Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review
Abstract
:1. Introduction
2. Impacts of Climate Change on Grasslands
2.1. Observed Effects of eCO2 on Compositional Change and Different Functional Types
2.2. Observed Progressive Nitrogen Limitation (PNL)
2.3. Observed Effect of eCO2 on Grassland Production and Quality
2.4. Observed Effect of eCO2 on Legumes
2.5. Observed Effects of eCO2 in Interaction with Temperature and Rainfall
2.6. Modelled Impacts of Climate Change across the Globe
2.7. Modelled Impact on Seasonal Duration of Grazing
2.8. Modelled Impact on Growing Season; Impact on Grassland Productivity and Quality
2.9. Modelled Impact on Legume Content of Grassland
2.10. Modelled Impact on Grassland within Mixed Crop-Livestock Systems
2.11. Current Uncertainty in Modelling
3. Impact of Climate Change on Livestock Industries
3.1. Impact of Heat Stress on Animal Health and Production
3.2. Impact on Animal Production Systems
4. Adaptations to Climate Change in Grassland and Livestock
4.1. Integrated Grassland and Livestock Adaptation
4.2. Adaptations through Animal Feeding
4.3. Adaptations in Grasslands
4.4. Adaptation in Grasslands by Novel Species
4.5. Adaptation by Managing Heat Stress on Animals
4.6. Adaptation in Livestock Systems
4.7. Adaptation in Mixed Crop-Livestock Systems
4.8. Adaptation and GHG Emissions
5. Ecosystem Health of Grasslands under Climate Change
6. Modelling GHG Emission
7. Mitigation
7.1. Emission Reduction Options
7.2. Excreta Management
7.3. Managing Carbon Stocks
7.4. Mixed Farming Businesses
7.5. Integration of Adaptation and Mitigation
8. Recommendations
8.1. Grassland
8.2. Livestock
8.3. Mixed Systems
8.4. Mitigation
8.5. Modelling (Development and Modelling Method)
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Brief Analysis of FAO Statistical Data on Pasture and Fodder Crops. Available online: http://www.fao.org/uploads/media/grass_stats_1.pdf (accessed on 11 December 2019).
- Herrero, M.; Havlik, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blummel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The State of Food and Agriculture: Livestock in the Balance; FAO: Rome, Italy, 2009. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.; Ingram, J.S. Climate Change and Food Systems. Annu. Rev. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 688. [Google Scholar]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 485–533. [Google Scholar]
- Rivera-Ferre, M.G.; López-i-Gelats, F.; Howden, M.; Smith, P.; Morton, J.F.; Herrero, M. Re-framing the climate change debate in the livestock sector: Mitigation and adaptation options. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 869–892. [Google Scholar] [CrossRef]
- Moore, A.D.; Ghahramani, A. Climate change and broadacre livestock production across southern Australia. 1. Impacts of climate change on pasture and livestock productivity, and on sustainable levels of profitability. Glob. Chang. Biol. 2013, 19, 1440–1455. [Google Scholar] [CrossRef] [PubMed]
- Godber, O.F.; Wall, R. Mediterranean goat production systems: Vulnerability to population growth and climate change. Mediterr. J. Biosci. 2016, 1, 160–168. [Google Scholar]
- Porqueddu, C.; Ates, S.; Louhaichi, M.; Kyriazopoulos, A.P.; Moreno, G.; Del Pozo, A.; Ovalle, C.; Ewing, M.A.; Nichols, P.G.H. Grasslands in ‘Old World’ and ‘New World’ Mediterranean-climate zones: Past trends, current status and future research priorities. Grass Forage Sci. 2016, 71, 1–35. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Soussana, J.F.; Howden, S.M. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19686–19690. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.; Picon-Cochard, C.; Augusti, A.; Benot, M.L.; Thiery, L.; Darsonville, O.; Landais, D.; Piel, C.; Defossez, M.; Devidal, S.; et al. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc. Natl. Acad. Sci. USA 2016, 113, 6224–6229. [Google Scholar] [CrossRef] [Green Version]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Su, B.O.; Currie, W.S.; Dukes, J.S.; Finzi, A.; Hartwig, U.; Hungate, B.; McMurtrie, R.E.; Oren, R.A.M.; Parton, W.J.; et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. AIBS Bull. 2004, 54, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Reisinger, A.; Clark, H. How much do direct livestock emissions actually contribute to global warming? Glob. Chang. Biol. 2018, 24, 1749–1761. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Soussana, J.F.; Graux, A.I.; Tubiello, F.N. Improving the use of modelling for projections of climate change impacts on crops and pastures. J. Exp. Bot. 2010, 61, 2217–2228. [Google Scholar] [CrossRef] [Green Version]
- Rigueiro-Rodríguez, A.; Fernández-Núñez, E.; González-Hernández, P.; McAdam, J.H.; Mosquera-Losada, M.R. Agroforestry Systems in Europe: Productive, Ecological and Social Perspectives. In Agroforestry in Europe; Springer: Berlin/Heidelberg, Germany, 2009; pp. 43–65. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; De Haan, C. Livestock’s Long Shadow; FAO: Rome, Italy, 2006; p. 392. [Google Scholar]
- Del Prado, A.; Crosson, P.; Olesen, J.E.; Rotz, C.A. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems. Animal 2013, 7, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Soussana, J.F.; Lüscher, A. Temperate grasslands and global atmospheric change: A review. Grass Forage Sci. 2007, 62, 127–134. [Google Scholar] [CrossRef]
- Heskel, M.A.; O’Sullivan, O.S.; Reich, P.B.; Tjoelker, M.G.; Weerasinghe, L.K.; Penillard, A.; Egerton, J.J.G.; Creek, D.; Bloomfield, K.J.; Xiang, J.; et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl. Acad. Sci. USA 2016, 113, 3832–3837. [Google Scholar] [CrossRef] [Green Version]
- Lüscher, A.; Daepp, M.; Blum, H.; Hartwig, U.A.; Nösberger, J. Fertile temperate grassland under elevated atmospheric CO2—Role of feed-back mechanisms and availability of growth resources. Eur. J. Agron. 2004, 21, 379–398. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Grandis, A.; Arenque, B.C.; Buckeridge, M.S. Impacts of climate changes on crop physiology and food quality. Food Res. Int. 2010, 43, 1814–1823. [Google Scholar] [CrossRef]
