Understanding Tourists’ Willingness-to-Pay for Rural Landscape Improvement and Preference Heterogeneity
Abstract
:1. Introduction
2. Literature Review
2.1. Rural Tourism
2.2. Landscape Evaluation
3. Methodology
3.1. Study Site
3.2. Questionnaire Design
3.3. Questionnaire Distribution
3.4. Model Variable Coding and Definition
4. Research Results
4.1. Demographic Analysis
4.2. Sam Shing Huaxiang Landscape Evaluation
4.3. Recreational Value Assessment
4.4. Tourists’ WTP for Sam Shing Huaxiang
4.5. Sam Shing Huaxiang Recreational Value Estimates
5. Conclusions and Discussion
6. Implications to Rural Tourism Development
7. Limitations and Future Research Consideration
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gössling, S.; Lane, B. Rural tourism and the development of Internet-based accommodation booking platforms: A study in the advantages, dangers and implications of innovation. J. Sustain. Tour. 2015, 23, 1386–1403. [Google Scholar] [CrossRef]
- Komppula, R. The role of individual entrepreneurs in the development of competitiveness for a rural tourism destination—A case study. Tour. Manag. 2014, 40, 361–371. [Google Scholar] [CrossRef]
- Park, D.-B.; Lee, K.-W.; Choi, H.-S.; Yoon, Y. Factors influencing social capital in rural tourism communities in South Korea. Tour. Manag. 2012, 33, 1511–1520. [Google Scholar] [CrossRef]
- Sharpley, R. Rural tourism and the challenge of tourism diversification: The case of Cyprus. Tour. Manag. 2002, 23, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Phillips, W.J.; Wolfe, K.; Hodur, N.; Leistritz, F.L. Tourist word of mouth and revisit intentions to rural tourism destinations: A case of North Dakota, USA. Int. J. Tour. Res. 2013, 15, 93–104. [Google Scholar] [CrossRef]
- Chen, W. Peasant challenge in post-communist China. J. Contemp. China 1997, 6, 101–115. [Google Scholar] [CrossRef]
- Ryan, C.; Gu, H.; Zhang, W. The context of Chinese tourism: An overview and implications for research. In Tourism in China: Destination, Cultures and Communities; Ryan, C., Gu, H., Eds.; Routledge: New York, NY, USA, 2009; pp. 327–336. [Google Scholar]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Weng, Y.-C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Tian, G.; Liu, J.; Xie, Y.; Yang, Z.; Zhuang, D.; Niu, Z. Analysis of spatio-temporal dynamic pattern and driving forces of urban land in China in 1990s using TM images and GIS. Cities 2005, 22, 400–410. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y.; Long, H. The process and driving forces of rural hollowing in China under rapid urbanization. J. Geogr. Sci. 2010, 20, 876–888. (In Chinese) [Google Scholar] [CrossRef]
- Lu, X.H.; Zhu, S.F.; Zhang, Z.H. The empirical analysis on migration scale of rural population between urban and rural areas in China. Chin. Rural Econ. 2006, 25, 35–41. (In Chinese) [Google Scholar]
- Fu, B.-J.; Zhuang, X.-L.; Jiang, G.-B.; Shi, J.-B.; Lu, A.Y.-H. FEATURE: Environmental Problems and Challenges in China. Environ. Sci. Technol. 2007, 41, 7597–7602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gartner, W.C. Rural tourism development in the USA. Int. J. Tour. Res. 2004, 6, 151–164. [Google Scholar] [CrossRef]
- Gao, S.; Huang, S.; Huang, Y. Rural tourism development in China. Int. J. Tour. Res. 2009, 11, 439–450. [Google Scholar] [CrossRef]
- Campbell, D. Willingness to Pay for Rural Landscape Improvements: Combining Mixed Logit and Random-Effects Models. J. Agric. Econ. 2007, 58, 467–483. [Google Scholar] [CrossRef]
- Holmes, T.P.; Adamowicz, W.L.; Carlsson, F. Choice Experiments; Springer: Berlin, Germany, 2017; pp. 133–186. [Google Scholar]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary Guidance for Stated Preference Studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef] [Green Version]
- Louviere, J.J.; Flynn, T.N.; Carson, R.T. Discrete Choice Experiments Are Not Conjoint Analysis. J. Choice Model. 2010, 3, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Daugstad, K. Negotiating landscape in rural tourism. Ann. Tour. Res. 2008, 35, 402–426. [Google Scholar] [CrossRef]
