Consumers’ Valuation of Farmers’ Varieties for Food System Diversity
Abstract
:1. Introduction
- Are consumers aware of the loss in cultivated diversity, its causes, and consequences (problem awareness)? How does consumers’ problem awareness differ between countries and consumer segments?
- Do consumers approve of the idea of farmers’ varieties as a means to increase the diversity in the food system (solution approval)? How does consumers’ solution approval differ between countries and consumer segments?
- Would consumers be willing to pay a premium for farmers’ tomato varieties (consumers’ valuation)? What are the determinants of potential differences in WTP among consumer segments?
2. Methodology
2.1. The Elicitation of Willingness to Pay
2.1.1. The Price Sensitivity Meter
- Q1: At which price would you consider the product to be cheap—a great buy for the money?
- Q2: At which price would you consider the product to be expensive, but you would still consider buying it?
- Q3: At which price would you consider the product to be too expensive for you to not consider buying it?
- Q4: At which price would you consider the product to be too cheap that you would question its quality?
2.2. Data Collection and Sample Characteristics
2.3. The Survey
- (1)
- Welcome and Introduction.
- (2)
- Screening (eligibility test, including tomato purchase frequency) and quota management (identification of age, gender, and region).
- (3)
- Current food purchase behavior: Importance of purchase criteria for vegetables.
- (4)
- WTP for preferred tomato offer in a supermarket setting using open-format PSM (baseline) (see Figure 1).
- (5)
- Problem awareness: agreement/disagreement with a set of eleven statements on a scale from 1 (fully disagree) to 10 (fully agree), including do not know (see Appendix A Table A1 variable ATT BDIV to ATT STD).
- (6)
- Information treatment: presentation of problem (loss in diversity) and possible solution (farmers’ varieties to increase diversity) (see Figure 2 and Figure 3), solution approval (yes/no/yes and no), ranking of a hypothetical label for farmers’ varieties on a scale from 1 (the lowest rank = most important) to 10 (the highest rank = least important).
- (7)
- WTP for the farmers’ varieties version of the preferred tomato offer using open-format PSM (see Figure 4).
- (8)
- Socio-demographic characteristics (including organic purchase frequency).
- Q1: At what price per kilogram would you say: “These tomatoes are cheap. I am going to buy them.”?
- Q2: At what price per kilogram would you say: “These tomatoes are quite expensive, but I am still going to buy them.”?
- Q3: At what price per kilogram would you say: “These tomatoes are too expensive. I am not going to buy them.”?
- Q4: At what price per kilogram would you say: “These tomatoes are too cheap. I have doubts about the tomatoes’ quality. I am not going to buy them.”?
3. Results
3.1. Vegetable Purchase Behavior, Problem Awareness, and Approval of Farmers’ Varieties: Total Sample and Country-Specific Differences
3.2. Sociodemographic Characteristics, Vegetable Purchase Behavior, Problem Awareness, and Approval of Farmers’ Varieties: Segment-Specific Differences
3.3. Willingness to Pay a Premium for Farmers’ Varieties by Country and Consumer Segment
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Question Number | Variable Name | Scale | Categories/Scale | Meaning |
---|---|---|---|---|
S05 | AGE | Continuous | - | Age in number of years |
S05 | C_AGE | Ordinal | 18–29 | Age classified |
30–44 | ||||
45–59 | ||||
60–79 | ||||
F410 | GEN | Nominal | FEMALE | Gender |
MALE | ||||
F460 | EDUC | Ordinal | LOW | Education classified |
MEDIUM (MED) | ||||
HIGH | ||||
NO ANSWER (NA) | ||||
F470 | INC | Ordinal | LOW | Income classified |
MEDIUM (MED) | ||||
HIGH | ||||
NO ANSWER (NA) | ||||
F130B | OFFER | Nominal | Offer without any labels (O1) | Tomato offer chosen |
Offer with organic label (O2) | ||||
Offer with regional label (O3) | ||||
Offer with organic and regional label (O4) | ||||
F240 | DFLIKE | Nominal | YES | Liking of Diversifood |
NO | ||||
PARTLY (PART) | ||||
DON’T KNOW (DKNOW) | ||||
F490 | ORG PUR | Continuous | From Never (1) to Very often (6) | Organic food purchasing frequency |
F120B03 | IMP REG | Continuous | From Least important (1) to Most important (100) | Importance of purchasing criterion when buying vegetables: “produced in your region (as indicated by the brand or a label)” |
F120B07 | IMP NAT | Continuous | Same as above | …: “produced in your country” |
F120B06 | IMP TAS | Continuous | Same as above | …: “good taste (as indicated by the brand or a label)” |
F120B02 | IMP ORG | Continuous | Same as above | …: “organic or pesticide-free (as indicated by the brand or a label)” |
F120B05 | IMP APP | Continuous | Same as above | …: “impeccable and fresh appearance” |
F120B04 | IMP PRI | Continuous | Same as above | …: “good price (in relation to other offers of the same vegetable category)” |
F120B01 | IMP TRA | Continuous | Same as above | …: “traditional, old variety (as indicated by the brand or a label)” |
F120B08 | IMP COL | Continuous | Same as above | …: “special or unfamiliar color” |
F120B09 | IMP SH/SI | Continuous | Same as above | …: “special or unfamiliar shape or size” |
F20006 | ATT BDIV | Continuous | From Fully disagree (1) to Fully agree (10)/Do not know/no answer | Agreement with the following statement: “Diversity of life (= biodiversity) is important.” |
F20007 | ATT BREE1 | Continuous | Same as above | …: “Farmers should breed their own vegetable varieties and not be dependent on industrially bred varieties.” |
F20009 | ATT SEED | Continuous | Same as above | …: “Seeds should be free to use for everyone.” |
F20010 | ATT APP | Continuous | Same as above | …: “Vegetables don’t necessarily have to look pretty, above all they have to be tasty.” |
F20008 | ATT BREE2 | Continuous | Same as above | …: “The multiplication of seeds should again be in the hands of farmers and not anymore in the hands of a few large multinational firms.” |
F20005 | ATT ABDIV | Continuous | Same as above | …: “More diversity on the plate means more diversity of life (= biodiversity).” |
F20011 | ATT IND | Continuous | Same as above | …: “If I buy a vegetable I want to know if it is an industrial variety or not.” |