- Bolger, T.P.; Lilley, J.M.; Gifford, R.M.; Donnelly, J.R. Growth Response of Australian Temperate Pasture Species to CO2 Enrichment. In Proceedings of the 18th International Grassland Congress, Winnipeg, SK, Canada, 8–19 June 1997. [Google Scholar]
- Morgan, J.A.; Pataki, D.E.; Körner, C.; Clark, H.; Del Grosso, S.J.; Grünzweig, J.M.; Knapp, A.K.; Mosier, A.R.; Newton, P.C.D.; Niklaus, P.A.; et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 2004, 140, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Rütting, T.; Clough, T.J.; Müller, C.; Lieffering, M.; Newton, P.C.D. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture. Glob. Chang. Biol. 2010, 16, 2530–2542. [Google Scholar] [CrossRef]
- Nowak, R.S.; Ellsworth, D.S.; Smith, S.D. Functional responses of plants to elevated atmospheric CO2- Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol. 2004, 162, 253–280. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.C.D.; Allard, V.; Carran, R.A.; Lieffering, M. Impacts of Elevated CO2 on a Grassland Grazed by Sheep: The New Zealand FACE Experiment. In Managed Ecosystems and CO2; Springer: Berlin/Heidelberg, Germany, 2006; pp. 157–171. [Google Scholar]
- Newton, P.C.D.; Lieffering, M.; Bowatte, W.M.S.D.; Brock, S.C.; Hunt, C.L.; Theobald, P.W.; Ross, D.J. The rate of progression and stability of progressive nitrogen limitation at elevated atmospheric CO2 in a grazed grassland over 11 years of Free Air CO2 enrichment. Plant Soil. 2010, 336, 433–441. [Google Scholar] [CrossRef]
- Ledgard, S.F. Nitrogen cycling in low input legume-based agriculture, with emphasis on legume/grass pastures. Plant Soil 2001, 228, 43–59. [Google Scholar] [CrossRef]
- Unkovich, M.; Sanford, P.; Pate, J.; Hyder, M. Effects of grazing on plant and soil nitrogen relations of pasture-crop rotations. Aust. J. Agric. Res. 1998, 49, 475–486. [Google Scholar] [CrossRef]
- Parsons, A.J.; Orr, R.J.; Penning, P.D.; Rydein, J.C.; Lockyer, D.R. Uptake, cycling and fate of nitrogen in grass—Clover swards continuously grazed by sheep. J. Agric. Sci. 1991, 116, 47–61. [Google Scholar] [CrossRef]
- Thomas, D.T.; Milton, J.T.B.; Revell, C.K.; Ewing, M.A.; Dynes, R.A.; Murray, K.; Lindsay, D.R. Preference of sheep among annual legumes is more closely related to plant nutritive characteristics as plants mature. Anim. Prod. Sci. 2010, 50, 114–123. [Google Scholar] [CrossRef]
- Polley, H.W.; Bailey, D.W.; Nowak, R.S.; Stafford-Smith, M. Ecological Consequences of Climate Change on Rangelands. In Rangeland Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 229–260. [Google Scholar]
- Barbehenn, R.V.; Chen, Z.; Karowe, D.N.; Spickard, A. C3grasses have higher nutritional quality than C4grasses under ambient and elevated atmospheric CO2. Glob. Chang. Biol. 2004, 10, 1565–1575. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.D.; Stafford Smith, D.M. A synthesis of recent global change research on pasture and rangeland production: Reduced uncertainties and their management implications. Agric. Ecosyst. Environ. 2000, 82, 39–55. [Google Scholar] [CrossRef]
- Schenk, U.; Manderscheid, R.; Hugen, J.; Weigel, H.J. Effects of CO2 enrichment and intraspecific competition on biomass partitioning, nitrogen content and microbial biomass carbon in soil of perennial ryegrass and white clover. J. Exp. Bot. 1995, 46, 987–993. [Google Scholar] [CrossRef]
- Newton, P.C.D.; Lieffering, M.; Parsons, A.J.; Brock, S.C.; Theobald, P.W.; Hunt, C.L.; Luo, D.; Hovenden, M.J. Selective grazing modifies previously anticipated responses of plant community composition to elevated CO2 in a temperate grassland. Glob. Chang. Biol. 2014, 20, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Rutter, S.M. Diet preference for grass and legumes in free-ranging domestic sheep and cattle: Current theory and future application. Appl. Anim. Behav. Sci. 2006, 97, 17–35. [Google Scholar] [CrossRef]
- Cantarel, A.A.M.; Bloor, J.M.G.; Soussana, J.F. Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem. J. Veg. Sci. 2013, 24, 113–126. [Google Scholar] [CrossRef]
- Hovenden, M.J.; Miglietta, F.; Zaldei, A.; Vander Schoor, J.K.; Wills, K.E.; Newton, P.C.D. The TasFACE climate-change impacts experiment: Design and performance of combined elevated CO2 and temperature enhancement in a native Tasmanian grassland. Aust. J. Bot. 2006, 54, 1–10. [Google Scholar] [CrossRef]
- Hovenden, M.J.; Newton, P.C.D.; Wills, K.E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 2014, 511, 583. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Schimel, D.S.; Hall, D.O. Impact of climate change on grassland production and soil carbon worldwide. Glob. Chang. Biol. 1995, 1, 13–22. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Brignall, A.P.; Siddons, P.A. Potential climate change effects on the distribution of agricultural grassland in England and Wales. Soil Use Manag. 1996, 12, 44–51. [Google Scholar] [CrossRef]
- Riedo, M.; Gyalistras, D.; Fischlin, A.; Fuhrer, J. Using an ecosystem model linked to GCM-derived local weather scenarios to analyse effects of climate change and elevated CO2 on dry matter production and partitioning, and water use in temperate managed grasslands. Glob. Chang. Biol. 1999, 5, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Morales, P.; Hickler, T.; Rowell, D.P.; Smith, B.; Sykes, M.T. Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Glob. Chang. Biol. 2007, 13, 108–122. [Google Scholar] [CrossRef]
- Thomson, A.M.; Brown, R.A.; Rosenberg, N.J.; Izaurralde, R.C.; Benson, V. Climate Change Impacts for the Conterminous USA, Climate Change Impacts for the Conterminous USA: An Integrated Assessment. Clim. Chang. 2005, 69, 67–88. [Google Scholar] [CrossRef]
- Rotz, C.A.; Corson, M.S.; Chianese, D.S.; Montes, F.; Hafner, S.D.; Coiner, C.U. The Integrated Farm System Model. Available online: https://www.ars.usda.gov/northeast-area/up-pa/pswmru/docs/integrated-farm-system-model (accessed on 11 December 2019).
