Social-Demographic Correlates of the Mental Health Conditions among the Chinese Elderly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design and Participants
2.2. Measures
2.2.1. Socio-Demographic Determinants
2.2.2. Assessment of Mental Health Conditions
2.3. Statistical Analyses
2.4. Ethical Approval
3. Results
3.1. Demographic Characteristics of the Survey Participants
3.2. Detection Results of Each Symptom Dimension in SCL-90
3.3. Distribution of Total Detection Rate by Population Subgroups
3.4. Factors Associated with Mental Health Conditions among the Chinese Elderly
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Department of Economic and Social Affairs, Population Division of United Nations. World Population Prospects 2019: Highlights. Available online: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html (accessed on 6 November 2019).
- Xu, X.; Zhao, Y.; Zhang, X.; Xia, S. Identifying the Impacts of Social, Economic, and Environmental Factors on Population Aging in the Yangtze River Delta Using the Geographical Detector Technique. Sustainability 2018, 10, 1528. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Civil Affairs of the People’s Republic of China. Social Services Development Statistical Bulletin 2017. Available online: http://www.mca.gov.cn/article/sj/tjgb/201808/20180800010446.shtml (accessed on 6 November 2019).
- State Council of the People’s Republic of China. National Population Development Plan (2016–2030). Available online: http://www.gov.cn/zhengce/content/2017-01/25/content_5163309.htm (accessed on 6 November 2019).
- Wang, H.; Huang, J.; Sun, S. Assessment of the Financial Sustainability of China’s New Rural Pension Plan: Does the Demographic Policy Reform Matter? Sustainability 2019, 11, 5110. [Google Scholar] [CrossRef] [Green Version]
- Prynn, J.E.; Kuper, H. Perspectives on Disability and Non-Communicable Diseases in Low- and Middle-Income Countries, with a Focus on Stroke and Dementia. Int. J. Environ. Res. Public Health 2019, 16, 3488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodell, M.A.; Rando, T.A. Stem cells and healthy aging. Science 2015, 350, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Rawtaer, I.; Fam, J.; Jiang, M.J.; Feng, L.; Kua, E.H.; Mahendran, R. Sleep correlates of depression and anxiety in an elderly Asian population. Psychogeriatrics 2016, 16, 191–195. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, D.K.; Song, W. Relationships between Social Capital, Social Capital Satisfaction, Self-Esteem, and Depression among Elderly Urban Residents: Analysis of Secondary Survey Data. Int. J. Environ. Res. Public Health 2019, 16, 1445. [Google Scholar] [CrossRef] [Green Version]
- Schimming, C.; Harvey, P.D. Disability Reduction in Elderly Patients with Schizophrenia. J. Psychiatr Pr. 2004, 10, 283–295. [Google Scholar] [CrossRef]
- Li, N.; Du, W.; Zhang, L.; Chen, G.; Zheng, X. Prevalence and functions of mental disability caused by mood disorders in China: A national sample. J. Affect. Disord. 2015, 180, 10–13. [Google Scholar] [CrossRef]
- Mackenzie, C.S.; El-Gabalawy, R.; Chou, K.L.; Sareen, J. Prevalence and predictors of persistent versus remitting mood, anxiety, and substance disorders in a national sample of older adults. Am. J. Geriatr. Psychiatry 2014, 22, 854–865. [Google Scholar] [CrossRef] [Green Version]
- Whiteford, H.A.; Degenhardt, L.; Rehm, J.; Baxter, A.J.; Ferrari, A.J.; Erskine, H.E.; Charlson, F.J.; Norman, R.E.; Flaxman, A.D.; Johns, N.; et al. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 382, 1575–1586. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Zhang, C.C.; Huang, H.; Zheng, X.; Pan, X.J.; Zheng, J.Z. Mental health and related influencing factors among the empty-nest elderly and the non-empty-nest elderly in Taiyuan, China: A cross-sectional study. Public Health 2016, 141, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.; Zhuang, Q.; Wang, Z. Study on the relationship between social support and mental health of the elderly in China: A case study of Xi’an city, Shaanxi province. J. Ment. Health 2019, 28, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Q.; Simon, M. Prevalence of elder self-neglect in a Chicago Chinese population: The role of cognitive physical and mental health. Geriatr. Gerontol. Int. 2016, 16, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Q. Sociodemographic and socioeconomic characteristics of elder self-neglect in an US Chinese aging population. Arch. Gerontol. Geriatr. 2016, 64, 82–89. [Google Scholar] [CrossRef]
- Gleason, H.P.; Coyle, C.E. Mental and behavioral health conditions among older adults: Implications. Aging Ment. Health 2015, 20, 848–855. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Hu, Y.; Smith, J.P.; Strauss, J.; Yang, G. Cohort profile: The China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef] [Green Version]
- China Longitudinal Aging Social Survey, CLASS. Available online: http://class.ruc.edu.cn/index.php?r=index/index&hl=en (accessed on 6 November 2019).
