Eco-Environmental Risk Evaluation for Land Use Planning in Areas of Potential Farmland Abandonment in the High Mountains of Nepal Himalayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Selection of Criteria and Construction of Assessment Indicator System
2.3.1. Elevation
2.3.2. Slope
2.3.3. Aspect
2.3.4. Geology
2.3.5. Soil
2.3.6. Rainfall
2.3.7. Land Use/Land Cover (LULC)
2.3.8. Normalized Difference Vegetation Index (NDVI)
2.3.9. Distance to Rivers/Streams
2.3.10. Distance to Road Networks
2.3.11. Distance to Settlements
2.4. Determining Relative Importance of the Different Criteria
2.5. Risk Calculation and Classification of Results
2.6. Development of aFramework for Land Use Planning
3. Results and Discussions
3.1. Spatial Distribution of Eco-Environmental Risk
3.2. Land Use Planning Framework
4. Conclusions and Recommendations
- -
- Region of strict protection: the region where eco-environmental risk is high, very high, and extreme is identified as the region of strict protection. This area constitutes nearly half (48%) of the basin. Considering the status of the area, all the development activities must be effectively monitored by the local government authority, and a proper reclamation plan for ecological recovery should be immediately put in place. Comprehensive strategy for combating hazard risks should be implemented. Also, human activities should be reduced as much as possible and eco-restoration activities should be initiated immediately.
- -
- Region of priority control: area under moderate and low risk constitutes more than half (52%) of the total area. It is suggested for focal protection. In this region the improved implementation of conservation measures is needed. This can be achieved by providing alternative sources of income to local people. Active participation of the local people in eco-restoration is recommended. Awareness of these trade-offs can underpin effective land use allocation that promotes sustainable land management and multifunctional land system through the efficient supply of multiple ecosystem services.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Latocha, A. Land-use changes and longer-term human–environment interactions in a mountain region (Sudetes Mountains, Poland). Geomorphology 2009, 108, 48–57. [Google Scholar] [CrossRef]
- Huber, R.; Rigling, A.; Bebi, P.; Brand, F.S.; Briner, S.; Buttler, A.; Elkin, C.; Gillet, F.; Grêt-Regamey, A.; Hirschi, C.; et al. Sustainable land use in mountain regions under global change: Synthesis across scales and disciplines. Ecol. Soc. 2013, 18, 36. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, K.; Sitaula, B.K.; Singh, B.R.; Bajacharaya, R.M. Land-use change in two Nepalese watersheds: GIS and geomorphometric analysis. Land Degrad. Dev. 2002, 13, 495–513. [Google Scholar] [CrossRef]
- Paudel, G.S.; Thapa, G.B. Changing farmers’ land management practices in the hills of Nepal. Environ. Manag. 2001, 28, 789–803. [Google Scholar] [CrossRef]
- Paudel, B.; Gao, J.; Zhang, Y.; Wu, X.; Li, S.; Yan, J. Changes in cropland status and their driving factors in the Koshi River basin of the Central Himalayas, Nepal. Sustainability 2016, 8, 933. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Wang, Y.; Khanal, N.; Xu, P.; Fu, B.; Dixit, A.; Yan, K.; Liu, Q.; Lu, Y. Social Impact of Farmland Abandonment and Its Eco-Environmental Vulnerability in the High Mountain Region of Nepal: A Case Study of Dordi River Basin. Sustainability 2018, 10, 2331. [Google Scholar] [CrossRef] [Green Version]
