Quantifying Degradation Classifications on Alpine Grassland in the Lhasa River Basin, Qinghai-Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. Remote Sensing Data
2.4. Statistical Analysis
2.5. Spatial Pattern of Alpine Grassland Degradation
3. Results
3.1. Classification of Subsites to Identify Degradation Classes
3.2. Main Biophysical Factors of Classified Subsites
3.3. Thresholds of Variables Affecting Degradation
3.4. Spatial Pattern of Alpine Grassland Degradation
4. Discussion
4.1. Validity of the Classification Method for Alpine Grassland Degradation
4.2. Quantitative Classifications of Alpine Grassland Degradation
4.3. Analysis of Different Classes of Grassland Degradation Combined with Management Measures
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.L.; Gao, J.; Brierley, G.; Qiao, Y.M.; Zhang, J.; Yang, Y.W. Rangeland degradation on the Qinghai-Tibet plateau: Implications for rehabilitation. Land Degrad. Dev. 2013, 24, 72–80. [Google Scholar] [CrossRef]
- Gieselman, T.M.; Hodges, K.E.; Vellend, M. Human-induced edges alter grassland community composition. Biol. Conserv. 2013, 158, 384–392. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Zha, Y. Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and reflectance spectra data. Int. J. Remote Sens. 2004, 25, 4177–4189. [Google Scholar]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Nan, Z. The grassland farming system and sustainable agricultural development in China. Grassl. Sci. 2010, 51, 15–19. [Google Scholar] [CrossRef]
- Ru, A.; Wang, H.L.; Feng, X.Z.; Hong, W.; Zhe, W.; Ying, W.; Shen, X.J.; Lu, C.H.; Quaye-Ballard, J.A.; Chen, Y.H.; et al. Monitoring rangeland degradation using a novel local NPP scaling based scheme over the “Three-River Headwaters” region, hinterland of the Qinghai-Tibetan Plateau. Quat. Int. 2017, 444, 97–114. [Google Scholar]
- Foggin, J.M. Depopulating the Tibetan Grasslands: National Policies and Perspectives for the Future of Tibetan Herders in Qinghai Province, China. Mt. Res. Dev. 2008, 28, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Perry, G.L.W.; Brierley, G.; Sun, H.Q.; Li, C.H.; Lu, G.X. Quantitative assessment of degradation classifications for degraded alpine meadows (Heitutan), Sanjiangyuan, western China. Land Degrad. Dev. 2015, 25, 417–427. [Google Scholar] [CrossRef]
- Mahyou, H.; Tychon, B.; Balaghi, R.; Louhaichi, M.; Mimouni, J. A Knowledge-Based Approach for Mapping Land Degradation in the Arid Rangelands of North Africa. Land Degrad. Dev. 2016, 27, 1574–1585. [Google Scholar] [CrossRef]
- Boschetti, M.; Bocchi, S.; Brivio, P.A. Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information. Agric. Ecosyst. Environ. 2007, 118, 267–272. [Google Scholar] [CrossRef]
- Prince, S.D.; De Colstoun, E.B.; Kravitz, L. Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Glob. Chang. Biol. 1998, 4, 359–374. [Google Scholar] [CrossRef]
- Wu, C. Use of a vegetation index model to estimate gross primary production in open grassland. J. Appl. Remote Sens. 2012, 6, 063532. [Google Scholar] [CrossRef]
- Escribano, P.; Palacios-Orueta, A.; Oyonarte, C.; Chabrillat, S. Spectral properties and sources of variability of ecosystem components in a Mediterranean semiarid environment. J. Arid Environ. 2010, 74, 1041–1051. [Google Scholar] [CrossRef]