- Oppermann, M. Rural tourism in southern Germany. Ann. Tour. Res. 1996, 23, 86–102. [Google Scholar] [CrossRef]
- Cawley, M.; Gillmor, D.A. Integrated rural tourism. Ann. Tour. Res. 2008, 35, 316–337. [Google Scholar] [CrossRef]
- Devesa, M.; Laguna, M.; Palacios, A. The role of motivation in visitor satisfaction: Empirical evidence in rural tourism. Tour. Manag. 2010, 31, 547–552. [Google Scholar] [CrossRef]
- Kneafsey, M. Rural cultural economy tourism and social relations. Ann. Tour. Res. 2001, 28, 762–783. [Google Scholar] [CrossRef]
- Park, D.B.; Yoon, Y.S. Segmentation by motivation in rural tourism: A Korean case study. Tour. Manag. 2009, 30, 99–108. [Google Scholar] [CrossRef]
- Pina, I.P.A.; Delfa, M.T.D. Rural tourism demand by type of accommodation. Tour. Manag. 2005, 26, 951–959. [Google Scholar] [CrossRef]
- Yagu, R.M. Rural tourism in Spain. Ann. Tour. Res. 2002, 29, 1101–1110. [Google Scholar] [CrossRef]
- Sharpley, R.; Roberts, L. Rural tourism-10 years on. Int. J. Tour. Res. 2004, 6, 119–124. [Google Scholar] [CrossRef]
- Daugstad, K.; Rønningen, K.; Skar, B. Agriculture as an upholder of cultural heritage? Conceptualizations and value judgements—A Norwegian perspective in international context. J. Rural. Stud. 2006, 22, 67–81. [Google Scholar] [CrossRef]
- Lynch, C.; Hack, G. Site Planning, 3rd ed.; The MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Naveh, Z.; Lieberman, A.S. Landscape Ecology: Theory and Application; Springer: New York, NY, USA, 1984. [Google Scholar]
- Brown, G. Mapping landscape values and development preferences: A method for tourism and residential development planning. Int. J. Tour. Res. 2006, 8, 101–113. [Google Scholar] [CrossRef]
- Tuan, Y.F. Thought and Landscape: The Eye and Mind’s Eye. In The Interpretation of Ordinary Landscapes; Meinig, D.W., Ed.; Oxford University Press: New York, NY, USA, 1979; pp. 89–102. [Google Scholar]
- Yu, K. Alert and Prevent Damaging Construction in the Name of “the New Rural.” Science Times 2006. Available online: http://design.yuanlin.com/HTML/Article/2006-4/Yuanlin_Design_841.HTML (accessed on 8 December 2018). (In Chinese).
- Li, Y.; Chen, T.; Wang, J.; Wang, H. Research on the tourism urbanization process of rural tourism destination in metropolitan fringe: A case of Beijing city. China Popul. Resour. Environ. 2013, 23, 162–168. (In Chinese) [Google Scholar]
- Wang, Y.; Guo, H.; Yang, L. The discussion on evaluation and sustainable development models of traditional villages in western mountainous area of Beijing–A case study of traditional villages in Mentougou District of Beijing. Sci. Geogr. Sin. 2006, 26, 735–742. (In Chinese) [Google Scholar]
- Xia, Y. Research and Design of Rural Tourism Area Landscape Planning. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2006. (In Chinese). [Google Scholar]
- Gao, Z.; Wang, Z. Study on rural tourism resources. J. Zhenjiang Coll. 2001, 12, 13–16. (In Chinese) [Google Scholar]
- Liu, B.; Wang, Y. Theoretical Base and evaluating indicator system of rural landscape of rural landscape assessment in China. J. Chin. Landsc. Archit. 2002, 18, 76–79. (In Chinese) [Google Scholar]
- Wang, Y.; Liu, B. Discussions on rural land-scape and rural landscape planning in China. Chin. Landsc. 2001, 10, 55–58. (In Chinese) [Google Scholar]
- Xie, H.; Liu, L.; Li, Z.H. Study on the method of rural landscape evaluation in urban fringe. Geogr. Geo-Inf. Sci. 2003, 19, 101–104. [Google Scholar]
- Fang, Y.; Liu, J. Rural landscape changes and its optimization strategies: From the perspective of ideal type narratives. Acta Geogr. Sin. 2012, 67, 1399–1410. (In Chinese) [Google Scholar]
- Saxena, G.; Clark, G.; Oliver, T.; Ilbery, B. Conceptualizing integrated rural tourism. Tour. Geogr. 2007, 9, 347–370. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.; Hutchinson, W.G.; Scarpa, R. Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements Under Agri-Environmental Schemes: Evidence from the Rural Environment Protection Scheme in Ireland. 2006. Available online: https://ideas.repec.org/p/fem/femwpa/2006.26.html (accessed on 8 December 2017).