- Khanal, N.; Watanabe, T. Abandonment of Agricultural Land and Its Consequences: A Case Study in the Sikles Area, Gandaki Basin, Nepal Himalaya. Mt. Res. Dev. 2006, 26, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, R.; Dragovich, D.; Webb, A.A. Distributed empirical algorithms to estimate catchment scale sediment connectivity and yield in a subtropical region. Hydrol. Process. 2014, 28, 2671–2684. [Google Scholar] [CrossRef]
- Anache, J.A.; Flanagan, D.C.; Srivastava, A.; Wendland, E.C. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Sci. Total Environ. 2018, 622, 140–151. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region–A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Lin, W.-T.; Lin, C.; Tsai, J.; Huang, P. Eco-environmental changes assessment at the Chiufenershan landslide area caused by catastrophic earthquake in Central Taiwan. Ecol. Eng. 2008, 33, 220–232. [Google Scholar] [CrossRef]
- Walker, R.; Landis, W.; Brown, P. Developing a regional ecological risk assessment: A case study of a Tasmanian agricultural catchment. Hum. Ecol. Risk Assess. 2001, 7, 417–439. [Google Scholar] [CrossRef]
- Enete, I.; Alabi, M.; Adoh, E. Evaluation of eco-environmental vulnerability in Efon Alaye using remote sensing and Geographic Information System (GIS) techniques. J. Sustain. Dev. Afr. 2010, 12, 199–212. [Google Scholar]
- Jin, X.; Jin, Y.; Mao, X. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Suter, G.W. Endpoints for regional ecological risk assessments. Environ. Manag. 1990, 14, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Nandy, S.; Singh, C.; Das, K.K.; Kingma, N.C.; Kushwaha, S.P.S. Environmental vulnerability assessment of eco-development zone of Great Himalayan National Park, Himachal Pradesh, India. Ecol. Indic. 2015, 57, 182–195. [Google Scholar] [CrossRef]
- Dai, X.; Li, Z.; Lin, S.; Xu, W. Assessment and zoning of eco-environmental sensitivity for a typical developing province in China. Stoch. Environ. Res. Risk Assess. 2012, 26, 1095–1107. [Google Scholar] [CrossRef]
- Jones, R.N. An environmental risk assessment/management framework for climate change impact assessments. Nat. Hazards 2001, 23, 197–230. [Google Scholar] [CrossRef]
- Chambers, R. Sustainable Livelihoods: An Opportunity for the World Commission on Environment and Development; Institute of Development Studies, University of Sussex: Brighton, UK, 2011. [Google Scholar]
- Giri, S.; Qiu, Z. Understanding the relationship of land uses and water quality in Twenty First Century: A review. J. Environ. Manag. 2016, 173, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhong, X.H.; Liu, S.Z.; Liu, J.G.; Wang, Z.Y.; Li, M.H. Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method. J. Arid Environ. 2008, 72, 1929–1939. [Google Scholar] [CrossRef]
- Shao, H.; Sun, X.; Wang, H.; Zhang, X.; Xiang, Z.; Tan, R.; Chen, X.; Xian, W.; Qi, J. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability. Environ. Impact Assess. Rev. 2016, 56, 155–167. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Gong, H.; Pu, R.; Cao, L.; Shao, S.; Shi, Z.; Feng, X.; Wang, L.; Liu, R.; et al. Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China. Sustainability 2019, 11, 2817. [Google Scholar] [CrossRef] [Green Version]
- Tran, L.T.; O’Neill, R.V.; Smith, E.R. Spatial pattern of environmental vulnerability in the Mid-Atlantic region, USA. Appl. Geogr. 2010, 30, 191–202. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, J. Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology 2009, 18, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Galic, N.; Schmolke, A.; Forbes, V.; Baveco, H.; van den Brink, P.J. The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems. Sci. Total Environ. 2012, 415, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.; Lee, S. Landslide risk analysis using artificial neural network model focussing on different training sites. Int. J. Phys. Sci. 2009, 4, 1–15. [Google Scholar]
