuration
3.1. Single-Axis Solar Tracking System
3.1.1. Sensors
Light Dependent Resistor (LDR)
Temperature Sensor
3.1.2. Servo Motor
3.1.3. Arduino Uno
3.1.4. Solar Panel
3.1.5. Working Principle of the Tracking System
3.2. Battery
3.3. Charge Controller
3.4. Inverter
3.5. Load Reference
- lights
- a fan, an air conditioner (1.5 HP), an extractor fan
- a computer, a printer, and a fax machine
- a refrigerator, an electric kettle, a water cooler
- a sound system
4. Estimating the Energy Consumption from the Proposed Model
4.1. Artificial Neural Network (ANN)
- providing the least error in the nonlinear input;
- has the ability to provide a relationship between input and output without complex mathematical equations;
- learns and makes decisions easily; and
- has flexibility in modeling.
- errors may occur in the forecasting process due to over fitting;
- training may be unstable, which leads to errors in the forecasted model;
- many parameters need to be determined (such as weights); and
- the inability to use information from a small sample size and low convergence.
4.2. Transfer (Activation) Function
- linear transfer functions;
- log-sigmoid transfer function; and
- tan-sigmoid transfer function.
4.3. Error Criteria
4.4. Training Methodology of the Proposed ANN
- the average temperature;
- the average solar irradiance;
- the average AC power output; and
- months of the year and the holidays
5. Results Analysis
5.1. The Winter Season
5.2. The Spring Season
5.3. The Summer Season
5.4. The Autumn Season
5.5. Estimating the Energy Consumption Using ANN
5.6. Relative Error (Accuracy of Proposed ANN)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Zhao, J.; Lai, Z.; Wang, Z.; Xia, H. Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis. Renew. Energy 2019, 140, 341–353. [Google Scholar] [CrossRef]
- Amri, F. Renewable and non-renewable categories of energy consumption and trade: Do the development degree and the industrialization degree matter? Energy 2019, 173, 374–383. [Google Scholar] [CrossRef]
- Aly, S.P.; Ahzi, S.; Barth, N. An adaptive modelling technique for parameters extraction of photovoltaic devices under varying sunlight and temperature conditions. Appl. Energy 2019, 236, 728–742. [Google Scholar] [CrossRef]
- Renewables 2018: Global Status Report; REN21: Paris, France, 2018. (In English)
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar tracking systems: Technologies and trackers drive types-A review. Energy Rev. 2018, 91, 754–782. [Google Scholar] [CrossRef]
- Alblawi, A.; Zainuddin, N.; Roslan, R.; Rahimi-Gorji, M.; Bakar, N.A.; Do, H. Effect of heat generation on mixed convection in porous cavity with sinusoidal heated moving lid and uniformly heated or cooled bottom walls. Microsyst Technol. 2019. [Google Scholar] [CrossRef]
- Fébba, D.; Rubinger, R.; Oliveira, A.; Bortoni, E. Impacts of temperature and irradiance on polycrystalline silicon solar cells parameters. Sol. Energy 2018, 174, 628–639. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Liu, C. An algebra method to fast track the maximum power of solar cell via voltage, irradiance and temperature. Optik 2018, 174, 332–338. [Google Scholar] [CrossRef]
- Vasel, A.; Iakovidis, F. The effect of wind direction on the performance of solar PV plants. Energy Convers. Manag. 2017, 153, 455–461. [Google Scholar] [CrossRef]