- Kennedy, P.J. Monitoring the phenology of Tunisian grazing lands. Int. J. Remote Sens. 1989, 10, 835–845. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Xu, E.Q.; Zhang, H.Q.; Li, M.X. Object-Based Mapping of Karst Rocky Desertification using a Support Vector Machine. Land Degrad. Dev. 2015, 26, 158–167. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Wan, Y.F.; Xu, H.M.; Li, Y.; Jiangcun, W.Z.; Borjigidai, A. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat. Int. 2010, 226, 143–150. [Google Scholar] [CrossRef]
- Yang, J.; Ding, Y.; Chen, R. Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environ. Geol. 2006, 50, 313–322. [Google Scholar] [CrossRef]
- Gellrich, M.; Baur, P.; Robinson, B.H.; Bebi, P. Combining classification tree analyses with interviews to study why sub-alpine grasslands sometimes revert to forest: A case study from the Swiss Alps. Agric. Syst. 2008, 96, 124–138. [Google Scholar] [CrossRef]
- Miller, J.; Franklin, J. Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecol. Model. 2002, 157, 227–247. [Google Scholar] [CrossRef]
- Gong, T.; Liu, C.; Liu, J. Hydrological Response of Lhasa River to Climate Change and Permafrost Degradation in Xizang. Acta Geogr. Sin. 2006, 61, 519–526. [Google Scholar]
- Wang, J.; Wang, G.; Hu, H.; Wu, Q. The influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Qinghai-Tibetan Plateau. Environ. Earth Sci. 2010, 60, 537–548. [Google Scholar] [CrossRef]
- Shang, Z.H.; Ma, Y.S.; Long, R.J.; Ding, L.M. Effect of fencing, artificial seeding and abandonment on vegetation composition and dynamics of ‘black soil land’ in the headwaters of the Yangtze and the Yellow Rivers of the Qinghai-Tibetan Plateau. Land Degrad. Dev. 2010, 19, 554–563. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shangguan, T.L. Discussion on Calculating Method of Important Values. J. Shanxi Univ. Nat. Sci. Ed. 2010, 33, 312–316. [Google Scholar]
- Thomasson, A.J. Towards an objective classification of soil structure. Eur. J. Soil Sci. 2010, 29, 38–46. [Google Scholar] [CrossRef]
- Mclean, E.O. Soil pH and lime requirement. In Methods Soil Analysis Part 2 Chemical Microbiological Properties; The American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Feng, C.; Yan, M.; Fu, S.; Chen, H.Y.H. Soil Carbon and Nutrient Dynamics Following Cessation of Anthropogenic Disturbances in Degraded Subtropical Forests. Land Degrad. Dev. 2017, 28, 2457–2467. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E.; Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. 1996, 9, 961–1010. [Google Scholar]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Jing, Z.; Cheng, J.; Jishuai, S.U.; Bai, Y.U.; Jin, J. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland. Ecol. Eng. 2014, 64, 171–178. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Z.; Han, G.; Schellenberg, M.P.; Qian, W.; Chen, G. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China. Agric. Ecosyst. Environ. 2018, 265, 73–83. [Google Scholar] [CrossRef]
- Davidson, A.; Csillag, F. The influence of vegetation index and spatial resolution on a two-date remote sensing-derived relation to C4 species coverage. Remote Sens. Environ. 2001, 75, 138–151. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Development Core Team (2011) nlme: Linear and nonlinear mixed effects models. R Package Version 2008, 3, 1–102. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Fabricius, K.E. Classification and Regression Trees: A Powerful yet Simple Technique for Ecological Data Analysis. Ecology 2000, 81, 3178–3192. [Google Scholar]
- Faith, D.P.; Minchin, P.R.; Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 1987, 69, 57–68. [Google Scholar] [CrossRef]