- Wang, B.; Yu, G.; Huang, J.; Wang, T.; Hu, H. Probabilistic ecological risk assessment of OCPs, PCBs, and DLCs in the Haihe River, China. Sci. World J. 2010, 10, 1307–1317. [Google Scholar] [CrossRef] [Green Version]
- Anjaneyulu, Y.; Manickam, V. Environmental Impact Assessment Methodologies; BS Publications: Hyderabad, India, 2011. [Google Scholar]
- Skidmore, A. Environmental Modelling with GIS and Remote Sensing; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Tie, Y.; Tang, C. Application of AHP in single debris flow risk assessment. Chin. J. Geol. Hazard Control 2006, 4, 79–84. [Google Scholar]
- Wong, J.K.; Li, H. Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems. Build. Environ. 2008, 43, 108–125. [Google Scholar] [CrossRef]
- Ying, X.; Zeng, G.; Chen, G.; Tang, L.; Wang, K.; Huang, D. Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China. Ecol. Model. 2007, 209, 97–109. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Analytic hierarchy process and expert choice: Benefits and limitations. Or Insight 2009, 22, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Aryafar, A.; Yousefi, S.; Ardejani, F.D. The weight of interaction of mining activities: Groundwater in environmental impact assessment using fuzzy analytical hierarchy process (FAHP). Environ. Earth Sci. 2013, 68, 2313–2324. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: New York, NY, USA, 2015. [Google Scholar]
- LRMP. Land Capability Map; Land Resource Mapping Project: Kathmandu, Nepal, 1986. [Google Scholar]
- Dijkshoorn, J.; Huting, J. Soil and Terrain Databse for Nepal (1.1 million); ISRIC—World Soil Information: Wageningen, The Netherlands, 2009. [Google Scholar]
- Needelman, B.A.; Gburek, W.J.; Petersen, G.W.; Sharpley, A.N.; Kleinman, P.J.A. Surface runoff along two agricultural hillslopes with contrasting soils. Soil Sci. Soc. Am. J. 2004, 68, 914–923. [Google Scholar] [CrossRef]
- Gritzner, M.L.; Marcus, W.A.; Aspinall, R.; Custer, S.G. Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 2001, 37, 149–165. [Google Scholar] [CrossRef]
- Deoja, B.; Dhital, M.R.; Thapa, B.; Wagner, A. Mountain Risk Engineering Handbook: Vol I; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 1991. [Google Scholar]
- Li, Z.-W.; Zeng, G.; Zhang, H.; Yang, B.; Jiao, S. The integrated eco-environment assessment of the red soil hilly region based on GIS—A case study in Changsha City, China. Ecol. Model. 2007, 202, 540–546. [Google Scholar] [CrossRef]
- El-Ramly, H.; Morgenstern, N.; Cruden, D. Probabilistic slope stability analysis for practice. Can. Geotech. J. 2002, 39, 665–683. [Google Scholar] [CrossRef]
- Dhital, M.R. Geology of the Nepal Himalaya: Regional Perspective of the Classic Collided Orogen; Springer: New York, NY, USA, 2015. [Google Scholar]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; López, A.; Elorza, F.J.; Ziv, G.; Acuña, V.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total Environ. 2013, 458, 246–255. [Google Scholar] [CrossRef]
- Oluwasemire, K.; Alabi, S. Ecological impact of changing rainfall pattern, soil processes and environmental pollution in the Nigerian Sudan and northern Guinea savanna agro-ecological zones. Niger. J. Soil Environ. Res. 2004, 5, 23–31. [Google Scholar] [CrossRef]
- Promper, C.; Puissant, A.; Malet, J.; Glade, T. Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl. Geogr. 2014, 53, 11–19. [Google Scholar] [CrossRef]
- Nisbet, T. The role of forest management in controlling diffuse pollution in UK forestry. For. Ecol. Manag. 2001, 143, 215–226. [Google Scholar] [CrossRef]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jędrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E. Documenting catchment suspended sediment sources: Problems, approaches and prospects. Prog. Phys. Geogr. 2004, 28, 159–196. [Google Scholar] [CrossRef]