- Thivierge, M.N.; Jégo, G.; Bélanger, G.; Bertrand, A.; Tremblay, G.F.; Rotz, C.A.; Qian, B. Predicted yield and nutritive value of an alfalfa–timothy mixture under climate change and elevated atmospheric carbon dioxide. Agron. J. 2016, 108, 585–603. [Google Scholar] [CrossRef] [Green Version]
- Cullen, B.R.; Johnson, I.R.; Eckard, R.J.; Lodge, G.M.; Walker, R.G.; Rawnsley, R.P.; McCaskill, M.R. Climate change effects on pasture systems in south-eastern Australia. Crop. Pasture Sci. 2009, 60, 933–942. [Google Scholar] [CrossRef]
- Belgacem, A.O.; Louhaichi, M. The vulnerability of native rangeland plant species to global climate change in the West Asia and North African regions. Clim. Chang. 2013, 119, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.L.; Burke, I.C.; Vinton, M.A.; Lauenroth, W.K.; Aguiar, M.R.; Wedin, D.A.; Virginia, R.A.; Lowe, P.N. Regional analysis of litter quality in the central grassland region of North America. J. Veg. Sci. 2002, 13, 395–402. [Google Scholar] [CrossRef]
- Phelan, P.; Morgan, E.R.; Rose, H.; Grant, J.; O’Kiely, P. Predictions of future grazing season length for European dairy, beef and sheep farms based on regression with bioclimatic variables. J. Agric. Sci. 2016, 154, 765–781. [Google Scholar] [CrossRef]
- Moore, A.D.; Ghahramani, A. Estimated Effects of Climate Change on Grassland Production and Legume Content Across Southern Australia. In Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 15–19 September 2013; New South Wales Department of Primary Industry: Sydney, Australia, 2013; pp. 1309–1310. [Google Scholar]
- Webb, N.P.; Stokes, C.J.; Scanlan, J.C. Interacting effects of vegetation, soils and management on the sensitivity of Australian savanna rangelands to climate change. Clim. Chang. 2012, 112, 925–943. [Google Scholar] [CrossRef]
- Juin, S.; Brisson, N.; Clastre, P.; Grand, P. Impact of global warming on the growing cycles of three forage systems in upland areas of southeastern France. Agronomie 2004, 24, 327–337. [Google Scholar] [CrossRef]
- Perring, M.P.; Cullen, B.R.; Johnson, I.R.; Hovenden, M.J. Modelled effects of rising CO2 concentration and climate change on native perennial grass and sown grass-legume pastures. Clim. Res. 2010, 42, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Graux, A.I.; Gaurut, M.; Agabriel, J.; Baumont, R.; Delagarde, R.; Delaby, L.; Soussana, J.F. Development of the pasture simulation model for assessing livestock production under climate change. Agric. Ecosyst. Environ. 2011, 144, 69–91. [Google Scholar] [CrossRef]
- Yang, H.; Wu, M.; Liu, W.; Zhang, Z.; Zhang, N.; Wan, S. Community structure and composition in response to climate change in a temperate steppe. Glob. Chang. Biol. 2011, 17, 452–465. [Google Scholar] [CrossRef]
- Topp, C.F.E.; Doyle, C.J. Simulating the impact of global warming on milk and forage production in Scotland: 1. The effects on dry-matter yield of grass and grass-white clover swards. Agric. Syst. 1996, 52, 213–242. [Google Scholar] [CrossRef]
- Ghahramani, A.; Moore, A.D. Impact of climate changes on existing crop-livestock farming systems. Agric. Syst. 2016, 146, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Höglind, M.; Thorsen, S.M.; Semenov, M.A. Assessing uncertainties in impact of climate change on grass production in Northern Europe using ensembles of global climate models. Agric. For. Meteorol. 2013, 170, 103–113. [Google Scholar] [CrossRef]
- Rapacz, M.; Ergon, Å.; Höglind, M.; Jørgensen, M.; Jurczyk, B.; Østrem, L.; Rognli, O.A.; Tronsmo, A.M. Overwintering of herbaceous plants in a changing climate. Still more questions than answers. Plant Sci. 2014, 225, 34–44. [Google Scholar] [CrossRef]
- Cordeiro, M.R.; Rotz, A.; Kroebel, R.; Beauchemin, K.A.; Hunt, D.; Bittman, S.; Koenig, K.M.; McKenzie, D.B. Prospects of Forage Production in Northern Regions under Climate and Land-Use Changes: A Case-Study of a Dairy Farm in Newfoundland, Canada. Agronomy 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Craine, J.M.; Elmore, A.J.; Olson, K.C.; Tolleson, D. Climate change and cattle nutritional stress. Glob. Chang. Biol. 2010, 16, 2901–2911. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Thomson, A.M.; Morgan, J.A.; Fay, P.A.; Polley, H.W.; Hatfield, J.L. Climate impacts on agriculture: Implications for forage and rangeland production. Agron. J. 2011, 103, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Theurillat, J.P.; Guisan, A. Potential impact of climate change on vegetation in the European alps: A review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Dumont, B.; Andueza, D.; Niderkorn, V.; Lüscher, A.; Porqueddu, C.; Picon-Cochard, C. A meta-analysis of climate change effects on forage quality in grasslands: Specificities of mountain and Mediterranean areas. Grass Forage Sci. 2015, 70, 239–254. [Google Scholar] [CrossRef]
- Purser, D.B. The nutritional value of stubbles. In Proceedings of the Stubble utilisation: Proceedings of a Seminar, Perth, WA, Australia, 28 October 1983; pp. 13–26. [Google Scholar]
- Kipling, R.P.; Bannink, A.; Bellocchi, G.; Dalgaard, T.; Fox, N.J.; Hutchings, N.J.; Kjeldsen, C.; Lacetera, N.; Sinabell, F.; Topp, C.F.E.; et al. Modeling European ruminant production systems: Facing the challenges of climate change. Agric. Syst. 2016, 147, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Kipling, R.P.; Virkajärvi, P.; Breitsameter, L.; Curnel, Y.; De Swaef, T.; Gustavsson, A.M.; Hennart, S.; Höglind, M.; Järvenranta, K.; Minet, J.; et al. Key challenges and priorities for modelling European grasslands under climate change. Sci. Total Environ. 2016, 566, 851–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claessens, L.; Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O.; Thornton, P.K.; Herrero, M. A method for evaluating climate change adaptation strategies for small-scale farmers using survey, experimental and modeled data. Agric. Syst. 2012, 111, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Özkan, Ş.; Vitali, A.; Lacetera, N.; Amon, B.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; de Haas, Y.; Dufrasne, I.; Elliott, J.; et al. Challenges and priorities for modelling livestock health and pathogens in the context of climate change. Environ. Res. 2016, 151, 130–144. [Google Scholar] [CrossRef]