- Wang, Z.Y. Symptom Checklist (SCL-90); Shanghai Psychiatry: Shanghai, China, 1984. (In Chinese) [Google Scholar]
- National Health Commission of the People’s Republic of China. Healthy China Action (2019–2030). Available online: http://www.nhc.gov.cn/guihuaxxs/s3585u/201907/e9275fb95d5b4295be8308415d4cd1b2.shtml (accessed on 6 November 2019).
- Derogatis, L.R. SCL-90: Administration, Scoring and Procedures Manual-I for the R (Revised) Version and Other Instruments of the Psychopathology Rating Scales Series; Johns Hopkins University School of Medicine: Chicago, IL, USA, 1977; pp. 154–196. [Google Scholar]
- Feng, Z.; Zhang, D. Study on the validity of the Symptom Check-List-90 of Chinese version. Acta Acad. Med. Mil. Tertiae 2001, 23, 481–483. [Google Scholar]
- Tan, H.; Lan, X.; Yu, N.; Yang, X. Reliability and validity assessment of the revised Symptom Checklist 90 for alopecia areata patients in China. J. Dermatol. 2015, 42, 975–980. [Google Scholar] [CrossRef]
- Zeng, G.X. The New Characteristics and Influence of Population Aging in China. J. Chongqing Univ. (Soc. Sci. Ed.) 2014, 2, 142–145. (In Chinese) [Google Scholar]
- Cheng, X.Y.; Tian, M.M.; Chen, C.X.; Li, S.X.; Ma, S.H. Analysis of the factors affecting the mental health of urban and rural elders in Hebei Province. Chin. J. Gerontol. 2015, 35, 2218–2220. [Google Scholar]
- Liu, Y.Y.; Wu, S.J.; Li, Y.Q.; Shao, F.; Su, J.K.; Liu, X.F. A survey of mental symptoms of Chinese population based on SCL-90. Chin. Ment. Health J. 2018, 32, 437–441. [Google Scholar]
- Zhang, W.J.; Wei, M. Disability Level of the Chinese Elderly: Comparison from Multiple Data Resources. Popul. Res. 2015, 39, 34–47. [Google Scholar]
- Luan, W.J.; Yang, F.; Chuan, H.L.; Hu, H.W. The Study on the Psychological Health Status of Old People in China and Its Influencing Factors. J. Northwest Univ. 2012, 42, 75–83. [Google Scholar]
- Wu, Z.Y. Connotation assessment and research overview of mental health in the elderly. Chin. J. Gerontol. 2003, 12, 799–801. (In Chinese) [Google Scholar]
- Fu, R.; Noguchi, H. Does Marriage Make Us Healthier? Inter-Country Comparative Evidence from China, Japan, and Korea. PLoS ONE 2016, 11, e0148990. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhou, Z.; Gao, J.; Lai, S.; Chen, G. Urban-rural difference in the associations between living arrangements and the health-related quality of life (HRQOL) of the elderly in China-Evidence from Shaanxi province. PLoS ONE 2018, 13, e0204118. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.W.; Kwon, Y.D.; Park, J.; Kim, J. Body mass index and depressive symptoms in middle aged and older adults. BMC Public Health 2015, 15, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mccrea, R.L.; Berger, Y.G.; King, M.B. Body mass index and common mental disorders: Exploring the shape of the association and its moderation by age, gender and education. Int. J. Obes. 2012, 36, 414. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.L.; Daviglus, M.L.; Liu, K.; Pirzada, A.; Garside, D.B.; Schiffer, L.; Dyer, A.R.; Greenland, P. BMI and health-related quality of life in adults 65 years and older. Obes. Res. 2004, 12, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Wit, L.D.; Luppino, F.; Straten, A.V.; Penninx, B.; Zitman, F.; Cuijpers, P. Depression and obesity: A meta-analysis of community-based studies. Psychiatry Res. 2010, 178, 230–235. [Google Scholar] [CrossRef]