- Bergland, O. Valuation of landscape elements using a contingent choice method. In Proceedings of the 1997 European Association of Environmental and Resource Economists Conference, Tilburg, The Netherlands, 26–28 June 1997; pp. 45–48. [Google Scholar]
- Hanley, N.; Wright, R.E.; Alvarez-Farizo, B. Estimating the economic value of improvements in river ecology using choice experiments: An application to the water framework directive. J. Environ. Manag. 2006, 78, 183–193. [Google Scholar] [CrossRef]
- Birol, E.; Karousakis, K.; Koundouri, P. Using a choice experiment to estimate non-use values: The case of Cheimaditida wetland, Greece. Water Sci. Technol. 2005, 5, 125–133. [Google Scholar] [CrossRef]
- Domínguez-Torreiro, M.; Soliño, M. Provided and perceived status quo in choice experiments: Implications for valuing the outputs of multifunctional rural areas. Ecol. Econ. 2011, 70, 2523–2531. [Google Scholar] [CrossRef]
- Colombo, S.; Hanley, N. How can we reduce the errors from benefits transfer? An investigation using the choice experiment method. Land Econ. 2008, 84, 128–147. [Google Scholar] [CrossRef]
- Carson, R.T.; Czajkowski, M. A new baseline model for estimating willingness to pay from discrete choice models. J. Environ. Econ. Manag. 2019, 95, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Bronnmann, J.; Asche, F. Sustainable seafood from aquaculture and wild fisheries: Insights from a discrete choice experiment in Germany. Ecol. Econ. 2017, 142, 113–119. [Google Scholar] [CrossRef]
- Kim, D.; Park, B.J.R. The moderating role of context in the effects of choice attributes on hotel choice: A discrete choice experiment. Tour. Manag. 2017, 63, 439–451. [Google Scholar] [CrossRef]
- Wehrli, R.; Priskin, J.; Demarmels, S.; Schaffner, D.; Schwarz, J.; Truniger, F.; Stettler, J. How to communicate sustainable tourism products to customers: Results from a choice experiment. Curr. Issues Tour. 2017, 20, 375–1394. [Google Scholar] [CrossRef]
- Ayala, D.A.; Hoyos, D.; Mariel, P. Landscape Valuation through Discrete Choice Experiments: Current Practice and Future Research Reflections. 2012. Available online: https://addi.ehu.es/bitstream/handle/10810/8011/2012.03.pdf?sequence=6&isAllowed=y (accessed on 19 February 2018).
- Hess, S.; Train, K. Correlation and scale in mixed logit models. J. Choice Model. 2017, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gebben, D.J. An Attribute Based of Recycling Preferences at Michigan State University. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2008. [Google Scholar]
- Kuminoff, N.V.; Parmeter, C.F.; Pope, J.C. Which hedonic models can we trust to recover the marginal willingness to pay for environmental amenities? J. Environ. Econ. Manag. 2010, 60, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Hanemann, W.M. Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses. Am. J. Agric. Econ. 1984, 66, 332–341. [Google Scholar] [CrossRef]
- Borah, B.J. Econometric Models of Provider Choice and Health Care Use in India. Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 2006. [Google Scholar]
- Revelt, D.; Train, K. Customer-Specific Taste Parameters and Mixed Logit. 2000. Available online: https://eml.berkeley.edu/wp/train0999.pdf (accessed on 12 January 2019).