- Nuissl, H.; Haase, D.; Lanzendorf, M.; Wittmer, H. Environmental impact assessment of urban land use transitions—A context-sensitive approach. Land Use Policy 2009, 26, 414–424. [Google Scholar] [CrossRef]
- Cui, E.; Ren, L.; Sun, H. Evaluation of variations and affecting factors of eco-environmental quality during urbanization. Environ. Sci. Pollut. Res. 2015, 22, 3958–3968. [Google Scholar] [CrossRef]
- Marston, R.A.; Miller, M.M.; Devkota, L.P. Geoecology and mass movement in the Manaslu-Ganesh and Langtang-Jugal himals, Nepal. Geomorphology 1998, 26, 139–150. [Google Scholar] [CrossRef]
- Barnard, P.L.; Owen, L.A.; Sharma, M.C.; Finkel, R.C. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 2001, 40, 21–35. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Y.; Zhang, Y.; Tian, J. Landscape pattern and sustainability of a 1300-year-old agricultural landscape in subtropical mountain areas, Southwestern China. Int. J. Sustain. Dev. World Ecol. 2013, 20, 349–357. [Google Scholar] [CrossRef]
- Landis, W.G.; Wiegers, J.K. Ten years of the relative risk model and regional scale ecological risk assessment. Hum. Ecol. Risk Assess. 2007, 13, 25–38. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J.Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J.Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J.Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Ayalew, L.; Yamagishi, H.; Ugawa, N. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 2004, 1, 73–81. [Google Scholar] [CrossRef]
- Kwak, B.K.; Kim, J.H.; Park, H.; Kim, N.G.; Choi, K.; Yi, J. A GIS-based national emission inventory of major VOCs and risk assessment modeling: Part II—quantitative verification and risk assessment using an air dispersion model. Korean J.Chem. Eng. 2010, 27, 121–128. [Google Scholar] [CrossRef]
- Roslee, R.; Mickey, A.C.; Simon, N.; Norhisham, M.N. Landslide susceptibility analysis (LSA) using weighted overlay method (WOM) along the Genting Sempah to Bentong Highway, Pahang. Malays. J. Geosci. 2017, 1, 13–19. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng. Geol. 2010, 110, 11–20. [Google Scholar] [CrossRef]
- Zou, Q.; Cui, P.; Zhang, J.; Xiang, L. Quantitative evaluation for susceptibility of debris flow in upper Yangtze River basin. Environ. Sci. Technol. 2012, 35, 159–163. [Google Scholar]
- Pokhrel, P.; Pathak, D. Landslide susceptibility mapping of southern part of Marsyangdi River basin, West Nepal using logistic regression method.international journal of geomatics and geosciences. Int. J. Geomat. Geosci. 2010, 7, 24–32. [Google Scholar]
- Seid, A.; Gadisa, E.; Tsegaw, T.; Abera, A.; Teshome, A.; Mulugeta, A.; Herrero, M.; Argaw, D.; Jorge, A.; Kebede, A.; et al. Risk map for cutaneous leishmaniasis in Ethiopia based on environmental factors as revealed by geographical information systems and statistics. Geospat. Health 2014, 8, 377–387. [Google Scholar] [CrossRef]
- Komac, M. A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 2006, 74, 17–28. [Google Scholar] [CrossRef]
- Cowell, R.; Lennon, M. The utilisation of environmental knowledge in land-use planning: Drawing lessons for an ecosystem services approach. Environ. Plan. C Gov. Policy 2014, 32, 263–282. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Karmacharya, M.; Karna, B. Evaluating forest management in Nepal: Views across space and time. Ecol. Soc. 2005, 10, 24. [Google Scholar] [CrossRef]