- El Achouby, H.; Zaimi, M.; Ibral, A.; Assaid, E. New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module. Energy Convers. Manag. 2018, 177, 258–271. [Google Scholar] [CrossRef]
- Ibrahim, H.; Anani, N. Variations of PV module parameters with irradiance and temperature. Energy Procedia 2017, 134, 276–285. [Google Scholar] [CrossRef]
- Elbaset, A.A.; Ali, H.; el Sattar, M.A. New seven parameters model for amorphous silicon and thin film PV modules based on solar irradiance. Sol. Energy 2016, 138, 26–35. [Google Scholar] [CrossRef]
- Perrak, V.; Kounavis, I.P. Effect of temperature and radiation on the parameters of photovoltaic modules. J. Renew. Sustain. Energy 2016, 8, 013102. [Google Scholar] [CrossRef]
- Mandadapu, U.; Vedanayakam, V.; Thyagarajan, K. Effect of Temperature and Irradiance on the Electrical Performance of a Pv Module. Int. J. Adv. Res. 2017, 5, 2018–2027. [Google Scholar] [CrossRef]
- Aller, J.; Viola, J.; Quizhpi, F.; Restrepo, J.; Ginart, A.; Salazar, A. Explicit Model of PV Cells considering variations in temperature and solar irradiance. In Proceedings of the 2016 IEEE Andescon, Arequipa, Peru, 19–21 October 2016; pp. 1–4. [Google Scholar]
- Ruschel, C.S.; Gasparin, F.P.; Costa, E.R.; Krenzinger, A. Assessment of PV modules shunt resistance dependence on solar irradiance. Sol. Energy 2016, 133, 35–43. [Google Scholar] [CrossRef]
- Peng, L.; Zheng, S.; Chai, X.; Li, L. A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances. Appl. Energy 2018, 210, 303–316. [Google Scholar] [CrossRef]
- Akhsassi, M.; Fathi, A.; Aarich, N.E.; Bennouna, A.; Raoufi, M.; Outzourhit, A. Experimental investigation and modeling of the thermal behavior of a solar PV module. Sol. Energy Mater. Sol. Cells 2018, 180, 271–279. [Google Scholar] [CrossRef]
- Coskun, C.; Toygar, U.; Sarpdag, O.; Oktay, Z. Sensitivity analysis of implicit correlations for photovoltaic module temperature: A review. J. Clean. Prod. 2017, 164, 1474–1485. [Google Scholar] [CrossRef]
- Copper, J.K.; Sproul, A.B.; Jarnason, S. Photovoltaic (PV) performance modelling in the absence of onsite measured plane of array irradiance (POA) and module temperature. Renew. Energy 2016, 86, 760–769. [Google Scholar] [CrossRef]
- Talaat, M.; Farahat, M.A.; Elkholy, M.H. Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies. Energy 2019, 170, 668–682. [Google Scholar] [CrossRef]
- Talaat, M.; Alsayyari, A.S.; Essa, M.A.; Yousef, M.A. Investigation of transparent pyramidal covers effect to PV power output using detected wireless sensors incident radiation. Measurement 2019, 136, 775–785. [Google Scholar] [CrossRef]
- Widyolar, B.; Abdelhamid, M.; Jiang, L.; Winston, R.; Yablonovitch, E.; Scranton, G.; Cygan, D.; Abbasi, H.; Kozlov, A. Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector. Renew. Energy 2017, 101, 1379–1389. [Google Scholar] [CrossRef]
- Akarslan, E.; Hocaoglu, F.O.; Edizkan, R. Novel short term solar irradiance forecasting models. Renew. Energy 2018, 123, 58–66. [Google Scholar] [CrossRef]
- Hocaoglu, F.O.; Serttas, F. A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting. Renew. Energy 2017, 108, 635–643. [Google Scholar] [CrossRef]
- Akarslan, E.; Hocaoglu, F.O. A novel method based on similarity for hourly solar irradiance forecasting. Renew. Energy 2017, 112, 337–346. [Google Scholar] [CrossRef]
