Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Sampling
2.3. Soft and Paved Catchments of RTs
2.4. Measurements of HM Concentrations
2.5. Evaluation of Sediments Pollution by HM
2.6. Statistical Analyses
3. Results and Discussion
3.1. The Watershed Pollution
3.2. Evaluation of Sediments Pollution Using Indices
4. Potential Ecological Risk Factor
5. Health Risk Assessment Based on Hazard Quotient
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bing, H.; Zhou, J.; Wu, Y.; Wang, X.; Sun, H.; Li, R. Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environ. Pollut. 2016, 214, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Sekabira, K.; Origa, H.O.; Basamba, T.A.; Mutumba, G.; Kakudidi, E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Technol. 2010, 7, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Omwene, P.I.; Öncel, M.S.; Çelen, M.; Kobya, M. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world’s largest borate basin (Turkey). Chemosphere 2018, 208, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.L.G.; Poleto, C. Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (Igeo). J. Soils Sediments 2014, 14, 1251–1257. [Google Scholar] [CrossRef]
- Murphy, L.U.; Cochrane, T.A.; O’Sullivan, A. The Influence of Different Pavement Surfaces on Atmospheric Copper, Lead, Zinc, and Suspended Solids Attenuation and Wash-Off. Water Air Soil Pollut. 2015, 226, 232. [Google Scholar] [CrossRef]
- Charters, F. Characterising and Modelling Urban Runoff Quality for Improved Stormwater Management. Ph.D. Thesis, Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand, 2016. Available online: https://ir.canterbury.ac.nz/handle/10092/12602 (accessed on 15 October 2018).
- Charters, F. Stormwater Contaminant Load Monitoring and Modelling of the Addington Brook Catchment; Environment Canterbury Regional Council: Kaikoura, New Zealand, 2016; ISBN 978-0-947507-48-0.
- Nour, H.E.; El-Sorogy, A.S.; Abdel-Wahab, M.; Almadani, S.; Alfaifi, H.; Youssef, M. Assessment of sediment quality using different pollution indicators and statistical analyses, Hurghada area, Red Sea coast, Egypt. Mar. Pollut. Bull. 2018, 133, 808–813. [Google Scholar] [CrossRef]
- Walaszek, M.; Bois, P.; Laurent, J.; Lenormand, E.; Wanko, A. Urban stormwater treatment by a constructed wetland: Seasonality impacts on hydraulic efficiency, physico-chemical behavior and heavy metal occurrence. Sci. Total Environ. 2018, 637–638, 443–454. [Google Scholar] [CrossRef]
- Dias-Ferreira, C.; Pato, R.L.; Varejão, J.B.; Tavares, A.O.; Ferreira, A.J.D. Heavy metal and PCB spatial distribution pattern in sediments within an urban catchment—contribution of historical pollution sources. J. Soils Sediments 2016, 16, 2594–2605. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.J.D.; Soares, D.; Serrano, L.M.V.; Walsh, R.P.D.; Dias-Ferreira, C.; Ferreira, C.S.S. Roads as sources of heavy metals in urban areas. The Covões catchment experiment, Coimbra, Portugal. J. Soils Sediments 2016, 16, 2622–2639. [Google Scholar] [CrossRef]
- Silveira, A., Jr.; Jose, A.P.; Poleto, C.; de Lima, J.L.M.P.; Gonçalves, F.A.; Alvarenga, L.A.; Isidoro, J.M.P.G. Assessment of loose and adhered urban street sediments and trace metals: A study in the city of Poços de Caldas, Brazil. J. Soils Sediments 2016, 16, 2640–2650. [Google Scholar] [CrossRef]
- Robinson, M.; Scholz, M.; Bastien, N.; Carfrae, J. Classification of different sustainable flood retention basin types. J. Environ. Sci. 2010, 22, 898–903. [Google Scholar] [CrossRef]