F20003 | ATT TRA | Continuous | Same as above | …: “I want to be able to buy traditional and old vegetable varieties.” |
F20002 | ATT DIV | Continuous | Same as above | …: “Within a vegetable category (e.g., tomatoes or carrots) I want to be able to choose among different varieties that differ with respect to color, shape, taste, etc.” |
F20004 | ATT TAS | Continuous | Same as above | …: “In the past vegetables used to be much more tasty.” |
F20001 | ATT STD | Continuous | Same as above | …: “The offer of vegetables is generally very limited and highly standardized.” |
F280 | IMP DF | Continuous | Rank from Most important (1) to Least important (10) | Importance of Diversifood Label among other nine purchasing criteria in the previous question (including IMP REG, IMP NAT, etc.) (This question was only asked if DFLIKE = YES OR PARTLY |
Appendix B
Offer 1 [91] 1 (1) | Offer 2 [47] (2) | Offer 3 [213] (3) | Offer 4 [149] (4) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Price Points (In EUR) | DF No (N) | DF Yes (Y) | Diff | %change | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change |
Average max WTP 2 | 4.00 (4 4) | 4.50 (4) | 0.50 *** 3 (ns) | +13% (ns) | 4.90 (4) | 5.50 (4) | 0.60 *** (ns) | +12% (ns) | 4.70 (4) | 5.20 (4) | 0.50 *** (ns) | +11% (ns) | 6.30 (123) | 7.10 (123) | 0.80 *** (ns) | +13% (ns) |
Indifference Price 2 | 3.10 | 3.70 | 0.60 | +19% | 3.90 | 4.40 | 0.50 | +13% | 3.80 | 4.10 | 0.30 | +8% | 4.70 | 5.20 | 0.50 | +11% |
Offer 1 [87] 1 | Offer 2 [44] | Offer 3 [170] | Offer 4 [195] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Price Points (In EUR) | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change |
Average max WTP 2 | 2.30 (24 4) | 2.50 (24) | 0.20 ** 3 (ns) | 9% (ns) | 3.50 (1) | 3.50 (1) | 0.00 ns (ns) | 0% (ns) | 2.90 (4) | 3.00 (4) | 0.10 * (ns) | 3% (ns) | 3.50 (13) | 3.70 (13) | 0.20 *** (ns) | 6% (ns) |
Indifference Price 2 | 1.80 | 2.00 | 0.20 | 11% | 2.60 | 3.00 | 0.40 | 15% | 2.00 | 2.10 | 0.10 | 5% | 2.80 | 3.00 | 0.20 | 7% |
Offer 1 [63] 1 | Offer 2 [51] | Offer 3 [168] | Offer 4 [223] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Price Points (In EUR) | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change |
Average max WTP 2 | 2.10 (ns 4) | 2.20 (ns) | 0.10 ns 3 (ns) | 5% (ns) | 2.70 (ns) | 2.90 (ns) | 0.20 ns (ns) | 7% (ns) | 2.30 (ns) | 2.40 (ns) | 0.10 *** (ns) | 4% (ns) | 2.70 (ns) | 2.90 (ns) | 0.20 *** (ns) | 7% (ns) |
Indifference Price 2 | 1.50 | 2.00 | 0.50 | 33% | 2.00 | 2.10 | 0.10 | 5% | 1.60 | 1.90 | 0.30 | 19% | 2.00 | 2.00 | 0.00 | 0% |
Offer 1 [95]1 | Offer 2 [68] | Offer 3 [150] | Offer 4 [253] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Price Points (In EUR) | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change | DF No | DF Yes | Diff | %change |
Average max WTP 2 | 2.00 (ns 4) | 2.20 (ns) | 0.20 ** 3 (ns) | 10% (ns) | 3.20 (ns) | 3.40 (ns) | 0.20 ** (ns) | 6% (ns) | 2.30 (ns) | 2.30 (ns) | 0.00 ns (ns) | 0% (ns) | 2.80 (ns) | 2.80 (ns) | 0.00 ns (ns) | 0% (ns) |
Indifference Price 2 | 1.30 | 1.50 | 0.20 | 15% | 1.90 | 2.00 | 0.10 | 5% | 1.30 | 1.40 | 0.10 | 8% | 1.60 | 1.80 | 0.20 | 13% |
References
- Hufford, M.B.; Berny Mier y Teran, J.C.; Gepts, P. Crop biodiversity: An unfinished magnum opus of nature. Annu. Rev. Plant Biol. 2019, 70, 727–751. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.L.; Ceccarelli, S.; Blair, M.W.; Upadhyaya, H.D.; Are, A.K.; Ortiz, R. Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci. 2016, 21, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S. Evolution, plant breeding and biodiversity. J. Agric. Environ. Int. Dev. 2009, 103, 131–145. [Google Scholar]
- Biodiversity International. Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index; Bioversity International Rome: Rome, Italy, 2017. [Google Scholar]
- Diamond, J. The local origins of domestication. In Biodiversity in Agriculture: Domestication, Evolution and Sustainability; Gepts, P., Famula, T.R., Bettinger, R.L., Brush, S.B., Damania, A.B., McGuire, P.E., Qualset, C.O., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 9–18. [Google Scholar]
- Jackson, L.E.; Pascual, U.; Hodgkin, T. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric. Ecosyst. Environ. 2007, 121, 196–210. [Google Scholar] [CrossRef]
- Hammer, K.; Arrowsmith, N.; Gladis, T. Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 2003, 90, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Qualset, C.; McGuire, P.; Warburton, M. In california: Agrobiodiversitykey to agricultural productivity. Calif. Agric. 1995, 49, 45–49. [Google Scholar] [CrossRef]
- Kastler, G.; Moÿ, A.-C. The european union directive on conservation varieties and its incompatibility with on-farm management of plant genetic resources. In Community Biodiversity Management: Promoting Resilience and the Conservation of Plant Genetic Resources, 1st ed.; De Boef, W.S., Subedi, A., Peroni, N., Thijssen, M., O’Keeffe, E., Eds.; Routledge: London, UK, 2013; pp. 366–371. [Google Scholar]
- Gruber, K. Agrobiodiversity: The living library. Nature 2017, 544, S8. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Plant Genetic Resources for Food and Agriculture; Food and Agricultural Organisation of the United Nations: Rome, Italy, 1997; p. 540. [Google Scholar]
- Khoury, C.K. The Conservation and Use of Crop Genetic Resources for Food Security; Wageningen University: Wageningen, The Netherlands, 2015. [Google Scholar]
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef] [Green Version]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, R.; Jarvis, D.I.; Gemmill-Herren, B. The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ. 2008, 123, 261–270. [Google Scholar] [CrossRef]
- Brunori, G.; Rossi, A.; D’Amico, S.A.; D’Amico, S. A comprehensive and participatory approach to the valorisation of biodiverse products. In Food Diversity between Rights, Duties and Autonomies; Isoni, A., Troisi, M., Pierri, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 3–22. [Google Scholar]
- Andersen, R. The international treaty on plant genetic resources for food and agriculture: Toward the realization of farmers’ rights as a means of protecting and enhancing crop genetic diversity. In Routledge Handbook of Biodiversity and the Law; Routledge: London, UK, 2017; pp. 135–153. [Google Scholar]