- Pandit, B.H.; Wagley, M.P.; Neupane, R.P.; Adhikary, B.R. Watershed management and livelihoods: Lessons from Nepal. J. For. Livelihood 2007, 6, 67–75. [Google Scholar]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.53 | 1.56 | 1.57 | 1.59 |
Risk classification | Eco-environmental risk index(ERI) | Character description |
---|---|---|
Low risk | >0.15 | The eco-environmental system is stable including strong risk resistance, fertile soil, relatively low altitude, and great vegetation coverage. |
Moderate risk | 0.15–0.20 | The eco-environmental system is relatively stable including risk resistance, fertile soil, relatively low altitude, and better vegetation coverage. |
High risk | 0.20–0.25 | The eco-environmental system is relatively unstable including relatively poor risk resistance, relatively barren soil, and relatively complicated vegetation types. |
Very high risk | 0.25–0.30 | The eco-environmental system is unstable including poor risk resistance, barren soil, and few vegetation types. |
Extreme high risk | >30 | The eco-environmental system is extremely unstable including poor risk resistance, relatively high altitude, barren soil, and sparse vegetation that are mainly hardy plants. |
Risk level | ERI | Number of Grid | Area (km2) | Percentage |
---|---|---|---|---|
Low risk | <0.15 | 112,762 | 118.29 | 23.81 |
Moderate risk | 0.15–0.20 | 134,889 | 141.51 | 28.49 |
High risk | 0.20–0.25 | 105,900 | 111.10 | 22.36 |
Very high risk | 0.25–0.30 | 82,311 | 86.35 | 17.38 |
Extreme high risk | >0.30 | 37,590 | 39.43 | 7.93 |
Land use | Forest | Shrub land | Grassland | Agriculture |
---|---|---|---|---|
Area (km2) | 207.2 (46.20%) | 12.88(2.88%) | 61.16 (13.64%) | 71.25 (15.89%) |
Low (km2) | 91.53 (44.17%) | 0.41(3.25%) | 0.18 (0.30%) | 14.53(20.39%) |
Medium(km2) | 71.49 (34.50%) | 2.52(19.62%) | 11.78(19.27%) | 38.33(53.80%) |
High(km2) | 38.29 (18.47%) | 5.96(46.30%) | 24.63(40.28%) | 15.48(21.73%) |
Very high(km2) | 5.81(2.80%) | 3.72(28.91%) | 20.19(33.02%) | 2.87(4.03%) |
Extreme high (km2) | 0.067 (0.03%) | 0.24(1.90%) | 4.35(7.11%) | 0.02(0.03%) |
Eco-environmental risk zones | Area | Hazard area | Landslide density | ||
---|---|---|---|---|---|
(km2) | (%) | (km2) | (%) | ||
Low risk | 118.29 | 23.81 | 0.40 | 4.11 | 0.0033 |
Moderate risk | 141.51 | 28.49 | 1.28 | 13.17 | 0.0090 |
High risk | 111.10 | 22.36 | 2.31 | 23.77 | 0.0207 |
Very high risk | 86.35 | 17.38 | 2.59 | 26.64 | 0.0299 |
Extreme high risk | 39.43 | 7.93 | 3.14 | 32.30 | 0.0796 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, S.; Wang, Y.; Dixit, A.M.; Khanal, N.R.; Xu, P.; Yan, K.; Liu, Q.; Lu, Y.; Li, M. Eco-Environmental Risk Evaluation for Land Use Planning in Areas of Potential Farmland Abandonment in the High Mountains of Nepal Himalayas. Sustainability 2019, 11, 6931. https://doi.org/10.3390/su11246931
Chaudhary S, Wang Y, Dixit AM, Khanal NR, Xu P, Yan K, Liu Q, Lu Y, Li M. Eco-Environmental Risk Evaluation for Land Use Planning in Areas of Potential Farmland Abandonment in the High Mountains of Nepal Himalayas. Sustainability. 2019; 11(24):6931. https://doi.org/10.3390/su11246931
Chicago/Turabian StyleChaudhary, Suresh, Yukuan Wang, Amod Mani Dixit, Narendra Raj Khanal, Pei Xu, Kun Yan, Qin Liu, Yafeng Lu, and Ming Li. 2019. "Eco-Environmental Risk Evaluation for Land Use Planning in Areas of Potential Farmland Abandonment in the High Mountains of Nepal Himalayas" Sustainability 11, no. 24: 6931. https://doi.org/10.3390/su11246931
APA StyleChaudhary, S., Wang, Y., Dixit, A. M., Khanal, N. R., Xu, P., Yan, K., Liu, Q., Lu, Y., & Li, M. (2019). Eco-Environmental Risk Evaluation for Land Use Planning in Areas of Potential Farmland Abandonment in the High Mountains of Nepal Himalayas. Sustainability, 11(24), 6931. https://doi.org/10.3390/su11246931