- Ohrnberger, J.; Fichera, E.; Sutton, M. The dynamics of physical and mental health in the older population. J. Econ. Ageing 2017, 9, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Streim, J.E. Psychosocial Well-Being Associated with Activity of Daily Living Stages Among Community-Dwelling Older Adults. Gerontol. Geriatr. Med. 2017, 3, 2333721417700011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Guan, L.; Fang, L.; Liu, C.; Fu, M.; He, H.; Wang, X. Depression among Chinese older adults: A perspective from Hukou and health inequities. J. Affect. Disord. 2017, 223, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Li, C.H. Health Difference of the Elderly between the Rural and Urban Districts. Popul. J. 2014, 36, 37–47. [Google Scholar]
- Chen, J.; Chen, S.; Landry, P.F.; Davis, D.S. How dynamics of urbanization affect physical and mental health in urban China. China Quart. 2014, 220, 988–1011. [Google Scholar] [CrossRef]
- Tian, T.; Chen, Y.; Zhu, J.; Liu, P. Effect of Air Pollution and Rural-Urban Difference on Mental Health of the Elderly in China. Iran. J. Public Health 2015, 44, 1084–1094. [Google Scholar]
- Wang, S.; Li, B.; Ungvari, G.S.; Ng, C.H.; Chiu, H.F.; Kou, C.; Liu, Y.; Tao, Y.; Wu, Y.; Fu, Y.; et al. Poor mental health status and its associations with demographic characteristics and chronic diseases in Chinese elderly. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 1449–1455. [Google Scholar] [CrossRef]
- Qu, B.; Li, X.; Liu, J.; Mao, J. Analysis of the Current Situation Regarding the Aging Rural Population in China and Proposed Countermeasures. Popul. Health Manag. 2012, 15, 181–185. [Google Scholar] [CrossRef]
- Wedgeworth, M.; LaRocca, M.A.; Chaplin, W.F.; Scogin, F. The role of interpersonal sensitivity, social support, and quality of life in rural older adults. Geriatr. Nurs. 2017, 38, 22–26. [Google Scholar] [CrossRef]
- Thapa, D.K.; Visentin, D.; Kornhaber, R.; Cleary, M. Migration of adult children and mental health of older parents ‘left behind’: An integrative review. PLoS ONE 2018, 13, e0205665. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. Available online: http://www.gov.cn/zhengce/content/2015-06/18/content_9860.htm (accessed on 6 November 2019).
Variables | Sub-Groups | Frequency (n) | Valid Percent (%) |
---|---|---|---|
Sex (28 missing values) | Male | 1441 | 49.0 |
Female | 1502 | 51.0 | |
Age (years) (13 missing values) | 60–64 | 714 | 24.1 |
65–69 | 672 | 22.7 | |
70–74 | 656 | 22.2 | |
75–79 | 431 | 14.6 | |
≥80 | 485 | 16.4 | |
Body mass index (92 missing values) | Underweight (<18.5) | 276 | 9.6 |
Normal (18.5–23.9) | 1877 | 65.2 | |
Overweight (24–27.9) | 613 | 21.3 | |
Obese (≥28) | 113 | 3.9 | |
Household registration (55 missing values) | Agricultural | 1779 | 61.0 |
Non-agricultural | 1137 | 39.0 | |
Education (years) (159 missing values) | 0 | 764 | 27.2 |