- De Boef, W.S.; Subedi, A.; Peroni, N.; Thijssen, M.; O’Keeffe, E. Community biodiversity management and in situ conservation of plant genetic resources. In Community Biodiversity Management; Routledge: London, UK, 2013; pp. 85–96. [Google Scholar]
- Oehen, B.; Meier, C.; Holzherr, P.; Förster, I. Strategies to Valorise Agrobiodiversity. In Proceedings of the 13th European International Farming Systems Association (IFSA) Symposium, Farming Systems: Facing Uncertainties and Enhancing Opportunities, Chania, Crete, Greece, 1–5 July 2018; International Farming Systems Association (IFSA) Europe: Vienna, Austria, 2018; pp. 1–11. [Google Scholar]
- Bocci, R.; Chable, V. Peasant seeds in europe: Stakes and prospects. J. Agric. Environ. Int. Dev. 2009, 103, 81–93. [Google Scholar]
- Ceccarelli, S.; Grando, S. From participatory to evolutionary plant breeding. Farmers Plant Breed. Curr. Approaches Perspect. 2019, 231. [Google Scholar] [CrossRef]
- Bellon, M.R.; Dulloo, E.; Sardos, J.; Thormann, I.; Burdon, J.J. In situ conservation—Harnessing natural and human-derived evolutionary forces to ensure future crop adaptation. Evol. Appl. 2017, 10, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Jager, M.; van Loosen, I.; Giuliani, A. How have markets affected the governance of agrobiodiversity. In Agrobiodiversity: Integrating Knowledge for a Sustainable Future; Zimmerer, K.S., De Haan, S., Eds.; MIT Press: Cambridge, MA, USA, 2019; pp. 303–319. [Google Scholar]
- Corrado, C.; Elena, T.; Giancarlo, R.; Stefano, C. The role of agrobiodiversity in sustainable food systems design and management. In Genetic Diversity in Horticultural Plants; Springer: Cham, Switzerland, 2019; pp. 245–271. [Google Scholar]
- Lamine, C.; Dawson, J. The agroecology of food systems: Reconnecting agriculture, food, and the environment. Agroecol. Sustain. Food Syst. 2018, 42, 629–636. [Google Scholar] [CrossRef]
- Rey, F.; Chable, V.; Nuijten, E.; Rossi, A.; Oehen, B.; Padel, S.; Andersen, R. Innovative approaches to embed diversity in food systems: Diversfood outcomes from field to plate. Available online: http://www.diversifood.eu/publications/booklets-and-reports/ (accessed on 9 December 2019).
- Dinis, I.; Simoes, O.; Moreira, J. Using sensory experiments to determine consumers’ willingness to pay for traditional apple varieties. Span. J. Agric. Res. 2011, 9, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Hamm, U.; Feindt, P.H.; Wätzold, F.; Wolters, V.; Backes, G.; Bahrs, E.; Brandt, H.; Dempfle, L.; Engels, E.-M.; Engels, J.; et al. Verbraucher Für die Erhaltung der Biologischen Vielfalt in der Landwirtschaft Aktivieren! Wissenschaftlicher Beirat für Biodiversität und Genetische Ressourcen beim BMEL: Bonn, Germany, 2016; p. 9. [Google Scholar]
- Verain, M.; Sijtsema, S.; Dagevos, H.; Antonides, G. Attribute segmentation and communication effects on healthy and sustainable consumer diet intentions. Sustainability 2017, 9, 743. [Google Scholar] [CrossRef] [Green Version]
- Aprile, M.C.; Caputo, V.; Nayga, R.M., Jr. Consumers’ valuation of food quality labels: The case of the european geographic indication and organic farming labels. Int. J. Consum. Stud. 2012, 36, 158–165. [Google Scholar] [CrossRef]
- Brach, S.; Walsh, G.; Shaw, D. Sustainable consumption and third-party certification labels: Consumers’ perceptions and reactions. Eur. Manag. J. 2018, 36, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Weaver, R.D.; Evans, D.J.; Luloff, A. Pesticide use in tomato production: Consumer concerns and willingness-to-pay. Agribusiness 1992, 8, 131–142. [Google Scholar] [CrossRef]
- Balogh, P.; Békési, D.; Gorton, M.; Popp, J.; Lengyel, P. Consumer willingness to pay for traditional food products. Food Policy 2016, 61, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Botelho, A.; Dinis, I.; Lourenço-Gomes, L.; Moreira, J.; Costa Pinto, L.; Simões, O. The role of consumers in agrobiodiversity conservation: The case of traditional varieties of apples in portugal. Agroecol. Sustain. Food Syst. 2018, 42, 796–811. [Google Scholar] [CrossRef]
- Brugarolas, M.; Martínez-Carrasco, L.; Martínez-Poveda, A.; Ruiz-Martínez, J. A competitive strategy for vegetable products: Traditional varieties of tomato in the local market. Span. J. Agric. Res. 2009, 7, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.J.; García-Martínez, S.; Picó, B.; Gao, M.; Quiros, C.F. Genetic variability and relationship of closely related spanish traditional cultivars of tomato as detected by srap and ssr markers. J. Am. Soc. Hortic. Sci. 2005, 130, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Resano, H.; Sanjuán, A.I. Exploring the role of mountain origin and autochthonous breed on urban consumers’ acceptability. Sustainability 2018, 10, 4423. [Google Scholar] [CrossRef] [Green Version]
- Rocchi, L.; Paolotti, L.; Cortina, C.; Boggia, A. Conservation of landrace: The key role of the value for agrobiodiversity conservation. An application on ancient tomatoes varieties. Agric. Agric. Sci. Procedia 2016, 8, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Tienhaara, A.; Ahtiainen, H.; Pouta, E. Consumers as conservers—Could consumers’ interest in a specialty product help to preserve endangered finncattle? Agroecol. Sustain. Food Syst. 2013, 37, 1017–1039. [Google Scholar] [CrossRef]
- Tyack, N.; Ščasný, M. Social valuation of genebank activities: Assessing public demand for genetic resource conservation in the czech republic. Sustainability 2018, 10, 3997. [Google Scholar] [CrossRef] [Green Version]
- Lauterbach, J.; Bantle, D. (k) ein label für die vielfalt? Verbrauchereinstellungen zur agrobiodiversität. In Proceedings of the Innovatives Denken für eine nachhaltige Land-und Ernährungswirtschaft. Beiträge zur 15. Wissenschaftstagung Ökologischer Landbau, Kassel, Germany, 5–8 March 2019. [Google Scholar]
- Bantle, C.; Hamm, U. Der bezug von verbrauchern zu agrobiodiversität–grundlagen für eine zielgruppengerechte kommunikation. Berichte über Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft 2014, 92. [Google Scholar] [CrossRef]
- 9 Key-Concepts for Food Diversity. Available online: shorturl.at/hrKMP (accessed on 9 December 2019).