- Renaudeau, D.; Gourdine, J.L.; St-Pierre, N.R. Meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs. J. Anim. Sci. 2011, 89, 2220–2230. [Google Scholar] [CrossRef] [Green Version]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Lamy, E.; Van Harten, S.; Sales-Baptista, E.; Guerra, M.M.M.; De Almeida, A.M. Factors Influencing Livestock Productivity. In Environmental Stress and Amelioration in Livestock Production; Springer: Berlin/Heidelberg, Germany, 2012; pp. 19–51. [Google Scholar] [CrossRef]
- Nienaber, J.A.; Hahn, G.L. Livestock production system management responses to thermal challenges. Int. J. Biometeorol. 2007, 52, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Guis, H.; Caminade, C.; Calvete, C.; Morse, A.P.; Tran, A.; Baylis, M. Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe. J. R. Soc. Interface 2012, 9, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Sevi, A.; Annicchiarico, G.; Albenzio, M.; Taibi, L.; Muscio, A.; Dell’Aquila, S. Effects of Solar Radiation and Feeding Time on Behavior, Immune Response and Production of Lactating Ewes Under High Ambient Temperature. J. Dairy Sci. 2001, 84, 629–640. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of water scarcity and hot environment on appetite and digestion in ruminants: A review. Livest. Prod. Sci. 1992, 30, 175–194. [Google Scholar] [CrossRef]
- Sevi, A.; Caroprese, M. Impact of heat stress on milk production, immunity and udder health in sheep: A critical review. Small Rumin. Res. 2012, 107, 1–7. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Danieli, P.P.; Bani, P.; Nardone, A.; Ronchi, B. Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep. Int. J. Biometeorol. 2009, 53, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Wilmot, M.G.; Alchin, M.; Masters, D.G. Preliminary indications that Merino sheep graze different areas on cooler days in the Southern Rangelands of Western Australia. Aust. J. Exp. Agric. 2008, 48, 889–892. [Google Scholar] [CrossRef]
- Sevi, A.; Rotunno, T.; Di Caterina, R.; Muscio, A. Fatty acid composition of ewe milk as affected by solar radiation and high ambient temperature. J. Dairy Res. 2002, 69, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.; Atzori, A.S.; D’Andrea, M.; Iovane, G.; Trabalza-Marinucci, M.; Rinaldi, L. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin. Res. 2016, 135, 50–59. [Google Scholar] [CrossRef]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Jolly, S.; Ann, W. Best Practice for Production Feeding of Lambs: A Review of the Literature; Meat & Livestock Australia Limited: Sydney, Australia, 2016. [Google Scholar]
- McCrabb, G.J.; McDonald, B.J.; Hennoste, L.M. Heat stress during mid-pregnancy in sheep and the consequences for placental and fetal growth. J. Agric. Sci. 1993, 120, 265–271. [Google Scholar] [CrossRef]
- Amundson, J.L.; Mader, T.L.; Rasby, R.J.; Hu, Q.S. Environmental effects on pregnancy rate in beef cattle. J. Anim. Sci. 2006, 84, 3415–3420. [Google Scholar] [CrossRef] [Green Version]
- Rickards, L.; Howden, S.M. Transformational adaptation: Agriculture and climate change. Crop. Pasture Sci. 2012, 63, 240–250. [Google Scholar] [CrossRef]
- Moore, A.D.; Ghahramani, A. Climate change and broadacre livestock production across southern Australia. 3. Adaptation options via livestock genetic improvement. Anim. Prod. Sci. 2014, 54, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroprese, M.; Albenzio, M.; Bruno, A.; Fedele, V.; Santillo, A.; Sevi, A. Effect of solar radiation and flaxseed supplementation on milk production and fatty acid profile of lactating ewes under high ambient temperature. J. Dairy Sci. 2011, 94, 3856–3867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackshaw, J.K.; Blackshaw, A.W. Heat stress in cattle and the effect of shade on production and behaviour: A review. Aust. J. Exp. Agric. 1994, 34, 285–295. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Coates, D.B.; Mannetje, L.; Seifert, G.W. Reproductive performance and calf growth to weaning of hereford and belmont red cattle in subtropical, subcoastal queensland. Aust. J. Exp. Agric. 1987, 27, 1–10. [Google Scholar] [CrossRef]
- Kilminster, T.F.; Greeff, J.C. A note on the reproductive performance of Damara, Dorper and Merino sheep under optimum management and nutrition for Merino ewes in the eastern wheatbelt of Western Australia. Trop. Anim. Health Prod. 2011, 43, 1459–1464. [Google Scholar] [CrossRef]
- Ghahramani, A.; Moore, A.D. Climate change and broadacre livestock production across southern Australia. 2. Adaptation options via grassland management. Crop. Pasture Sci. 2013, 64, 615–630. [Google Scholar] [CrossRef]
- Macleod, C.J.A.; Humphreys, M.W.; Whalley, W.R.; Turner, L.; Binley, A.; Watts, C.W.; Skøt, L.; Joynes, A.; Hawkins, S.; King, I.P.; et al. A novel grass hybrid to reduce flood generation in temperate regions. Sci. Rep. 2013, 3, 1683. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, M.W.; O’Donovan, S.A.; Farrell, M.S.; Gay, A.P.; Kingston-Smith, A.H. The potential of novel Festulolium (2n = 4x = 28) hybrids as productive, nutrient- use- efficient fodder for ruminants. Food Energy Secur. 2014, 3, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Volaire, F.; Barkaoui, K.; Norton, M. Designing resilient and sustainable grasslands for a drier future: Adaptive strategies, functional traits and biotic interactions. Eur. J. Agron. 2014, 52, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Cowles, J.M.; Wragg, P.D.; Wright, A.J.; Powers, J.S.; Tilman, D. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. Glob. Chang. Biol. 2016, 22, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.J.; de Kroon, H.; Visser, E.J.W.; Buchmann, T.; Ebeling, A.; Eisenhauer, N.; Fischer, C.; Hildebrandt, A.; Ravenek, J.; Roscher, C.; et al. Plants are less negatively affected by flooding when growing in species-rich plant communities. New Phytol. 2017, 213, 645–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waghorn, G.C.; Hegarty, R.S. Lowering ruminant methane emissions through improved feed conversion efficiency. Anim. Feed Sci. Technol. 2011, 166, 291–301. [Google Scholar] [CrossRef]