- Pardo, I.; Doak, D.F.; Garcíagonzález, R.; Gómez, D.; García, M.B. Long-term response of plant communities to herbivore exclusion at high elevation grasslands. Biodivers. Conserv. 2015, 24, 3033–3047. [Google Scholar] [CrossRef] [Green Version]
- Künnemeyer, R.; Schaare, P.N.; Hanna, M.M. A simple reflectometer for on-farm pasture assessment. Comput. Electron. Agric. 2001, 31, 125–136. [Google Scholar] [CrossRef]
- Yong, Z.; Gao, J.; Ni, S.; Liu, Y.; Jiang, J.; Wei, Y. A spectral reflectance-based approach to quantification of grassland cover from Landsat TM imagery. Remote Sens. Environ. 2003, 87, 371–375. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Cao, S.; Ma, H.; Yuan, W.; Wang, X. Interaction of ecological and social factors affects vegetation recovery in China. Biol. Conserv. 2014, 180, 270–277. [Google Scholar] [CrossRef]
- Gu, Y.; Wylie, B.K.; Bliss, N.B. Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA. Ecol. Indic. 2013, 24, 31–36. [Google Scholar] [CrossRef]
- Xu, D.Y.; Kang, X.W.; Zhuang, D.F.; Pan, J.J. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification—A case study of the Ordos Plateau, China. J. Arid Environ. 2010, 74, 498–507. [Google Scholar] [CrossRef]
- Li, C.; Cao, S. Lack of integrated solutions hinders environmental recovery in China. Ecol. Eng. 2013, 54, 233–235. [Google Scholar]
- He, S.; Richards, K. Impact of Meadow Degradation on Soil Water Status and Pasture Management-A Case Study in Tibet. Land Degrad. Dev. 2015, 26, 468–479. [Google Scholar] [CrossRef]
Type of Variable | Variable | Unit | Range of Values |
---|---|---|---|
Biotic | Total vegetation cover | % | 5–100 |
Dominance of Cyperaceae plants | % | 0–77.61 | |
Dominance of Poaceae plants | % | 0–52 | |
Dominance of inedible plants | % | 0–72.48 | |
Dominance of miscellaneous plants | % | 0–72.48 | |
Abiotic | Bare land cover | % | 13–67 |
Soil moisture content | % | 0.18–135.20 | |
Soil bulk density | 0.33–1.69 | ||
Soil pH | 0.34–8.26 | ||
Soil total carbon content | % | 0.3–20.29 | |
Soil total nitrogen content | % | 0.09–6.21 | |
Soil organic carbon content | % | 0.60–18.72 | |
Soil available nitrogen content | mg kg−1 | 3–1102.5 | |
Soil available phosphorus content | mg kg−1 | 0.36–908 | |
Soil available potassium content | mg kg−1 | 4.2–637.5 | |
Topographic | Elevation | m | 3700–5368 |
Slope | degree | 0.75–45 |
Degradation Level | Score | NDVI | SAVI | RDVI | Bare Land Cover (%) | Elevation (m) | Soil Type |
---|---|---|---|---|---|---|---|
ND | 1 | >0.30 | >0.27 | 12.44–15.00 | <37 | 4130–4200 | Dark felty soils |
SLD | 2 | 0.27–0.30 | 0.20–0.27 | 9.44–12.44 | 37–40 | 4950–5110 | Swamp soil, Alpine frost soil |
MD | 3 | 0.24–0.27 | 0.14–0.20 | >15.00 | 40–46.5 | 4200–4500, 4700–4950, >5110 | Felty soils, Meadow soil |
SD | 4 | 0.08–0.24 | 0.05–0.14 | 5.73–9.44 | 46.5–55 | 3720–4130, 4500–4700 | Frigid calcic soils |
ED | 5 | <0.08 | <0.05 | <5.73 | >55 | <3720 | Cold brown calcic soils |
Variable | ND | SLD | MD | SD | ED | P | F | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | CV% | Mean ± SD | CV% | Mean ± SD | CV% | Mean ± SD | CV% | Mean ± SD | CV% | |||
Total Vegetation cover (%) | 83.17 ± 15.27 a | 18.36 | 75.42 ± 23.31 a | 30.90 | 72.06 ± 24.74 a | 34.33 | 52.53 ± 26.69 b | 50.81 | 24.38 ± 7.03 c | 28.86 | <0.01 | 17.775 |
Dominance of Cyperaceae Plants (%) | 19.66 ± 0.05 c | 0.28 | 46.73 ± 0.09 a | 0.18 | 39.64 ± 0.11 b | 0.28 | 14.37 ± 0.12 c | 0.84 | 7.62 ± 0.10 c | 1.30 | <0.01 | 79.82 |