- Lusk, J.L.; Hudson, D. Willingness-to-pay estimates and their relevance to agribusiness decision making. Appl. Econ. Perspect. Policy 2004, 26, 152–169. [Google Scholar] [CrossRef]
- Carson, R.T.; Louviere, J.J. A common nomenclature for stated preference elicitation approaches. Environ. Resour. Econ. 2011, 49, 539–559. [Google Scholar] [CrossRef] [Green Version]
- Carson, R.T.; Groves, T. Incentive and informational properties of preference questions. Environ. Resour. Econ. 2007, 37, 181–210. [Google Scholar] [CrossRef]
- Carson, R.T. Contingent Valuation: A User’s Guide; ACS Publications: Washington, DC, USA, 2000. [Google Scholar]
- Van Westendrop, P.H. Nss Price Sensitivity Meter: A New Approach to Study Consumer Perception of Prices; ESOMAR Congress: Venice, Italy, 1976. [Google Scholar]
- Roll, O.; Achterberg, L.-H.; Herbert, K.-G. Innovative approaches to analyzing the price sensitivity meter: Results of an international comparative study. Laurea Publ. A 72 2010, 181. [Google Scholar]
- Harmon, R.R.; Unni, R.; Anderson, T.R. PICMET’07-2007 Portland International Conference on Management of Engineering & Technology. In Price Sensitivity Measurement and New Product Pricing: A Cognitive Response Approach; IEEE: New York, NY, USA, 2007; pp. 1961–1967. [Google Scholar]
- Janssen, M.; Hamm, U. Product labelling in the market for organic food: Consumer preferences and willingness-to-pay for different organic certification logos. Food Qual. Prefer. 2012, 25, 9–22. [Google Scholar] [CrossRef]
- Vukasovič, T. Consumers’ perceptions and behaviors regarding organic fruits and vegetables: Marketing trends for organic food in the twenty-first century. J. Int. Food Agribus. Mark. 2016, 28, 59–73. [Google Scholar] [CrossRef]
- Fernández-Ferrín, P.; Calvo-Turrientes, A.; Bande, B.; Artaraz-Miñón, M.; Galán-Ladero, M.M. The valuation and purchase of food products that combine local, regional and traditional features: The influence of consumer ethnocentrism. Food Qual. Prefer. 2018, 64, 138–147. [Google Scholar] [CrossRef]
- Lazzarini, G.A.; Visschers, V.H.; Siegrist, M. Our own country is best: Factors influencing consumers’ sustainability perceptions of plant-based foods. Food Qual. Prefer. 2017, 60, 165–177. [Google Scholar] [CrossRef]
- Bolliger, C.; Réviron, S. Consumer Willingness to Pay for Swiss Chicken Meat: An In-Store Survey to Link Stated and Revealed Buying Behaviour. In Proceedings of the 2008 International Congress, Ghent, Belgium, 26–29 August 2008. [Google Scholar]
- Götze, F.; Brunner, T.A. Sustainability and country-of-origin. Br. Food J. 2019. Ahead-of-print. [Google Scholar]
- Goldman, B.J.; Clancy, K.L. A survey of organic produce purchases and related attitudes of food cooperative shoppers. Am. J. Altern. Agric. 1991, 6, 89–96. [Google Scholar] [CrossRef]
- Ravenswaay, E.O.V.; Hoehn, J.P. Consumer Willingness to Pay for Reducing Pesticide Residues in Food: Results of a Nationwide Survey; Michigan State University: East Lansing, MI, USA, 1991. [Google Scholar]
- Lin, B.H.; Payson, S.; Wertz, J. Opinions of professional buyers toward organic produce: A case study of mid-atlantic market for fresh tomatoes. Agribus. An Int. J. 1996, 12, 89–97. [Google Scholar] [CrossRef]
- Torjusen, H.; Sangstad, L.; O’Doherty Jensen, K.; Kjærnes, U. European Consumers’ Conceptions of Organic Food: A Review of Available Research; National Institute for Consumer Research: Oslo, Norway, 2004. [Google Scholar]
- Shafie, F.A.; Rennie, D. Consumer perceptions towards organic food. Procedia Soc. Behav. Sci. 2012, 49, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Naspetti, S.; Zanoli, R. Organic consumption as a change of mind? Exploring consumer narratives using a structural cognitive approach. J. Int. Food Agribus. Mark. 2014, 26, 258–285. [Google Scholar] [CrossRef]