- Ghahramani, A.; Bowran, D. Transformative and systemic climate change adaptations in mixed crop-livestock farming systems. Agric. Syst. 2018, 164, 236–251. [Google Scholar] [CrossRef] [Green Version]
- Waghorn, G.C.; McNabb, W.C. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc. Nutr. Soc. 2003, 62, 383–392. [Google Scholar] [CrossRef]
- Rinne, M.; Dragomir, C.; Kuoppala, K.; Marley, C.; Smith, J.; Yanez Ruiz, D. Novel and underutilized feed resources–potential for use in organic and low input dairy production. Agric. For. Res. 2012, 362, 404–407. [Google Scholar]
- Pardo, G.; Martin-Garcia, I.; Arco, A.; Yañez-Ruiz, D.R.; Moral, R.; Del Prado, A. Greenhouse-gas mitigation potential of agro-industrial by-products in the diet of dairy goats in Spain: A life-cycle perspective. Anim. Prod. Sci. 2016, 56, 646–654. [Google Scholar] [CrossRef]
- Arco-Pérez, A.; Ramos-Morales, E.; Yáñez-Ruiz, D.R.; Abecia, L.; Martín-García, A.I. Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed. Sci. Technol. 2017, 232, 57–70. [Google Scholar] [CrossRef]
- Ghahramani, A.; Moore, A.D. Systemic adaptations to climate change in southern Australian grasslands and livestock: Production, profitability, methane emission and ecosystem function. Agric. Syst. 2015, 133, 158–166. [Google Scholar] [CrossRef]
- Kenyon, F.; Dick, J.; Smith, R.; Coulter, D.; McBean, D.; Skuce, P. Reduction in Greenhouse Gas Emissions Associated with Worm Control in Lambs. Agriculture 2013, 3, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Craine, J.M.; Ocheltree, T.W.; Nippert, J.B.; Towne, E.G.; Skibbe, A.M.; Kembel, S.W.; Fargione, J.E. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Chang. 2013, 3, 63. [Google Scholar] [CrossRef]
- Ghelichkhan, M.; Eun, J.S.; Christensen, R.G.; Stott, R.D.; MacAdam, J.W. Urine volume and nitrogen excretion are altered by feeding birdsfoot trefoil compared with alfalfa in lactating dairy cows. J. Anim. Sci. 2018, 96, 3993–4001. [Google Scholar] [CrossRef] [PubMed]
- Totty, V.K.; Greenwood, S.L.; Bryant, R.H.; Edwards, G.R. Nitrogen partitioning and milk production of dairy cows grazing simple and diverse pastures. J. Dairy Sci. 2013, 96, 41–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar]
- Stephenson, R.G.A.; Suter, G.R.; Le Feuvre, A.S. Reduction of the Effects of Heat Stress on Lamb Birth Weight and Survival by Provision of Shade. In Reproduction in Sheep; Lindsay, D.R., Pearce, D.T., Eds.; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Bindraban, P.S.; Asseng, S.; Meinke, H.; Dixon, J. Eco-efficient agriculture: Concepts, Challenges, and opportunities. Crop Sci. 2010, 50 (Suppl. 1), S109–S119. [Google Scholar] [CrossRef]
- Ghahramani, A.; Moore, A.D. Climate Change Impact and Adaptation in Temperate Grassland and Livestock Industries. In Proceedings of the 23rd International Grassland Congress: Keynote Lectures, New Delhi, India, 20–24 November 2015; IGC: New Delhi, India, 2015; pp. 349–360. [Google Scholar]
- Kabubo-Mariara, J. Global warming and livestock husbandry in Kenya: Impacts and adaptations. Ecol. Econ. 2009, 68, 1915–1924. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D. Integrated crop-livestock systems in Australian agriculture: Trends, drivers and implications. Agric. Syst. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Ghahramani, A.; Kingwell, R.S.; Maraseni, T.N. Land use change in Australian mixed crop-livestock systems as a transformative climate change adaptation. Agric. Syst. 2019. October 2019 Submitted. [Google Scholar]
- Thamo, T.; Addai, D.; Pannell, D.J.; Robertson, M.J.; Thomas, D.T.; Young, J.M. Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system. Agric. Syst. 2017, 150, 99–108. [Google Scholar] [CrossRef]
- Thomas, D.T.; Moore, A.D.; Bell, L.W.; Webb, N.P. Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program. Agric. Syst. 2018, 162, 123–135. [Google Scholar] [CrossRef]
- Cheng, L.; McCormick, J.; Logan, C.; Hague, H.; Hodge, M.C.; Edwards, G.R. Liveweight gain and urinary nitrogen excretion of dairy heifers grazing perennial ryegrass-white clover pasture, canola, and wheat. Anim. Prod. Sci. 2018, 58, 1073–1078. [Google Scholar] [CrossRef]
- Del Prado, A.; Chadwick, D.; Cardenas, L.; Misselbrook, T.; Scholefield, D.; Merino, P. Exploring systems responses to mitigation of GHG in UK dairy farms. Agric. Ecosyst. Environ. 2010, 136, 318–332. [Google Scholar] [CrossRef]
- Grainger, C.; Clarke, T.; Auldist, M.J.; Beauchemin, K.A.; McGinn, S.M.; Waghorn, G.C.; Eckard, R.J. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 2009, 89, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Eckard, R.J.; Cullen, B.R. The effect of future climate scenarios on the balance between productivity and greenhouse gas emissions from sheep grazing systems. Livest. Sci. 2012, 147, 126–138. [Google Scholar] [CrossRef]
- Velthof, G.L.; Oudendag, D.; Witzke, H.P.; Asman, W.A.H.; Klimont, Z.; Oenema, O. Integrated Assessment of Nitrogen Losses from Agriculture in EU-27 using MITERRA-EUROPE. J. Environ. Q. 2009, 38, 402–417. [Google Scholar] [CrossRef]
- Chappell, A.; Webb, N.P.; Guerschman, J.P.; Thomas, D.T.; Mata, G.; Handcock, R.N.; Leys, J.F.; Butler, H.J. Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sens. Environ. 2018, 204, 756–768. [Google Scholar] [CrossRef]
- Lang, R.D.; McCaffrey, L.A.H. Ground cover—Its affects on soil loss from grazed runoff plots, Gunnedah. J. Soil Conserv. Available online: http://agris.fao.org/agris-search/search.do?recordID=US201302549302 (accessed on 12 December 2019).