- Krinsky, I.; Robb, A.L. On approximating the statistical properties of elasticities. Rev. Econ. Stat. 1986, 64, 715–719. [Google Scholar] [CrossRef] [Green Version]
- Pan, S. The Driving Mechanism of Rural Tourism and the Development Mode of China. Master’s Thesis, Northeast Normal University, Changchun, China, 2007. (In Chinese). [Google Scholar]
- Fleischer, A.; Pizam, A. Rural tourism in Israel. Tour. Manag. 1997, 18, 367–372. [Google Scholar] [CrossRef]
- Sharpley, R.; Jepson, D. Rural tourism: A spiritual experience? Ann. Tour. Res. 2011, 38, 52–71. [Google Scholar] [CrossRef]
- Garrod, B.; Wornell, R.; Youell, R. Re-conceptualising rural resources as countryside capital: The case of rural tourism. J. Rural. Stud. 2006, 22, 117–128. [Google Scholar] [CrossRef]
- Howley, P. Landscape aesthetics: Assessing the general publics’ preferences towards rural landscapes. Ecol. Econ. 2011, 72, 161–169. [Google Scholar] [CrossRef]
- Poe, G.L.; Giraud, K.L.; Loomis, J.B. Computational Methods for Measuring the Difference of Empirical Distributions. Am. J. Agric. Econ. 2005, 87, 353–365. [Google Scholar] [CrossRef]
Project | Huaxiang Farmers’ House | Happy Plum Forest | Moonlight over the Lotus Pond | Dongli Daisy Garden | Jiangjia Farmland |
---|---|---|---|---|---|
Population | 3010 | 3200 | 3100 | 3400 | 4200 |
Farm stay | 100 | 102 | 50 | 25 | 10 |
Per capita annual net income (yuan) | 23,000 | 22,000 | 19,000 | 18,000 | 20,000 |
Village features | Flower expo | Plum festival | Lotus festival | Daisy festival | Land adoption |
Attributes | Levels | Description |
---|---|---|
Ecological environment | Very good | Most of trees are native, natural settings |
Good | Add more local trees, well designed, tidy and clean | |
Status quo | Looks more like a garden, basic, clean and tidy | |
Rural house | Very good | Mostly in its original state, well maintained, local accommodations, interpretation display |
Good | Mostly in its original state, maintained | |
Status quo | Original state, but poorly repaired | |
Rural life and productive landscape | Very good | Rural landscape well displayed, deeply engaged in farming activity, education, and traditional folk handicrafts. |
Good | Rural landscape display, some farming activity | |
Status quo | Rural housing, less farming activity | |
Service landscape | Very good | Good facilities, comprehensive interpretation, walking trails and perceived harmony with nature |
Good | Good facilities, retains rural feel | |
Status quo | Facilities not well developed, some are too modern | |
Willingness to pay (per person, per visit) | 0 | Prefer not to pay more |
25 | Willing to pay additional 25 yuan | |
50 | Willing to pay additional 50 yuan | |
75 | Willing to pay additional 75 yuan | |
100 | Willing to pay additional 100 yuan |
Local Houses | Ecological Environment | Rural Life and Productive Landscape | Service Landscape | Payment | Choice | |
---|---|---|---|---|---|---|
Plan 1 | Good | Good | Very good | Very good | 100 | √ |
Plan 2 | Good | Very good | Good | Good | 50 | |
Status quo | Mediocre | Mediocre | Mediocre | Mediocre | 0 |