- Boilley, A.; Thomas, C.; Marchand, M.; Wey, E.; Blanc, P. The Solar Forecast Similarity Method: A New Method to Compute Solar Radiation Forecasts for the Next Day. Energy Procedia 2016, 91, 1018–1023. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energy 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Khosravi, A.; Koury, R.N.N.; Machado, L.; Pabon, J.J.G. Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. J. Clean. Prod. 2018, 176, 63–75. [Google Scholar] [CrossRef]
- Fouilloy, A.; Voyant, C.; Notton, G.; Motte, F.; Paoli, C.; Nivet, M.L.; Guillot, E.; Duchaud, J.L. Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability. Energy 2018, 165, 620–629. [Google Scholar] [CrossRef]
- Talaat, M.; Hatata, A.Y.; Abdulaziz; Alsayyari, S.; Alblawi, A. A smart load management system based on the grasshopper optimization algorithm using the underfrequency load shedding approach. Energy 2019, 116423. [Google Scholar] [CrossRef]
- Alzahrani, A.; Shamsi, P.; Dagli, C.; Ferdowsi, M. Solar Irradiance Forecasting Using Deep Neural Networks. Procedia Comput. Sci. 2017, 114, 304–313. [Google Scholar] [CrossRef]
- Yaïci, W.; Longo, M.; Entchev, E.; Foiadelli, F.J.S. Simulation study on the effect of reduced inputs of artificial neural networks on the predictive performance of the solar energy system. Sustainability 2017, 9, 1382. [Google Scholar] [CrossRef] [Green Version]
- Jassim, H.; Lu, W.; Olofsson, T.J.S. Predicting energy consumption and CO2 emissions of excavators in earthwork operations: An artificial neural network model. Sustainability 2017, 9, 1257. [Google Scholar] [CrossRef] [Green Version]
- Talaat, M.; Gobran, M.H.; Wasfi, M. A hybrid model of an artificial neural network with thermodynamic model for system diagnosis of electrical power plant gas turbine. Eng. Appl. Artif. Intell. 2018, 68, 222–235. [Google Scholar] [CrossRef]
Load Type | Load’s (Watt) | No. | Total (Watt) |
---|---|---|---|
Lights | 11 W | 10 | 110 W |
Fan | 80 W | 2 | 160 W |
Computer | 150 W | 2 | 300 W |
Printer | 250 W | 1 | 250 W |
Fax machine | 150 W | 1 | 150 W |
Electric kettle | 1200 W | 1 | 1200 W |
water cooler | 550 W | 1 | 550 W |
Air conditioner (1.5 HP) | 1120 W | 1 | 1120 W |
Extractor Fan | 12 W | 2 | 24 W |
Sound System | 84 W | 1 | 84 W |
Total | 3948 W |
Month | Average Solar Radiation | Average High Temperature (°C) | AC Energy |
---|---|---|---|
January | 6.78 | 21 | 662 |
February | 7.37 | 23 | 633 |
March | 7.66 | 27 | 722 |
April | 7.77 | 33 | 688 |
May | 8.51 | 39 | 749 |
June | 9.14 | 42 | 771 |
July | 8.92 | 43 | 778 |
August | 8.92 | 43 | 765 |
September | 8.96 | 40 | 746 |
October | 8.65 | 35 | 767 |
November | 6.93 | 28 | 607 |
December | 5.59 | 22 | 543 |
Annual | 33 °C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alblawi, A.; Elkholy, M.H.; Talaat, M. ANN for Assessment of Energy Consumption of 4 kW PV Modules over a Year Considering the Impacts of Temperature and Irradiance. Sustainability 2019, 11, 6802. https://doi.org/10.3390/su11236802
Alblawi A, Elkholy MH, Talaat M. ANN for Assessment of Energy Consumption of 4 kW PV Modules over a Year Considering the Impacts of Temperature and Irradiance. Sustainability. 2019; 11(23):6802. https://doi.org/10.3390/su11236802
Chicago/Turabian StyleAlblawi, Adel, M. H. Elkholy, and M. Talaat. 2019. "ANN for Assessment of Energy Consumption of 4 kW PV Modules over a Year Considering the Impacts of Temperature and Irradiance" Sustainability 11, no. 23: 6802. https://doi.org/10.3390/su11236802