- Bolan, N.S.; Hedley, M.J.; White, R.E. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil. 1991, 134, 53–63. [Google Scholar] [CrossRef]
- Del Prado, A.; Mas, K.; Pardo, G.; Gallejones, P. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain. Sci. Total Environ. 2013, 465, 156–165. [Google Scholar] [CrossRef]
- Pilgrim, E.S.; Macleod, C.J.A.; Blackwell, M.S.A.; Bol, R.; Hogan, D.V.; Chadwick, D.R.; Cardenas, L.; Misselbrook, T.H.; Haygarth, P.M.; Brazier, R.E.; et al. Interactions among agricultural production and other ecosystem services delivered from European temperate grassland systems. Adv. Agron. 2010, 109, 117–154. [Google Scholar] [CrossRef]
- Lamarque, P.; Lavorel, S.; Mouchet, M.; Quétier, F. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proc. Natl. Acad. Sci. USA 2014, 111, 13751–13756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Prado, A.; Scholefield, D. Use of SIMSDAIRY modelling framework system to compare the scope on the sustainability of a dairy farm of animal and plant genetic-based improvements with management-based changes. J. Agric. Sci. 2008, 146, 195–211. [Google Scholar] [CrossRef]
- Del Prado, A.; Misselbrook, T.; Chadwick, D.; Hopkins, A.; Dewhurst, R.J.; Davison, P.; Butler, A.; Schröder, J.; Scholefield, D. SIMSDAIRY: A modelling framework to identify sustainable dairy farms in the UK. Framework description and test for organic systems and N fertiliser optimisation. Sci. Total Environ. 2011, 409, 3993–4009. [Google Scholar] [CrossRef]
- Thomas, D.T.; Sanderman, J.; Eady, S.J.; Masters, D.G.; Sanford, P. Whole farm net greenhouse gas abatement from establishing kikuyu-based perennial pastures in South-Western Australia. Animals 2012, 2, 316–330. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, D.; Shalloo, L.; Patton, J.; Buckley, F.; Grainger, C.; Wallace, M. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems’ greenhouse gas emissions. Animal 2012, 6, 1512–1527. [Google Scholar] [CrossRef]
- Harrison, M.T.; Christie, K.M.; Rawnsley, R.P.; Eckard, R.J. Modelling pasture management and livestock genotype interventions to improve whole-farm productivity and reduce greenhouse gas emissions intensities. Anim. Prod. Sci. 2014, 54, 2018–2028. [Google Scholar] [CrossRef]
- Zehetmeier, M.; Baudracco, J.; Hoffmann, H.; Heißenhuber, A. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Animal 2012, 6, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.L.; Howden, S.M.; McKeon, G.M.; Carter, J.O.; Scanlan, J.C. The dynamics of grazed woodlands in southwest Queensland, Australia and their effect on greenhouse gas emissions. Environ. Int. 2001, 27, 147–153. [Google Scholar] [CrossRef]
- Moore, A.D.; Holzworth, D.P.; Herrmann, N.I.; Brown, H.E.; de Voil, P.G.; Snow, V.O.; Zurcher, E.J.; Huth, N.I. Modelling the manager: Representing rule-based management in farming systems simulation models. Environ. Model. Softw. 2014, 62, 399–410. [Google Scholar] [CrossRef]
- Lieffering, M.; Newton, P.C.D.; Vibart, R.; Li, F.Y. Exploring climate change impacts and adaptations of extensive pastoral agriculture systems by combining biophysical simulation and farm system models. Agric. Syst. 2016, 144, 77–86. [Google Scholar] [CrossRef]
- Freer, M.; Moore, A.D.; Donnelly, J.R. GRAZPLAN: decision support systems for Australian grazing enterprises. II. The animal biology model for feed intake, production and reproduction and the GrazFeed DSS. Agric. Syst. 1997, 54, 77–126. [Google Scholar] [CrossRef]
- Charmley, E.; Williams, S.R.O.; Moate, P.J.; Hegarty, R.S.; Herd, R.M.; Oddy, V.H.; Reyenga, P.; Staunton, K.M.; Anderson, A.; Hannah, M.C. A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 2016, 56, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, R.S. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 1999, 50, 1321–1328. [Google Scholar] [CrossRef]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 166, 308–320. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef] [Green Version]
- Van Zijderveld, S.M.; Gerrits, W.J.J.; Dijkstra, J.; Newbold, J.R.; Hulshof, R.B.A.; Perdok, H.B. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 2011, 94, 4028–4038. [Google Scholar] [CrossRef]
- Banik, B.K.; Durmic, Z.; Erskine, W.; Ghamkhar, K.; Revell, C. In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop. Pasture Sci. 2013, 64, 935–942. [Google Scholar] [CrossRef]
- Durmic, Z.; Moate, P.J.; Eckard, R.; Revell, D.K.; Williams, R.; Vercoe, P.E. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 2014, 94, 1191–1196. [Google Scholar] [CrossRef]
- Wedlock, D.N.; Janssen, P.H.; Leahy, S.C.; Shu, D.; Buddle, B.M. Progress in the development of vaccines against rumen methanogens. Animal 2013, 7, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Basarab, J.A.; Beauchemin, K.A.; Baron, V.S.; Ominski, K.H.; Guan, L.L.; Miller, S.P.; Crowley, J.J. Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production. Animal 2013, 7, 303–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howden, S.M.; Reyenga, P.J. Methane emissions from Australian livestock: Implications of the Kyoto Protocol. Aust. J. Agric. Res. 1999, 50, 1285–1292. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.; Charmley, E.; Eckard, R.; Gaughan, J.B.; Hegarty, R. Livestock production in a changing climate: Adaptation and mitigation research in Australia. Crop. Pasture Sci. 2012, 63, 191–202. [Google Scholar] [CrossRef]
- De Oliveira Silva, R.; Barioni, L.G.; Hall, J.A.J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F.A.; Moran, D. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nat. Clim. Chang. 2016, 6, 493. [Google Scholar] [CrossRef]
- Gerber, P.J.; Henderson, B.; Makkar, H.P. Mitigation of Greenhouse Gas Emissions in Livestock Production: A Review of Technical Options for Non-CO2 Emissions (No. 177); FAO: Rome, Italy, 2013. [Google Scholar]
- Smith, P.; Olesen, J.E. Synergies between the mitigation of, and adaptation to, climate change in agriculture. J. Agric. Sci. 2010, 148, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Lau, C.; Cook, S.; Wollenberg, E.; Hansen, J.; Bonilla, O.; Challinor, A. An integrated adaptation and mitigation framework for developing agricultural research: Synergies and trade-offs. Exp. Agric. 2011, 47, 185–203. [Google Scholar] [CrossRef] [Green Version]
- DoE. Australia’s Emissions Projections 2014–15; Department of the Environment: Canberra, Australia, 2015.