1–5 | 870 | 30.9 | |
6–8 | 453 | 16.1 | |
9–11 | 364 | 12.9 | |
≥12 | 361 | 12.8 | |
Current living area (42 missing values) | Village | 1058 | 36.1 |
The urban-rural fringe | 653 | 22.3 | |
County | 627 | 21.4 | |
Main city zone | 591 | 20.2 | |
Marital status (17 missing values) | Married/live together | 1941 | 65.7 |
others | 1013 | 34.3 | |
Average annual household income (CNY) (48 missing values) | ≤15,000 | 805 | 27.5 |
15,000–30,000 | 762 | 26.1 | |
30,000–45,000 | 665 | 22.8 | |
45,000–60,000 | 406 | 13.9 | |
≥60,000 | 285 | 9.8 | |
Living arrangement (28 missing values) | Living alone | 315 | 10.7 |
Living with spouse only | 1064 | 36.2 | |
Living with children | 1028 | 34.9 | |
Mixed habitation | 536 | 18.2 | |
Activities of daily living (32 missing values) | Normal | 2103 | 71.6 |
Decline | 836 | 28.4 |
Variables | Type | Frequency | Percentage (%) | Rankings |
---|---|---|---|---|
SOMA | Negative | 1796 | 60.5 | 1 |
Positive | 1175 | 39.5 | ||
OCD | Negative | 2135 | 71.9 | 2 |
Positive | 836 | 28.1 | ||
INT | Negative | 2332 | 78.5 | 6 |
Positive | 639 | 21.5 | ||
DEPR | Negative | 2226 | 74.9 | 4 |
Positive | 745 | 25.1 | ||
ANX | Negative | 2337 | 78.7 | 7 |
Positive | 634 | 21.3 | ||
HOST | Negative | 2369 | 79.7 | 8 |
Positive | 602 | 20.3 | ||
PHOB | Negative | 2319 | 78.1 | 5 |
Positive | 652 | 21.9 | ||
PARA | Negative | 2383 | 80.2 | 10 |
Positive | 588 | 19.8 | ||
PSYC | Negative | 2369 | 79.7 | 9 |
Positive | 602 | 20.3 | ||
Others | Negative | 2208 | 74.3 | 3 |
Positive | 763 | 25.7 | ||
Overall | Negative | 2270 | 76.4 | - |
Positive | 701 | 23.6 |
Variables | Sub-Groups | Overall Detection | χ2 | p | |
---|---|---|---|---|---|
Negative | Positive | ||||
Sex | Male | 1111 (77.1) | 330 (22.9) | 0.358 | 0.549 |
Female | 1144 (76.2) | 358 (23.8) | |||
Age (years) | 60–64 | 541 (75.8) | 173 (24.2) | 5.006 | 0.287 |
65–69 | 506 (75.3) | 166 (24.7) | |||
70–74 | 491 (74.8) | 165 (25.2) | |||
75–79 | 335 (77.7) | 96 (22.3) | |||
≥80 | 387 (79.8) | 98 (20.2) | |||
Body mass index | Underweight (<18.5) | 172 (62.3) | 104 (37.7) | 43.608 | <0.001 |
Normal (18.5–24) | 1483 (79.0) | 394 (21.0) | |||
Overweight (24–27) | 466 (76.0) | 147 (24.0) | |||
Obese (≥27) | 75 (66.4) | 38 (33.6) | |||
Education (years) | 0 | 656 (85.9) | 108 (14.1) | 61.907 | <0.001 |
1–5 | 673 (77.4) | 197 (22.6) | |||
6–8 | 311 (68.7) | 142 (31.3) | |||
9–11 | 260 (71.4) | 104 (28.6) | |||
≥12 | 262 (72.6) | 99 (27.4) | |||
Household registration | Agricultural | 1313 (73.8) | 466 (26.2) | 19.546 | <0.001 |
Non-agricultural | 920 (80.9) | 217 (19.1) | |||
Living area | Village | 763 (72.1) | 295 (27.9) | 53.601 | <0.001 |
The urban-rural fringe | 488 (74.7) | 165 (25.3) | |||
County | 547 (87.2) | 80 (12.8) | |||
Main city zone | 442 (74.8) | 149 (25.2) | |||
Marital status | Married/Cohabiting | 1512 (77.9) | 429 (22.1) | 115.402 | <0.001 |
others | 748 (73.8) | 265 (26.2) | |||
Average annual household income (CNY) | ≤15,000 | 508 (63.1) | 297 (36.9) | 115.402 | <0.001 |
15,001–30,000 | 596 (78.2) | 166 (21.8) | |||
30,001–45,000 | 548 (82.4) | 117 (17.6) | |||
45,001–60,000 | 346 (85.2) | 60 (14.8) | |||