- Sun, Z.; Brittain, J.E.; Sokolova, E.; Thygesen, H.; Saltveit, S.J.; Rauch, S.; Meland, S. Aquatic biodiversity in sedimentation ponds receiving road runoff—What are the key drivers? Sci. Total Environ. 2018, 610–611, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Allinson, G.; Zhang, P.; Bui, A.; Allinson, M.; Rose, G.; Marshall, S.; Pettigrove, V. Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. Environ. Sci. Pollut. Res. 2015, 22, 10214–10226. [Google Scholar] [CrossRef] [PubMed]
- Zubala, T.; Patro, M.; Boguta, P. Variability of zinc, copper and lead contents in sludge of the municipal stormwater treatment plant. Environ. Sci. Pollut. Res. 2017, 24, 17145–17152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikazono, N.; Tatewaki, K.; Mohiuddin, K.M.; Nakano, T.; Zakir, H.M. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan. Environ. Geochem. Health 2012, 34, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Ahmed, K.; Habibullah-Al-Mamun, M.; Masunaga, S. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci. Total Environ. 2015, 512–513, 94–102. [Google Scholar] [CrossRef]
- Anbuselvan, N.; Senthil Nathan, D.; Sridharan, M. Heavy metal assessment in surface sediments o ff Coromandel Coast of India: Implication on marine pollution. Mar. Pollut. Bull. 2018, 131, 712–726. [Google Scholar]
- Vodyanitskii, Y.N. Standards for the contents of heavy metals in soils of some states. J. Ann. Agrarian Sci. 2016, 14, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Exposure Factors Handbook EPA/600/P-95/002F; US EPA: Washington, DC, USA, 1997.
- Yang, Z.; Lu, W.; Long, Y.; Bao, X.; Yang, O. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochem. Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Bruce, P.L.; Rauch, S.; Auinger, P.; Allen, R.W.; Hornung, R.W. Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public Health 2018, 3, e177–e184. [Google Scholar]
- Obeng-Gyasi, E.; Armijos, R.X.; Weigel, M.M.; Filippelli, F.; Sayegh, M.A. Hepatobiliary-Related Outcomes in US Adults Exposed to Lead. Environments 2018, 5, 46. [Google Scholar] [CrossRef]
- Harrari, F.; Sallsten, G.; Christensson, A.; Petkovic, M.; Hedblad, B.; Forsgard, N.; Melander, O.; Nilsson, P.M.; Borne, Y.; Engstrom, G.; et al. Blood Lead Levels and Decreased Kidney Function in a Population-Based Cohort. Am. J. Kidney Dis. 2018, 72, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.L.; Lin-Tan, D.T.; Hsu, K.H.; Yu, C.C. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N. Engl. J. Med. 2003, 348, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Can, S.; Bağci, C.; Ozaslan, M.; Bozkurt, A.; Cengiz, B.; Cakmak, E.A.; Kocabaş, R.; Karadağ, E.; Tarakçioğlu, M. Occupational lead exposure effect on liver functions and biochemical parameters. Acta Physiol. Hung. 2008, 95, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Gyasi, E.; Rodrigo, X.A.; Weigel, M.M.; Filippelli, G.M.; Sayegh, M.A. Cardiovascular-Related Outcomes in US Adults Exposed to Lead. Int. J. Environ. Res. Public Health 2018, 15, 759. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Zhao, W.; Yan, X.; Shu, T.; Xiong, Q.; Chen, F. Pollution characteristics and health risk assessment of airborne heavy metals collected from Beijing bus stations. Int. J. Environ. Res. Public Health 2015, 12, 9658–9671. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, H.Q.; Gong, Y.; Wei, Y.; Miao, A.J.; Yang, L.Y.; Zhong, H. Risk assessment of metals in urban soils from a typical Industrial city, Suzhou, Eastern China. Int. J. Environ. Res. Public Health 2017, 14, 1025. [Google Scholar] [CrossRef] [PubMed]
- Beurteilung der Wasserbeschaffenheit von Fliessgewaessern in der BRD; LAWA: Berlin, Germany, 1998.