- Zanoli, R.; Naspetti, S. Consumer motivations in the purchase of organic food: A means-end approach. Br. Food J. 2002, 104, 643–653. [Google Scholar] [CrossRef] [Green Version]
CH (S) [500] 1 | FR (F) [496] | IT (I) [505] | ESP (E) [566] | TOT [2067] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables Nominal | Levels | n | Share 2 | n | Share | n | Share | n | Share | n | Share |
GEN | MALE | 241 | 0.48 (0.1 3) | 227 | 0.51 (−1.2) | 246 | 0.51 (0.3) | 280 | 0.51 (0.8) | 994 | 0.50 |
FEMALE | 259 | 0.52 (−0.1) | 269 | 0.49 (1.2) | 259 | 0.49 (−0.3) | 286 | 0.49 (−0.8) | 1073 | 0.50 | |
EDUC | LOW | 10 | 0.02 (−5.0) | 50 | 0.10 (3.0) | 49 | 0.09 (2.7) | 36 | 0.06 (−0.8) | 145 | 0.07 |
MED | 174 | 0.35 (−1.3) | 95 | 0.19 (−9.8) | 261 | 0.52 (7.5) | 247 | 0.43 (3.4) | 777 | 0.38 | |
HIGH | 308 | 0.63 (3.8) | 350 | 0.71 (8.0) | 194 | 0.39 (−8.7) | 283 | 0.50 (−2.9) | 1135 | 0.56 | |
NA | 8 | - | 1 | - | 1 | - | 0 | - | 10 | - | |
INC | LOW | 140 | 0.35 (0.5) | 215 | 0.44 (6.7) | 194 | 0.45 (6.1) | 58 | 0.11 (−12.7) | 607 | 0.33 |
MED | 170 | 0.42 (−4.3) | 179 | 0.39 (−6.6) | 177 | 0.41 (−4.6) | 409 | 0.78 (14.7) | 935 | 0.51 | |
HIGH | 99 | 0.24 (5.2) | 78 | 0.16 (0.4) | 58 | 0.14 (−1.5) | 56 | 0.11 (−3.8) | 291 | 0.16 | |
NA | 91 | - | 24 | - | 76 | - | 43 | - | 234 | - | |
Variables Continuous | n | 2 | n | n | n | n | |||||
AGE | 500 | 45.1 (ns 4) | 496 | 45.9 (ns) | 505 | 47.2 (ns) | 566 | 45.5 (ns) | 2067 | 45.9 |
CH (S) [500] 1 | FR (F) [496] | IT (I) [505] | ESP (E) [566] | TOT [2067] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables Nominal | Levels | n | Share 2 | n | Share | n | Share | n | Share | n | Share |
OFFER | O1 | 91 | 0.18 (1.4 3) | 87 | 0.18 (0.9) | 63 | 0.12 (−2.6) | 95 | 0.17 (0.4) | 336 | 0.16 |
O2 | 47 | 0.09 (−0.6) | 44 | 0.09 (−1.1) | 51 | 0.10 (−0.1) | 68 | 0.12 (1.7) | 210 | 0.10 | |
O3 | 213 | 0.43 (4.7 ) | 170 | 0.34 (0.2) | 168 | 0.33 (−0.4) | 150 | 0.27 (−4.4) | 701 | 0.34 | |
O4 | 149 | 0.30 (−5.2) | 195 | 0.39 (−0.2) | 223 | 0.44 (2.4) | 253 | 0.45 (2.9) | 820 | 0.40 | |
DFLIKE | YES | 374 | 0.80 (0.1) | 350 | 0.79 (−0.2) | 367 | 0.79 (−0.7) | 405 | 0.81 (0.8) | 1496 | 0.80 |
NO | 13 | 0.03 (−2.3) | 35 | 0.08 (3.6) | 14 | 0.03 (−2.0) | 27 | 0.05 (0.8) | 89 | 0.05 | |
PART | 81 | 0.17 (1.2) | 56 | 0.13 (−1.9) | 86 | 0.18 (2.0) | 68 | 0.13 (−1.4) | 291 | 0.15 | |
DKNOW | 32 | - | 55 | - | 38 | - | 66 | - | 185 | - | |
Variables Continuous | n | 2 | n | n | n | n | |||||
ORG PUR | 500 | 4.1 (F4) | 496 | 3.9 (SI) | 505 | 4.1 (F) | 566 | 4.0 (ns) | 2067 | 4.0 | |
IMP REG | 500 | 81.7 (FIE) | 496 | 71.4 (SE) | 505 | 69.9 (SE) | 566 | 60.4 (SFI) | 2067 | 70.5 | |
IMP NAT | 500 | 79.8 (FIE) | 496 | 70.1 (SE) | 505 | 71.8 (SE) | 566 | 57.8 (SFI) | 2067 | 69.5 | |
IMP TAS | 500 | 76.9 (E) | 496 | 78.6 (ns) | 505 | 75.9 (E) | 566 | 80.2 (SI) | 2067 | 78.0 | |
IMP ORG | 500 | 61.7 (I) | 496 | 63.6 (ns) | 505 | 68.1 (SE) | 566 | 58.9 (I) | 2067 | 62.9 | |
IMP APP | 500 | 60.2 (FIE) | 496 | 55.0 (SIE) | 505 | 67.1 (SF) | 566 | 69.5 (SF) | 2067 | 63.2 | |
IMP PRI | 500 | 57.2 (FE) | 496 | 62.0 (S) | 505 | 60.2 (E) | 566 | 66.0 (SI) | 2067 | 61.5 | |
IMP TRA | 500 | 27.5 (F) | 496 | 32.1 (S) | 505 | 28.9 (ns) | 566 | 30.7 (ns) | 2067 | 29.8 | |
IMP COL | 500 | 7.2 (FE) | 496 | 10.9 (SE) | 505 | 9.1 (E) | 566 | 14.3 (SFI) | 2067 | 10.5 | |
IMP SH/SI | 500 | 6.9 (E) | 496 | 9.7 (E) | 505 | 8.1 (E) | 566 | 13.4 (SFI) | 2067 | 9.6 | |
ATT BDIV 5 | 488 | 8.0 (E) | 478 | 8.0 (E) | 487 | 7.8 (ns) | 551 | 7.6 (SF) | 2004 | 7.9 | |