Dominance of Poaceae Plants (%) | 7.20 ± 0.05 b | 0.73 | 5.10 ± 0.06 b | 1.21 | 5.86 ± 0.07 b | 1.22 | 11.04 ± 0.11 b | 1.03 | 23.98 ± 0.06 a | 0.26 | <0.01 | 13.459 |
Dominance of inedible Plants (%) | 20.80 ± 0.08 cd | 0.41 | 17.84 ± 0.07 d | 0.41 | 23.63 ± 0.11 c | 0.46 | 30.73 ± 0.16 b | 0.51 | 54.40 ± 0.11 a | 0.21 | <0.01 | 21.928 |
Dominance of miscellaneous Plants (%) | 52.34 ± 0.06 a | 0.12 | 30.32 ± 0.08 b | 0.28 | 30.87 ± 0.11 b | 0.35 | 43.86 ± 0.16 a | 0.36 | 14.00 ± 0.06 c | 0.40 | <0.01 | 26.981 |
Bare Land Cover (%) | 40.67 ± 4.47 bc | 11.00 | 36.04 ± 11.62 c | 32.25 | 39.32 ± 13.02 bc | 33.10 | 42.19 ± 11.56 b | 27.40 | 55.38 ± 0.48 a | 0.87 | <0.01 | 5.773 |
Soil Moisture Content (%) | 50.95 ± 19.54 a | 38.34 | 53.22 ± 23.65 a | 44.43 | 48.75 ± 27.20 a | 55.80 | 29.31 ± 28.24 b | 96.35 | 8.79 ± 4.03 b | 45.81 | <0.01 | 12.549 |
Soil Bulk Density | 0.70 ± 0.17 bc | 24.74 | 0.77 ± 0.19 c | 24.42 | 0.81 ± 0.24 bc | 29.99 | 1.06 ± 0.27 b | 25.52 | 1.51 ± 0.07 a | 4.96 | <0.01 | 12.063 |
Soil pH | 5.78 ± 0.26 c | 4.42 | 5.63 ± 0.41 c | 7.32 | 5.76 ± 0.75 c | 13.04 | 6.36 ± 0.77 b | 12.08 | 8.04 ± 0.30 a | 3.76 | <0.01 | 24.683 |
Soil Total Carbon Content (%) | 7.35 ± 2.69 a | 36.63 | 6.94 ± 3.73 b | 53.68 | 5.22 ± 1.96 c | 37.54 | 4.51 ± 3.18 c | 70.50 | 0.82 ± 0.08 d | 10.00 | <0.01 | 13.246 |
Soil Total Nitrogen Content (%) | 0.59 ± 0.20 a | 33.55 | 0.55 ± 0.26 a | 46.56 | 0.42 ± 0.13 b | 31.43 | 0.40 ± 0.25 b | 62.02 | 0.11 ± 0.01 b | 13.26 | <0.01 | 7.726 |
Soil Organic Carbon Content (%) | 6.86 ± 2.82 a | 41.12 | 6.87 ± 3.64 a | 53.06 | 5.14 ± 1.96 b | 38.19 | 4.45 ± 3.08 b | 69.29 | 0.78 ± 0.10 c | 12.64 | <0.01 | 12.389 |
Soil Available Nitrogen Content (mg kg−1) | 578.66 ± 237.09 a | 40.97 | 509.69 ± 93.43 a | 18.33 | 449.80 ± 169.09 ab | 37.59 | 369.16 ± 266.57 b | 72.21 | 57.15 ± 27.33 c | 47.82 | <0.01 | 12.095 |
Soil Available Phosphorus Content (mg kg−1) | 8.65 ± 5.34 a | 61.70 | 7.37 ± 2.57 a | 34.90 | 14.58 ± 86.04 a | 590.03 | 7.41 ± 6.38 a | 86.13 | 1.48 ± 0.69 a | 46.65 | 0.87 | 0.307 |
Soil Available Potassium Content (mg kg−1) | 214.47 ± 117.47 a | 54.77 | 177.59 ± 93.43 ab | 52.61 | 163.87 ± 88.49 ab | 54.00 | 146.46 ± 67.75 b | 46.26 | 96.31 ± 39.61 b | 41.12 | <0.01 | 3.914 |
Elevation (m) | 4416.06 ± 245.56 b | 5.56 | 4801.97 ± 284.65 a | 5.93 | 4693.73 ± 306.99 a | 6.54 | 4479.46 ± 413.53 b | 9.23 | 4256.88 ± 431.35 b | 10.13 | <0.01 | 12.52 |
Slope (degree) | 14.41 ± 3.55 ab | 24.61 | 10.14 ± 9.44 b | 93.08 | 11.12 ± 10.15 b | 91.30 | 15.37 ± 10.74 a | 69.89 | 4.77 ± 0.29 b | 6.15 | <0.01 | 4.413 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, W.; Lu, H.; Liu, G.; Wang, J.; Su, X. Quantifying Degradation Classifications on Alpine Grassland in the Lhasa River Basin, Qinghai-Tibetan Plateau. Sustainability 2019, 11, 7067. https://doi.org/10.3390/su11247067
Han W, Lu H, Liu G, Wang J, Su X. Quantifying Degradation Classifications on Alpine Grassland in the Lhasa River Basin, Qinghai-Tibetan Plateau. Sustainability. 2019; 11(24):7067. https://doi.org/10.3390/su11247067
Chicago/Turabian StyleHan, Wangya, Huiting Lu, Guohua Liu, Jingsheng Wang, and Xukun Su. 2019. "Quantifying Degradation Classifications on Alpine Grassland in the Lhasa River Basin, Qinghai-Tibetan Plateau" Sustainability 11, no. 24: 7067. https://doi.org/10.3390/su11247067
APA StyleHan, W., Lu, H., Liu, G., Wang, J., & Su, X. (2019). Quantifying Degradation Classifications on Alpine Grassland in the Lhasa River Basin, Qinghai-Tibetan Plateau. Sustainability, 11(24), 7067. https://doi.org/10.3390/su11247067