>60,000 | 233 (81.8) | 52 (18.2) | |||
Living arrangement | Living alone | 216 (68.6) | 99 (31.4) | 33.932 | <0.001 |
Living with spouse only | 842 (79.1) | 222 (20.9) | |||
Living with children only | 751 (73.1) | 277 (26.9) | |||
Mixed habitation | 444 (82.8) | 92 (17.2) | |||
Activities of daily living | Normal | 1748 (83.1) | 355 (16.9) | 180.752 | <0.001 |
decline | 500 (59.8) | 336 (40.2) |
Variables | OR | 95% CI for OR | p | |
---|---|---|---|---|
Lower | Upper | |||
Sex (Reference Group = Male) | ||||
Female | 1.099 | 0.895 | 1.350 | 0.369 |
Age (years) (Reference group = “60–64”) | ||||
65–69 | 0.916 | 0.688 | 1.220 | 0.549 |
70–74 | 0.802 | 0.601 | 1.071 | 0.136 |
75–79 | 0.640 | 0.452 | 0.905 | 0.012 |
≥80 | 0.430 | 0.302 | 0.613 | <0.001 |
BMI (Reference Group = “Normal”) | ||||
Underweight | 1.640 | 1.200 | 2.240 | 0.002 |
Overweight | 1.125 | 0.878 | 1.443 | 0.352 |
Obese | 1.630 | 1.024 | 2.595 | 0.039 |
Education (years) (Reference Group = “6~8”) | ||||
0 | 0.224 | 0.162 | 0.310 | <0.001 |
1~5 | 0.591 | 0.449 | 0.776 | <0.001 |
9~11 | 1.060 | 0.757 | 1.483 | 0.735 |
12 | 1.139 | 0.791 | 1.639 | 0.485 |
Household registration (Reference Group = “Agricultural”) | ||||
Non-agricultural | 0.727 | 0.537 | 0.984 | 0.039 |
Living area (Reference Group = County) | ||||
Village | 1.458 | 1.018 | 2.089 | 0.040 |
Urban-rural fringe area | 1.385 | 0.977 | 1.965 | 0.068 |
Main urban area | 1.927 | 1.364 | 2.722 | <0.001 |
Marital status (Reference Group= “Married/Cohabiting”) | ||||
Others | 1.165 | 1.091 | 1.508 | 0.025 |
Average annual household income (CNY) (Reference Group= “≤15,000”) | ||||
15,001–30,000 | 0.509 | 0.394 | 0.657 | <0.001 |
30,001–45,000 | 0.426 | 0.314 | 0.579 | <0.001 |
45,001–60,000 | 0.317 | 0.217 | 0.465 | <0.001 |
>60,000 | 0.302 | 0.198 | 0.461 | <0.001 |
Living arrangement (Reference Group = “Living alone”) | ||||
Living with spouse only | 0.817 | 0.563 | 0.997 | 0.028 |
Living with children | 1.191 | 0.852 | 1.666 | 0.307 |
Mixed habitation | 0.689 | 0.472 | 0.950 | 0.035 |
ADL (Reference Group = “Normal”) | ||||
Decline | 3.945 | 3.170 | 4.911 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, W.; Zhou, J.; Liu, J.; Yang, X.; Wang, H.; He, M.; Mao, Z.; Liu, X. Social-Demographic Correlates of the Mental Health Conditions among the Chinese Elderly. Sustainability 2019, 11, 7114. https://doi.org/10.3390/su11247114
Du W, Zhou J, Liu J, Yang X, Wang H, He M, Mao Z, Liu X. Social-Demographic Correlates of the Mental Health Conditions among the Chinese Elderly. Sustainability. 2019; 11(24):7114. https://doi.org/10.3390/su11247114
Chicago/Turabian StyleDu, Wenjuan, Jiayi Zhou, Jianjian Liu, Xuhao Yang, Hanxu Wang, Meikun He, Zongfu Mao, and Xiaojun Liu. 2019. "Social-Demographic Correlates of the Mental Health Conditions among the Chinese Elderly" Sustainability 11, no. 24: 7114. https://doi.org/10.3390/su11247114
APA StyleDu, W., Zhou, J., Liu, J., Yang, X., Wang, H., He, M., Mao, Z., & Liu, X. (2019). Social-Demographic Correlates of the Mental Health Conditions among the Chinese Elderly. Sustainability, 11(24), 7114. https://doi.org/10.3390/su11247114