ATT BREE1 | 488 | 7.9 (I) | 481 | 8.1 (ns) | 495 | 8.3 (S) | 554 | 8.1 (ns) | 2018 | 8.1 | |
ATT SEED | 465 | 7.9 (ns) | 470 | 7.8 (ns) | 488 | 7.9 (ns) | 545 | 7.9 (ns) | 1968 | 7.8 | |
ATT APP | 498 | 7.8 (F) | 487 | 8.3 (SI) | 499 | 7.8 (F) | 561 | 8.0 (ns) | 2045 | 8.0 | |
ATT BREE2 | 475 | 7.8 (FIE) | 478 | 8.2 (S) | 489 | 8.1 (S) | 547 | 8.2 (S) | 1989 | 8.1 | |
ATT ABDIV | 485 | 7.3 (F) | 476 | 7.9 (SE) | 478 | 7.5 (E) | 538 | 7.1 (FI) | 1977 | 7.4 | |
ATT IND | 494 | 7.3 (FIE) | 480 | 7.7 (SI) | 498 | 8.1 (SFE) | 558 | 7.7 (SI) | 2030 | 7.7 | |
ATT TRA | 492 | 6.8 (FIE) | 486 | 7.5 (S) | 495 | 7.7 (SE) | 552 | 7.3 (SI) | 2025 | 7.3 | |
ATT DIV | 498 | 6.7 (FIE) | 486 | 7.6 (S) | 496 | 7.5 (S) | 557 | 7.4 (S) | 2037 | 7.3 | |
ATT TAS | 446 | 6.2 (FIE) | 477 | 8.0 (SE) | 490 | 8.3 (S) | 557 | 8.4 (SF) | 1970 | 7.8 | |
ATT STD | 488 | 5.4 (FIE) | 483 | 7.2 (S) | 490 | 7.0 (S) | 554 | 6.9 (S) | 2015 | 6.6 | |
IMP DF 6 | 455 | 4.4 (FI) | 406 | 3.8 (SI) | 453 | 5.5 (SFE) | 473 | 4.1 (I) | 1790 | 4.4 |
Switzerland [500] | France [496] | Italy [505] | Spain [566] | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O1 [91] 1 | O2 [47] | O3 [213] | O4 [149] | O1 [87] | O2 [44] | O3 [170] | O4 [195] | O1 [63] | O2 [51] | O3 [168] | O4 [223] | O1 [95] | O2 [68] | O3 [150] | O4 [253] | |||||
Variables Nominal | Share 2 | Share | Share | Share | n | Share | Share | Share | Share | n | Share | Share | Share | Share | n | Share | Share | Share | Share | n |
TOTAL | 0.18 | 0.09 | 0.43 | 0.30 | 500 | 0.18 | 0.09 | 0.34 | 0.39 | 496 | 0.12 | 0.10 | 0.33 | 0.44 | 505 | 0.17 | 0.12 | 0.27 | 0.45 | 566 |
GEN | ||||||||||||||||||||
FEMALE | 0.17 (−1.0 3) | 0.09 (−0.4) | 0.47 (1.9) | 0.28 (−1.0) | 259 | 0.17 (0.7) | 0.08 (−0.6) | 0.32 (−1.2) | 0.41 (1.0) | 269 | 0.12 (−0.6) | 0.07 (−2.4) | 0.36 (1.7) | 0.45 (0.3) | 259 | 0.19 (1.3) | 0.10 (−1.4) | 0.28 (0.8) | 0.43 (−0.8) | 286 |
MALE | 0.20 (1.0) | 0.10 (0.4) | 0.38 (−1.9) | 0.32 (1.0) | 241 | 0.16 (−0.7) | 0.09 (0.6) | 0.36 (1.2) | 0.38 (−1.0) | 227 | 0.13 (0.6) | 0.14 (2.4) | 0.30 (−1.7) | 0.43 (−0.3) | 246 | 0.15 (−1.3) | 0.14 (1.4) | 0.25 (−0.8) | 0.47 (0.8) | 280 |
EDUC | ||||||||||||||||||||
LOW | 0.33 (1.1) | 0.08 (0.0) | 0.33 (−0.2) | 0.25 (−0.7) | 10 | 0.27 (1.7) | 0.21 (2.9) | 0.29 (−1.0) | 0.23 (−2.0) | 50 | 0.15 (0.4) | 0.11 (0.0) | 0.40 (1.2) | 0.34 (−1.4) | 49 | 0.17 (0.0) | 0.19 (1.4) | 0.36 (1.4) | 0.28 (−2.1) | 36 |
MED | 0.21 (1.1) | 0.08 (−1.2) | 0.50 (2.5) | 0.22 (−2.9) | 174 | 0.16 (−0.5) | 0.03 (−2.2) | 0.45 (2.3) | 0.36 (−0.5) | 95 | 0.12 (−0.4) | 0.08 (−2.2) | 0.36 (1.5) | 0.45 (0.2) | 261 | 0.20 (1.9) | 0.12 (−0.2) | 0.26 (−0.1) | 0.42 (−1.3) | 247 |
HIGH | 0.16 (−1.4) | 0.11 (1.1) | 0.39 (−2.5) | 0.35 (3.1) | 308 | 0.16 (−0.7) | 0.09 (0.0) | 0.33 (−1.3) | 0.42 (1.8) | 350 | 0.13 (0.2) | 0.14 (2.2) | 0.27 (−2.3) | 0.46 (0.7) | 194 | 0.14 (−1.9) | 0.12 (−0.5) | 0.25 (−0.6) | 0.50 (2.3) | 283 |
INC | ||||||||||||||||||||
LOW | 0.21 (1.4) | 0.09 (−0.1) | 0.41 (−0.7) | 0.30 (−0.3) | 140 | 0.23 (2.8) | 0.10 (0.5) | 0.30 (−1.9) | 0.37 (−0.7) | 215 | 0.17 (2.4) | 0.08 (−1.5) | 0.28 (−1.1) | 0.46 (0.3) | 194 | 0.21 (0.7) | 0.05 (−1.7) | 0.36 (1.7) | 0.38 (−0.9) | 58 |
MED | 0.17 (−0.4) | 0.08 (−0.3) | 0.47 (1.2) | 0.28 (−0.8) | 170 | 0.13 (−1.9) | 0.09 (0.2) | 0.41 (2.4) | 0.36 (−0.9) | 179 | 0.08 (−2.3) | 0.12 (0.6) | 0.35 (1.3) | 0.44 (−0.1) | 177 | 0.17 (−0.7) | 0.13 (1.3) | 0.25 (−1.5) | 0.45 (1.0) | 409 |
HIGH | 0.14 (−1.1) | 0.10 (0.5) | 0.41 (−0.6) | 0.35 (1.3) | 99 | 0.13 (−1.3) | 0.06 (−0.9) | 0.32 (−0.5) | 0.49 (2.1) | 78 | 0.12 (−0.2) | 0.16 (1.3) | 0.29 (−0.4) | 0.43 (−0.3) | 58 | 0.18 (0.1) | 0.13 (0.1) | 0.27 (0.3) | 0.42 (−0.4) | 56 |
DFLIKE | ||||||||||||||||||||