- Howden, S.M.; Moore, J.L.; McKeon, G.M.; Carter, J.O. Global change and the mulga woodlands of southwest Queensland: Greenhouse gas emissions, impacts, and adaptation. Environ. Int. 2001, 27, 161–166. [Google Scholar] [CrossRef]
- De Boer, I.J.M.; Cederberg, C.; Eady, S.; Gollnow, S.; Kristensen, T.; Macleod, M.; Meul, M.; Nemecek, T.; Phong, L.T.; Thoma, G.; et al. Greenhouse gas mitigation in animal production: Towards an integrated life cycle sustainability assessment. Curr. Opin. Environ. Sustain. 2011, 3, 423–431. [Google Scholar] [CrossRef]
- Desjardins, R.L.; Smith, W.; Grant, B.; Campbell, C.; Riznek, R. Management Strategies to Sequester Carbon in Agricultural Soils and to Mitigate Greenhouse Gas Emissions. In Increasing Climate Variability and Change: Reducing the Vulnerability of Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 2005; pp. 283–297. [Google Scholar] [CrossRef]
- Liebig, M.A.; Johnson, H.A.; Hanson, J.D.; Frank, A.B. Soil carbon under switchgrass stands and cultivated cropland. Biomass Bioenergy 2005, 28, 347–354. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Yu, K.L.; Guan, X.K.; Fang, C.; Li, M.; Shi, X.Y.; Li, F.M. Medicago sativa improves soil carbon sequestration following revegetation of degraded arable land in a semi-arid environment on the Loess Plateau, China. Agric. Ecosyst. Environ. 2016, 232, 93–100. [Google Scholar] [CrossRef]
- Cottle, D.J.; Harrison, M.T.; Ghahramani, A. Sheep greenhouse gas emission intensities under different management practices, climate zones and enterprise types. Anim. Prod. Sci. 2016, 56, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Verchot, L.V.; Van Noordwijk, M.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Mackensen, J.; Bantilan, C.; Anupama, K.V.; Palm, C. Climate change: linking adaptation and mitigation through agroforestry. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 901–918. [Google Scholar] [CrossRef]
- Fraser, M.D.; Moorby, J.M.; Vale, J.E.; Evans, D.M. Mixed grazing systems benefit both upland biodiversity and livestock production. PLoS ONE 2014, 9, e89054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, P.K.; Herrero, M. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc. Natl. Acad. Sci. USA 2010, 107, 19667–19672. [Google Scholar] [CrossRef] [Green Version]
- Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 2011, 36, 23–32. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Martinez, T.F.; McAllister, T.A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 2007, 85, 1990–1996. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Jon Dokken, D.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
Reference | Model Name | Region | eCO2 (ppm) | Temperature Increase (°C) | Projected Future | Modelled Impact |
---|---|---|---|---|---|---|
Parton et al. [48] | CENTURY | Cold desert steppe, temperate steppe, humid temperate, Mediterranean, dry savanna, humid savanna | 700 | 2–5 | Next 200 years |
|
Rounsevell et al. [49] | Grassland suitability model | England and Wales (Europe) | NA | 2 | Next 30 years |
|
Riedo et al. [50] | Dynamic ecosystem model | Payerne and La Chaux-de-Fonds (Europe) | 660 | 2.6–2.8 | 14 growing seasons |
|
Morales et al. [51] | LPH-GUESS | Europe | 556–718 | 4.5–4.9 | Next 80 years |
|
Thomson et al. [52] | GCM | United States | 560 | 1–2.5 | 2030–2050 |
|
Thivierge et al. [54] | IFSM | Quebec (North America) | 639 | 1 | 2020–2079 |
|
Cullen et al. [55] | SGS pasture model and DairyMod | Subtropical, subhumd, Mediterranean, temperate, cool temperate (Australia) | 581–716 | 0.7–4.4 | 2030–2070 |
|
Moore and Ghahramani [59] | GRAZPLAN | Southern Australia (Australia) | 451–635 | 3 | 2030–2070 |
|
Phelan et al. [58] | Statistical model | Europe | NA | 2 | 2050, 2070 |
|
Webb et al. [60] | GRASP | Savanna rangelands of Queensland (Australia) | 700 | 1–3 | 100 years |
|
Juin et al. [61] | STICS | Southern France | 720 | 1 | 30 years |
|
Perring et al. [62] | EcoMod | Southeastern Tasmania (Australia) | 445–716 | 1–4 | 2030–2070 |
|
Graux et al. [63] | PaSim | Europe | 800 | 3 | 30 years |
|
Yang et al. [64] | Statistical model | Semiarid steppe in monsoon climate of moderate temperature zone (China) | NA | controlled Experiments | NA |
|
Topp and Doyle [65] | Sward model | Scotland (Europe) | 520 | 2 | NA |
|
Ghahramani and Moore [66] | APSIM, AusFarm and GRAZPLAN | Western Australia | 435–449 | 3 | 2030 |
|
Scope | Adaptation | Example Options | Effectiveness | References |
---|---|---|---|---|
Livestock | Nutritional management |
| Improve the productivity, health and welfare, increase immune function and production | Das et al. [98]; Caroprese et al. [99] |
Shade and shelter |
| Allow animals stay within their thermal neutral zone to minimise energy used to cope with thermal stress, and improve productivity and welfare of livestock | Blackshaw and Blackshaw [100]; Silanikove [101] | |
Genetic selection |
| Increase in heat stress tolerance of livestock | Coates et al. [102]; Kilminster and Greeff [103] | |
Grassland | Grassland management |
| Increase in NPP and forage quality, reduction in risk of soil erosion and increase in profitability | Ghahramani and Moore [104] |
Novel species |
| Enhance soil water storage capacity and limit runoff, decrease in N2O emissions and increased soil C storage, ensure ecological stability | MacLeod et al. [105]; Humphreys et al. [106]; Volaire et al. [107]; Cowles et al. [108]; Wright et al. [109]; Waghorn and Hegarty [110] | |
Crop-livestock | Expand livestock industry |
| Reduction in financial risks, increase in farm productivity, improvement in soil conservation, benefit to the whole system’s profitability | Ghahramani and Moore [66]; Ghahramani and Bowran [111] |
Alternative feeding |
| Alleviate the smaller grassland productivity due to climate change, alleviate feed shortages, fill the feed gaps in winter or summer, reduce CH4 and GHG emission, promote animal health, benefit to the whole system’s profitability | Waghorn and McNabb [112]; Rinne et al. [113]; Pardo et al. [114]; Arco-Pérez et al. [115] |
Emission-Reduction Option | Implications and Interaction with Other Options | Implications of Climate Change (If Any) | Implications of Different Emission Metrics |
---|---|---|---|
Reduction in stocking rate (animals per hectare) | In the absence of productivity-enhancing mitigation strategies (e.g., dietary oils), this will tend to reduce overall farm productivity and profitability although increases in per animal productivity often occur. If currently overstocked, this strategy can reduce degradation risk and improve the natural resource base. Lower stocking rate can increase carbon stocks in many grazing systems but also reduce them in some South American systems (de Oliveira Silva et al. [163]). | Reduced pasture productivity in many subtropical and temperate regions may force reductions in stocking rates anyway (Ghahramani and Moore [116]) in which case mitigation and adaptation actions are broadly aligned. In some equatorial and high latitude regions where forage production may increase, this mitigation strategy will be in tension with potential stocking rate increases. | Under Tier 1 GHG inventories, this is the main way to reduce absolute emissions. Efficiency metrics such as emissions per unit product may however improve due to improved individual animal performance. Emissions per unit land area are likely to fall. In some particular tropical livestock systems, lower stocking rates and lower pasture inputs can reduce soil carbon stocks, reducing whole-of-system emissions efficiency. |