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Weissmannová, H.D.; Pavlovský, J. Indices of soil contamination by heavy metals—Methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Akpan, I.O.; Thompson, E.A. Assessment of heavy metal contamination of sediments along the cross river channel in Cross River state, Nigeria. J. Environ. Sci. Toxicol. Food Technol. 2013, 2, 20–28. [Google Scholar]
- Likuku, A.S.; Mmolawa, K.; Gaboutloeloe, G.K. Assessment of Heavy Metal Enrichment and Degree of Contamination Around the Copper-Nickel Mine in the Selebi Phikwe Region, Eastern Botswana. Environ. Ecol. Res. 2013, 1, 32–40. [Google Scholar] [CrossRef]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Central Geological Database. GeoLOG PGI. Available online: https://geolog.pgi.gov.pl/ (accessed on 20 May 2018).
- Superfund PublicHealth Evaluation Manual; US EPA (United States Environmental Protection Agency): Washington, DC, USA, 1986; pp. 1–86.
- Risk Assessment Guidance for Superfund. Volume, I. Human Health Evaluation Manual (Part A); EPA/540/189/002; US EPA (United States Environmental Protection Agency): Washington, DC, USA, 1989.
- Reference Dose (RfD): Description and Use in Health Risk Assessments; Background Document 1A; Integrated Risk Information System (IRIS); US EPA (United States Environmental Protection Agency): Washington, DC, USA, 1993.
- Baseline Human Health Risk Assessment; Vasquez Boulevard and I-70 superfund site Denver, Denver (Co); US EPA (United States Environmental Protection Agency): Washington, DC, USA, 2001.
- Nowell, L.H.; Moran, P.W.; Gilliom, R.J.; Calhoun, D.L.; Ingersoll, C.G.; Kemble, N.E.; Kuivila, K.M.; Phillips, P.J. Contaminants in Stream Sediments from Seven United States Metropolitan Areas: Part I: Distribution in Relation to Urbanization. Arch. Environ. Contam. Toxicol. 2013, 64, 32–51. [Google Scholar] [CrossRef]
- Sałata, A.; Dąbek, L. Methods of assessment of stormwater sediments quality. EDP Sci. 2017, 17, 00080. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, N.; Wojciechowska, E. Assessment of trace metals leaching during rainfall events from building rooftops with different types of coverage—Case study. J. Ecol. Eng. 2018, 19, 45–51. [Google Scholar] [CrossRef]
- Szpakowski, W.; Szydłowski, M. Evaluating the catastrophic rainfall of 14 July 2016 in the catchment basin of the urbanized strzyza stream in Gdańsk, Poland. Pol. J. Environ. Stud. 2018, 27, 861–869. [Google Scholar] [CrossRef]
- Nawrot, N.; Matej-Łukowicz, K.; Wojciechowska, E. Change in Heavy Metals Concentrations in Sediments Deposited in Retention Tanks in a Stream after a Flood. Pol. J. Environ. Stud. 2018, 28, 1–6. [Google Scholar] [CrossRef]
- Wojciechowska, E.; Rackiewicz, A.; Nawrot, N.; Matej-Łukowicz, K.; Obarska-Pempkowiak, H. Investigations of Heavy Metals Distribution in Bottom Sediments from Retention Tanks in the Urbanized Watershed. Annu. Set Environ. Protect. 2017, 17, 572–589. [Google Scholar]