YES | 0.14 (−4.4) | 0.11 (1.9) | 0.40 (−1.6) | 0.36 (4.1) | 374 | 0.17 (0.7) | 0.07 (−2.1) | 0.31 (−1.7) | 0.44 (2.3) | 350 | 0.11 (−1.0) | 0.13 (2.4) | 0.30 (−1.7) | 0.47 (0.8) | 367 | 0.15 (−1.7) | 0.12 (−0.1) | 0.24 (−1.5) | 0.49 (2.7) | 405 |
NO | 0.15 (−0.2) | 0.00 (−1.2) | 0.77 (2.6) | 0.08 (−1.9) | 13 | 0.14 (−0.9) | 0.19 (2.4) | 0.38 (0.5) | 0.30 (−1.2) | 35 | 0.36 (2.8) | 0.00 (−1.3) | 0.29 (−0.3) | 0.36 (−0.7) | 14 | 0.15 (−0.2) | 0.11 (−0.2) | 0.33 (1.0) | 0.41 (−0.6) | 27 |
PART | 0.36 (4.8) | 0.05 (−1.5) | 0.44 (0.5) | 0.15 (−3.5) | 81 | 0.16 (−0.2) | 0.11 (0.5) | 0.43 (1.7) | 0.30 (−1.8) | 56 | 0.12 (−0.1) | 0.05 (−2.0) | 0.41 (1.9) | 0.42 (−0.5) | 86 | 0.25 (2.1) | 0.13 (0.3) | 0.30 (1.1) | 0.31 (−2.7) | 68 |
O1 [91] (1) | O2 [47] (2) | O3 [213] (3) | O4 [149] (4) | Total [500] | O1 [87] (1) | O2 [44] (2) | O3 [170] (3) | O4 [195] (4) | Total [496] | O1 [63] (1) | O2 [51] (2) | O3 [168] (3) | O4 [223] (4) | Total [505] | O1 [95] (1) | O2 [68] (2) | O3 [150] (3) | O4 [253] (4) | Total [566] | |
Variables Continuous | 2 | |||||||||||||||||||
AGE | 45.6 (ns 4) | 42.4 (ns) | 46.0 (ns) | 44.4 (ns) | 45.1 | 44.5 (ns) | 43.0 (ns) | 47.8 (ns) | 45.6 (ns) | 45.9 | 45.9 (ns) | 46.7 (ns) | 50.6 (4) | 45.2 (3) | 47.2 | 46.6 (ns) | 42.9 (ns) | 47.8 (ns) | 44.5 (ns) | 45.5 |
ORG PUR | 3.0 (234) | 5.0 (13) | 3.7 (124) | 5.1 (13) | 4.1 | 3.0 (24) | 4.6 (13) | 3.2 (24) | 4.7 (13) | 3.9 | 3.5 (24) | 4.7 (13) | 3.3 (24) | 4.7 (13) | 4.1 | 3.5 (24) | 4.5 (13) | 3.4 (24) | 4.3 (13) | 4.0 |
IMP REG | 58.1 (234) | 77.5 (134) | 87.3 (12) | 89.5 (12) | 81.7 | 53.7 (34) | 50.6 (34) | 72.1 (124) | 83.3 (123) | 71.4 | 55.1 (34) | 57.5 (34) | 71.9 (12) | 75.5 (12) | 69.9 | 39.9 (234) | 56.0 (13) | 68.3 (12) | 64.7 (1) | 60.4 |
IMP NAT | 64.2 (34) | 73.3 (34) | 84.9 (12) | 84.3 (12) | 79.8 | 54.3 (34) | 55.9 (34) | 70.6 (124) | 79.7 (123) | 70.1 | 61.0 (34) | 62.4 (34) | 74.0 (12) | 75.4 (12) | 71.8 | 44.3 (34) | 52.5 (3) | 64.4 (12) | 60.4 (1) | 57.8 |
IMP TAS | 82.1 (4) | 79.6 (ns) | 77.5 (ns) | 72.1 (1) | 76.9 | 84.5 (4) | 77.2 (ns) | 79.3 (ns) | 75.7 (1) | 78.6 | 83.0 (4) | 75.0 (ns) | 76.8 (ns) | 73.5 (1) | 75.9 | 83.8 (ns) | 81.0 (ns) | 79.1 (ns) | 79.2 (ns) | 80.2 |
IMP ORG | 34.8 (234) | 81.8 (13) | 51.0 (124) | 86.8 (13) | 61.7 | 43.4 (24) | 85.6 (13) | 44.1 (24) | 84.4 (13) | 63.6 | 52.9 (24) | 82.8 (13) | 52.0 (24) | 80.9 (13) | 68.1 | 40.0 (24) | 72.3 (13) | 46.6 (24) | 69.5 (13) | 58.9 |
IMP APP | 81.9 (234) | 54.5 (1) | 62.9 (14) | 44.9 (13) | 60.2 | 70.3 (4) | 55.8 (4) | 62.5 (4) | 41.6 (123) | 55.0 | 78.2 (24) | 62.2 (1) | 70.4 (ns) | 62.7 (1) | 67.1 | 79.8 (234) | 63.8 (1) | 69.4 (1) | 67.2 (1) | 69.5 |
IMP PRI | 83.6 (234) | 52.1 (1) | 59.2 (14) | 39.7 (13) | 57.2 | 79.3 (24) | 63.1 (14) | 72.0 (4) | 45.5 (123) | 62.0 | 78.8 (234) | 60.1 (1) | 64.8 (14) | 51.6 (13) | 60.2 | 76.6 (4) | 67.1 (ns) | 69.6 (4) | 59.7 (13) | 66.0 |
IMP TRA | 19.4 (24) | 29.4 (1) | 25.6 (4) | 34.7 (13) | 27.5 | 28.2 (ns) | 38.2 (ns) | 29.9 (ns) | 34.3 (ns) | 32.1 | 21.3 (3) | 31.3 (ns) | 30.6 (1) | 29.2 (ns) | 28.9 | 31.0 (ns) | 31.2 (ns) | 29.2 (ns) | 31.4 (ns) | 30.7 |
IMP COL | 13.5 (234) | 5.8 (1) | 7.0 (1) | 4.3 (1) | 7.2 | 15.6 (4) | 15.1 (4) | 12.0 (4) | 6.9 (123) | 10.9 | 14.1 (34) | 12.8 (4) | 8.9 (1) | 6.9 (12) | 9.1 | 22.4 (234) | 14.9 (1) | 12.9 (1) | 11.9 (1) | 14.3 |
IMP SH/SI | 12.2 (234) | 5.0 (1) | 6.4 (1) | 4.8 (1) | 6.9 | 14.4 (4) | 12.4 (ns) | 10.7 (4) | 6.1 (13) | 9.7 | 10.0 (ns) | 10.9 (ns) | 8.3 (ns) | 6.8 (ns) | 8.1 | 21.9 (234) | 13.2 (1) | 12.3 (1) | 11.0 (1) | 13.4 |
ATT BDIV 5 | 6.8 (234) | 8.1 (14) | 7.6 (14) | 9.1 (123) | 8.0 | 7.7 (4) | 8.0 (ns) | 7.7 (4) | 8.4 (13) | 8.0 | 7.0 (24) | 8.2 (3) | 7.2 (124) | 8.4 (13) | 7.8 | 7.1 (4) | 7.8 (ns) | 7.3 (4) | 8.0 (13) | 7.6 |