Improved animal husbandry (especially disease, pest and heat management) | This increases animal productivity through improved feed conversion efficiency, welfare and often farm-level profitability (Waghorn and Hegarty [110]). This option would usually be integrated with other strategies such as pasture improvement or management to maximise return on investment. | This will be a key adaptation to projected increases in heat stress and possible changes in pest and disease distribution and severity such as blue-tongue. Hence, adaptation and mitigation elements are aligned. | Absolute emissions are likely to increase due to higher intakes but emissions efficiency is likely to increase to a greater extent due to improved animal performance, thus fewer animals are needed to meet a given demand. |
Improved reproductive performance | This increases total system output in many grassland grazing systems, and is a key goal in many livestock improvement programs. It will often be dependent on improved husbandry and pasture management. | More challenging climate conditions can impact on reproductive performance and so this is likely to also be considered as an adaptation option. Higher reproductive performance can, however, result in increased climate risk, often impacting on the resource base, potentially reducing carbon stocks. | Emission efficiency is likely to increase significantly but this option is also likely to increase absolute methane emissions (Henry et al. [162]). |
Improved forage management and agro-forestry | This can increase the standing stock of carbon and also increase (or at least maintain) soil C as well as potentially delivering a range of other ecosystem services. In addition, it can reduce methane yields through improving diet quality (e.g., Verchot et al. [174]) | Improved forage management is a core adaptation strategy in many systems and hence mitigation and adaptation goals are likely to be strongly aligned. Agro-forestry is an option that may be particularly important for small-holder farms. | Likely reduced net emissions, especially when taking into account various C stocks. Emission efficiency is also likely to improve with better pastures and forage supplies (up to a factor of three: Fraser et al. [175]) |
Increased legume component | This can increase intake but reduce methane emissions but sometimes at the expense of increasing N2O emissions. In some situations, increasing legume content in pastures can increase soil C. This option is often undertaken in tandem with other improvements. | Increased atmospheric CO2 concentrations are likely to reduce forage protein content, whilst potentially more extreme weather can lower forage digestibility, in both cases placing a premium on having adequate legumes in pastures. | Likely to reduce methane yield and increase net emission efficiency. In some cases higher legume content may increase absolute emissions due to increased stocking rate or intake. |
Woody weed management | This usually attempts to limit the density of woody vegetation and hence above-ground C. Implications for soil carbon can be mixed. Management on a landscape matrix basis may enable win-win opportunities (Moore et al. [148]). | Projected climate changes and CO2 increases are likely to require enhanced woody weed management especially in tropical and subtropical zones (Howden et al. [168]). In some circumstances, adaptation and mitigation goals may require trade-offs. | Implications could be either positive or negative depending on situation and depending on the emission-metric and elements considered. |
Supplementary feeding | Grain and other feed supplements (e.g., molasses) can reduce methane yields and enhance production and if used strategically can protect the above and below-ground C stores (Thornton and Herrero [176]). Urea and phosphorus supplements can enable overgrazing in droughts and hence further damage the natural resource base. | Given projected increases in climate variability, supplementary feeding could become a more standard part of livestock farming in many regions. | On-farm methane emission efficiency may be increased but when embedded emissions in the supplementary feed combined with potentially greater feed intakes are accounted for, along with increased risk to C stores if management is not adjusted well this strategy could increase net emissions. |
Enhanced robustness and efficiency of livestock value chain | Improved input and output management and including externalities as part of food footprint-type approaches could require systemic change in farming systems, bringing into play several of the above strategies (Garnett [177]). Improving livestock value chains is seen as a key poverty and nutritional insecurity alleviation strategy in many developing countries. | Projected increases in climate variability may require buffering strategies across value chains and spatially as well as closer attention to meeting market specifications. Hence, mitigation and adaptation are likely to be broadly aligned. | Changes in value chains could result in either decreases or increases in total emissions. There are likely to be incentives to increase emission efficiency associated with food-footprint metrics. |
Scope | Topic | Related Section in this Paper | References |
---|---|---|---|
Grassland |
| 2.1 | Morgan et al. [30] |
| 2.3 | Nowak et al. [32]; Newton et al. [33] | |
| 2.3 | Barbehenn et al. [40]; Newton et al. [33] | |
Livestock |
| 2.7; 3.1; 3.2; 5 | Moore and Ghahramani [10,59]; Ghahramani and Moore [97]; Chappell et al. [136] |
Mixed-systems (Australia) |
| 2.10 | Purser [74] |
| 4.7 | Ghahramani and Moore [66]; Ghahramani and Bowran [111]; Thomas et al [130] | |
GHG emission |
| 7.1; 7.4 | Rivera-Ferre et al. [9]; Grainger and Beauchemin [154]; Gerber et al. [164]; Van Zijderveld et al. [156]; Beauchemin et al. [178]; Banik et al. [157]; Durmic et al. [158]; Wedlock et al. [159]; Basarab et al. [160]; DoE et al. [167] |
Modelling |
| 2.11 | Kipling et al. [75,76]; Polley et al. [39]; Claessens et al. [77]; Guis et al. [84]; del Prado et al. [139]; Pilgrim et al. [140] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghahramani, A.; Howden, S.M.; del Prado, A.; Thomas, D.T.; Moore, A.D.; Ji, B.; Ates, S. Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review. Sustainability 2019, 11, 7224. https://doi.org/10.3390/su11247224
Ghahramani A, Howden SM, del Prado A, Thomas DT, Moore AD, Ji B, Ates S. Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review. Sustainability. 2019; 11(24):7224. https://doi.org/10.3390/su11247224
Chicago/Turabian StyleGhahramani, Afshin, S. Mark Howden, Agustin del Prado, Dean T. Thomas, Andrew D. Moore, Boyu Ji, and Serkan Ates. 2019. "Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review" Sustainability 11, no. 24: 7224. https://doi.org/10.3390/su11247224
APA StyleGhahramani, A., Howden, S. M., del Prado, A., Thomas, D. T., Moore, A. D., Ji, B., & Ates, S. (2019). Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review. Sustainability, 11(24), 7224. https://doi.org/10.3390/su11247224