Attributes | Variable Name | Definition | Coding |
---|---|---|---|
Dependent variable | CHO | Selected option | 0 = unselected; 1 = selected |
Independent variable | VH | Rural house | 0 =status quo; 1 = good; 2 = very good |
VN | Ecological environment | 0 = status quo; 1 = good; 2 = very good | |
VC | Rural life and productive landscape | 0 = status quo; 1 = good; 2 = very good | |
VF | Service landscape | 0 = status quo; 1 = good; 2 = very good | |
VP | Additional payment | 0; 25; 50; 75; 100 | |
PID * | Personal number * | 1–469 | |
CID * | Selection set’s number * | 1–2814 | |
AGEN | Gender | 0 = male; 1 = female | |
EDU | Level of education | 1 = primary school and below; 2 = junior high school; 3 = high school, technical secondary school or vocational school; 4 = bachelor degree or collage; 5 = master’s degree and above; | |
FRE | Times of travel | 1 = 3 and less than 3 times; 2 = more than 3 times | |
COST | Personal cost of this travel | Measured values | |
INC | The average monthly household income | 1 = 3500 Yuan less; 2 = 3500–4500; 3 = 4501–6000 Yuan; 4 = 6001–8000 Yuan; 5 = above 10,000 Yuan |
Variables | Categories | Frequency | Percentage |
---|---|---|---|
Gender | Male | 207 | 44.1 |
Female | 262 | 55.9 | |
Age | <18 years | 45 | 9.6 |
18–30 | 182 | 38.8 | |
31–45 | 163 | 34.8 | |
46–60 | 67 | 14.3 | |
>60 | 12 | 2.6 | |
Education | Primary school | 10 | 2.1 |
Junior middle school | 40 | 8.5 | |
High middle school | 105 | 22.4 | |
Bachelor | 281 | 59.9 | |
Postgraduate | 33 | 10.6 | |
Vocation | Manager | 47 | 10.0 |
Official | 57 | 12.2 | |
Professional | 21 | 4.5 | |
Teacher | 20 | 4.3 | |
Business/Service | 11 | 2.3 | |
Student | 101 | 21.5 | |
Police officer | 54 | 11.5 | |
Worker | 41 | 8.7 | |
Farmer | 32 | 6.8 | |
Freelancer | 74 | 15.8 | |
Unemployment/housewife | 1 | 0.2 | |
Retirement | 6 | 1.3 | |
Others | 4 | 0.9 | |
Income | <3500 Yuan | 123 | 26.2 |
3500–4500 Yuan | 105 | 22.4 | |
4501–6000 Yuan | 107 | 22.8 | |
6001–8000 Yuan | 62 | 13.2 | |
8001–10,000 Yuan | 29 | 6.2 | |
>10,000 Yuan | 43 | 9.2 |
Attributes | Distribution Type | Mean | Standard Deviation of the Random Parameters | ||
---|---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | ||
Payment | Normal distribution | −0.012 *** | 0.001 | −0.018 *** | 0.002 |
Ecological environment: good | Normal distribution | 6.305 ** | 3.480 | 0.328 | 0.055 |
Ecological environment: very good | Normal distribution | 4.213 ** | 2.321 | 0.023 | 0.052 |
Rural housing: good | Normal distribution | −5.342 | 3.340 | 0.245 | 0.051 |
Rural housing: very good | Normal distribution | −3.633 | 2.227 | −0.009 | 0.060 |
Rural life and productive landscape: good | Normal distribution | 0.377 | 3.469 | −0.007 | 0.073 |
Rural life and productive landscape: very good | Normal distribution | 0.386 | 2.313 | 0.094 | 0.058 |
Service landscape: good | Normal distribution | −1.854 | 4.169 | 0.000 | 0.049 |
Service landscape: very good | Normal distribution | −1.102 | 2.780 | 0.001 | 0.045 |
LR Chi2(5) = 32.11 Log likelihood = −2607.098 Prob > Chi2 = 0.0001 |
Variable | Mean | Standard Deviation of the Random Parameters | ||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | |
VN | 0.879 *** | 0.070 | 0.451 *** | 0.074 |
VH | 0.302 ** | 0.176 | 0.002 *** | 0.201 |
VC | 0.612 *** | 0.215 | −0.021 ** | 0.056 |
VF | 0.030 ** | 0.152 | 0.044 ** | 0.329 |
Payment | −0.008 *** | 0.004 | _ | _ |
AGEN-VH-Good | 0.2188 *** | 0.092 | 0.113 | 0.088 |
AGEN-VH-Very good | −0.046 | 0.103 | 0.121 | 0.114 |
AGEN-VN-Good | 0.156 | 0.116 | 0.335 *** | 0.104 |
AGEN-VN-Very good | 0.106 | 0.122 | (0.377) | 0.164 |
AGEN-VC-Good | 0.201 *** | 0.106 | 0.154 | 0.103 |
AGEN-VC-Very good | 0.149 | 0.098 | (0.105) | 0.093 |
AGEN-VF-Good | −0.022 | 0.095 | 0.243 *** | 0.133 |
AGEN-VF-Very good | 0.249 *** | 0.097 | −0.298 *** | 0.073 |
COST-VH-Good | −0.001 | 0.001 | 0.002 *** | 0.001 |
COST-VH-Very good | 0.001 *** | 0.001 | 0.002 *** | 0.001 |
COST-VN-Good | 0.001 | 0.001 | −0.003 *** | 0.001 |
COST-VN-Very good | −0.000 | 0.001 | 0.005 *** | 0.001 |
COST-VC-Good | −0.001 | 0.001 | 0.001 | 0.001 |
COST-VC-Very good | 0.002 *** | 0.001 | 0.000 | 0.001 |
COST-VF-Good | −0.001 | 0.001 | 0.004 *** | 0.002 |
COST-VF-Very good | 0.002 *** | 0.001 | 0.002 *** | 0.001 |
EDU-VH-Good | 0.107 | 0.105 | 0.152 | 0.127 |
EDU-VH-Very good | 0.088 | 0.114 | 0.086 | 0.193 |
EDU-VN-Good | −0.075 | 0.137 | −0.335 *** | 0.147 |
EDU-VN-Very good | 0.231 | 0.143 | 0.299 | 0.183 |
EDU-VC-Good | 0.320 *** | 0.116 | −0.166 | 0.155 |
EDU-VC-Very good | −0.078 | 0.111 | 0.243 *** | 0.094 |
EDU-VF-Good | 0.034 | 0.110 | −0.181 | 0.133 |
EDU-VF-Very good | 0.166 | 0.109 | 0.032 | 0.117 |
INC-VH-Good | 0.024 | 0.093 | 0.096 | 0.088 |
INC-VH-Very good | 0.281 *** | 0.097 | −0.008 | 0.119 |
INC-VN-Good | −0.032 | 0.121 | −0.345 *** | 0.079 |
INC-VN-Very good | 0.206 | 0.128 | 0.394 *** | 0.085 |
INC-VC-Good | −0.054 | 0.104 | 0.173 | 0.120 |
INC-VC-Very good | 0.271 *** | 0.099 | 0.009 | 0.071 |
INC-VF-Good | 0.293 *** | 0.098 | −0.096 | 0.237 |
INC-VF-Very good | 0.173 *** | 0.100 | 0.104 | 0.120 |
LR Chi2 (16) = 124.23 Log likelihood = −2476.540 Prob > Chi2 = 0.0000 |
Ecological Environment | Increased WTP | WTP (Yuan) | Sam Shing Huaxiang Recreational Value (One Hundred Million Yuan) | ||||
---|---|---|---|---|---|---|---|
Coefficient | MWTP | Order | Coefficient | (Yuan) | |||
Mixed logit model 1 | 0.898 | 73.600 | 1 | −0.012 | 321.8 | 391.7 | 47.0 |
Mixed logit model 2 | 0.879 | 108.300 | 1 | −0.008 | 348.9 | 418.8 | 50.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cong, L.; Zhang, Y.; Su, C.-H.; Chen, M.-H.; Wang, J. Understanding Tourists’ Willingness-to-Pay for Rural Landscape Improvement and Preference Heterogeneity. Sustainability 2019, 11, 7001. https://doi.org/10.3390/su11247001
Cong L, Zhang Y, Su C-H, Chen M-H, Wang J. Understanding Tourists’ Willingness-to-Pay for Rural Landscape Improvement and Preference Heterogeneity. Sustainability. 2019; 11(24):7001. https://doi.org/10.3390/su11247001
Chicago/Turabian StyleCong, Li, Yujun Zhang, Ching-Hui (Joan) Su, Ming-Hsiang Chen, and Jinnan Wang. 2019. "Understanding Tourists’ Willingness-to-Pay for Rural Landscape Improvement and Preference Heterogeneity" Sustainability 11, no. 24: 7001. https://doi.org/10.3390/su11247001