ATT BREE1 | 6.9 (34) | 7.9 (ns) | 7.6 (14) | 8.7 (13) | 7.9 | 8.0 (ns) | 7.7 (ns) | 8.0 (ns) | 8.3 (ns) | 8.1 | 7.9 (ns) | 8.3 (ns) | 8.2 (ns) | 8.4 (ns) | 8.3 | 7.6 (4) | 7.9 (ns) | 8.1 (ns) | 8.3 (1) | 8.1 |
ATT SEED | 7.3 (24) | 8.6 (13) | 7.5 (24) | 8.4 (13) | 7.9 | 7.5 (ns) | 7.6 (ns) | 7.8 (ns) | 7.9 (ns) | 7.8 | 7.3 (ns) | 8.0 (ns) | 7.8 (ns) | 8.0 (ns) | 7.9 | 7.6 (ns) | 7.9 (ns) | 7.7 (ns) | 8.1 (ns) | 7.9 |
ATT APP | 7.2 (24) | 8.3 (1) | 7.6 (4) | 8.3 (13) | 7.8 | 8.1 (ns) | 7.8 (ns) | 8.2 (ns) | 8.7 (ns) | 8.3 | 7.2 (4) | 7.8 (ns) | 7.6 (ns) | 8.0 (1) | 7.8 | 7.8 (ns) | 7.7 (ns) | 7.9 (ns) | 8.3 (ns) | 8.0 |
ATT BREE2 | 7.0 (4) | 7.9 (ns) | 7.4 (4) | 8.7 (13) | 7.8 | 8.0 (ns) | 8.1 (ns) | 8.0 (ns) | 8.3 (ns) | 8.2 | 7.5 (4) | 7.7 (ns) | 8.1 (ns) | 8.4 (1) | 8.1 | 7.6 (4) | 8.0 (ns) | 8.2 (ns) | 8.3 (1) | 8.2 |
ATT ABDIV | 6.4 (24) | 7.7 (1) | 6.8 (4) | 8.2 (13) | 7.3 | 7.6 (ns) | 7.5 (ns) | 7.7 (ns) | 8.2 (ns) | 7.9 | 6.7 (24) | 8.0 (13) | 7.1 (24) | 7.9 (13) | 7.5 | 6.7 (ns) | 7.4 (ns) | 7.0 (ns) | 7.3 (ns) | 7.1 |
ATT IND | 5.2 (234) | 7.7 (1) | 7.1 (14) | 8.6 (13) | 7.3 | 6.8 (4) | 7.8 (ns) | 7.3 (4) | 8.4 (13) | 7.7 | 7.5 (4) | 7.8 (4) | 7.7 (4) | 8.6 (123) | 8.1 | 6.8 (4) | 7.6 (ns) | 7.5 (4) | 8.1 (13) | 7.7 |
ATT TRA | 5.4 (234) | 6.8 (1) | 6.7 (14) | 7.7 (13) | 6.8 | 7.0 (4) | 7.8 (ns) | 7.1 (4) | 8.1 (13) | 7.5 | 6.9 (4) | 7.6 (ns) | 7.4 (4) | 8.1 (13) | 7.7 | 6.9 (ns) | 7.5 (ns) | 7.2 (ns) | 7.4 (ns) | 7.3 |
ATT DIV | 6.1 (24) | 7.3 (1) | 6.6 (ns) | 7.0 (1) | 6.7 | 7.6 (ns) | 6.9 (ns) | 7.5 (ns) | 7.8 (ns) | 7.6 | 7.0 (4) | 7.0 (4) | 7.3 (4) | 7.8 (123) | 7.5 | 7.0 (4) | 7.5 (ns) | 7.3 (ns) | 7.7 (1) | 7.4 |
ATT TAS | 5.3 (34) | 6.5 (ns) | 6.3 (1) | 6.7 (1) | 6.2 | 8.2 (ns) | 7.5 (ns) | 7.9 (ns) | 8.1 (ns) | 8.0 | 8.0 (ns) | 7.9 (ns) | 8.3 (ns) | 8.4 (ns) | 8.3 | 8.1 (ns) | 8.1 (ns) | 8.4 (ns) | 8.7 (ns) | 8.4 |
ATT STD | 4.9 (24) | 6.2 (13) | 5.1 (24) | 5.9 (13) | 5.4 | 7.2 (ns) | 6.9 (ns) | 7.0 (ns) | 7.5 (ns) | 7.2 | 6.6 (ns) | 7.2 (ns) | 6.8 (ns) | 7.2 (ns) | 7.0 | 6.8 (ns) | 6.9 (ns) | 6.6 (ns) | 7.1 (ns) | 6.9 |
IMP DF 6 | 4.9 (4) | 4.3 (ns) | 4.4 (ns) | 4.0 (1) | 4.4 | 4.3 (ns) | 3.6 (ns) | 3.9 (ns) | 3.5 (ns) | 3.8 | 5.1 (ns) | 5.4 (ns) | 5.4 (ns) | 5.8 (ns) | 5.5 | 4.7 (ns) | 3.9 (ns) | 3.9 (ns) | 3.9 (ns) | 4.1 |
Switzerland [500] 1 | France [496] | Italy [505] | Spain [566] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Price Points (In EUR) | O1 [91] | O2 [47] | O3 [213] | O4 [149] | O1 [87] | O2 [44] | O3 [170] | O4 [195] | O1 [63] | O2 [51] | O3 [168] | O4 [223] | O1 [95] | O2 [68] | O3 [150] | O4 [253] |
%-change in avg. max. WTP 2 | 13% (***) 3 | 12% (***) | 11% (***) | 13% (***) | 9% (**) | 0% (ns) | 3% (*) | 6% (***) | 5% (ns) | 7% (ns) | 4% (***) | 7% (***) | 10% (**) | 6% (**) | 0% (ns) | 0% (ns) |
%-change in indiff. price 2 | 19% | 13% | 8% | 11% | 11% | 15% | 5% | 7% | 33% | 5% | 19% | 0% | 15% | 5% | 8% | 13% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, C.; Oehen, B. Consumers’ Valuation of Farmers’ Varieties for Food System Diversity. Sustainability 2019, 11, 7134. https://doi.org/10.3390/su11247134
Meier C, Oehen B. Consumers’ Valuation of Farmers’ Varieties for Food System Diversity. Sustainability. 2019; 11(24):7134. https://doi.org/10.3390/su11247134
Chicago/Turabian StyleMeier, Claudia, and Bernadette Oehen. 2019. "Consumers’ Valuation of Farmers’ Varieties for Food System Diversity" Sustainability 11, no. 24: 7134. https://doi.org/10.3390/su11247134
APA StyleMeier, C., & Oehen, B. (2019). Consumers’ Valuation of Farmers’ Varieties for Food System Diversity. Sustainability, 11(24), 7134. https://doi.org/10.3390/su11247134