- Olubunmi, E.; Olorunsola, E. Evaluation of the Status of Heavy Metal Pollution of Sediment of Agbabu Bitumen Deposit Area, Nigeria. Eur. J. Sci. Res. 2010, 41, 373–382. [Google Scholar]
- Chen, C.W.; Kao, C.M.; Chen, C.F.; Dong, C. Di. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 2007, 66, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Fan, Z.; Xiao, P.; Oh, K.; Ma, X.; Hou, W. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ. Geol. 2009, 57, 1815–1823. [Google Scholar] [CrossRef]
Factor | Definition | Unit | Adults |
---|---|---|---|
EF | Exposure frequency | days/years | 30 |
ED | Exposure duration | years | 40 |
BW | Body weight of the exposed individual | kg | 70 |
AT | Average time of exposure | days | 40 × 365 = 14600 |
SA | Exposed skin surface area | cm2 | 4350 |
AF | Skin adherence factor | mg/(cm∙day) | 0.7 |
ABF | Dermal absorption factor | unitless | 0.001 |
Retention | Sampling Site | Average Concentration of HM in Sediments [mg/kg d.w.] | |||||
---|---|---|---|---|---|---|---|
Tank | Cu | Zn | Pb | Cd | Cr | Ni | |
Strzyża Stream | |||||||
Nowiec II | IN | 3.09 ± 0.05 | 18.2 ± 0.3 | 5.85 ± 0.08 | 0.088 ± 0.000 | 2.50 ± 0.07 | 3.81 ± 0.05 |
OUT | 7.80 ± 0.10 | 49.9 ± 0.8 | 13.2 ± 0.1 | 0.111 ± 0.000 | 3.80 ± 0.07 | 4.13 ± 0.05 | |
Ogrodowa | IN | 18.5 ± 0.3 | 95.1 ± 1.5 | 16.7 ± 0.2 | 0.281 ± 0.001 | 5.11 ± 0.10 | 5.42 ± 0.1 |
OUT | 37.4 ± 0.6 | 186 ± 3 | 43.2 ± 0.5 | 0.352 ± 0.001 | 8.98 ± 0.2 | 5.98 ± 0.1 | |
Potokowa | IN | 211 ± 3 | 210 ± 3 | 108 ± 1 | 0.150 ± 0.001 | 9.11 ± 0.2 | 6.54 ± 0.10 |
OUT | 93.5 ± 1.5 | 356 ± 6 | 49.7 ± 0.6 | 0.60 ± 0.01 | 14.2 ± 0.2 | 10.93 ± 0.10 | |
Oliwski Stream | |||||||
Grunwaldzka | IN | 37.8 ± 0.6 | 174 ± 3 | 46.1 ± 0.7 | 0.091 ± 0.001 | 12.9 ± 0.2 | 7.13 ± 0.12 |
OUT | 50.1 ± 0.8 | 244 ± 4 | 81.9 ± 1.3 | 0.469 ± 0.007 | 14.6 ± 0.2 | 10.3 ± 0.2 | |
Chłopska | IN | 55.1 ± 0.9 | 45.0 ± 0.8 | 22.7 ± 0.3 | 0.300 ± 0.008 | 17.4 ± 0.4 | 3.80 ± 0.06 |
OUT | 64.9 ± 1.1 | 103 ± 2 | 35.8 ± 0.6 | 0.102 ± 0.002 | 25.5 ± 0.3 | 4.25 ± 0.07 | |
Orłowska | IN | 1114 ± 19 | 136 ± 2 | 160 ± 2 | 0.092 ± 0.001 | 12.8 ± 0.2 | 6.27 ± 0.11 |
OUT | 40.9 ± 0.7 | 82.1 ± 1.4 | 29.1 ± 0.4 | 0.200 ± 0.000 | 14.6 ± 0.2 | 6.66 ± 0.09 |
Retention Tank | Point | Cu | Zn | Pb | Cd | Cr | Ni | PLI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | |||
Strzyża Stream | ||||||||||||||
Nowiec II | IN | 0.7 | −1.0 | 0.4 | −1.9 | 0.4 | −2.1 | 0.4 | −2.1 | 0.5 | −1.5 | 0.7 | −1.2 | 0.5 |
OUT | 1.9 | 0.3 | 1.1 | −0.4 | 0.8 | −0.9 | 0.4 | −1.8 | 0.8 | −0.9 | 0.7 | −1.0 | 0.9 | |
Ogrodowa | IN | 4.4 | 1.6 | 2.1 | 0.5 | 1.0 | −0.6 | 1.1 | −0.4 | 1.1 | −0.5 | 1.0 | −0.7 | 1.5 |
OUT | 8.9 | 2.6 | 4.1 | 1.5 | 2.6 | 0.8 | 1.4 | −0.1 | 1.9 | 0.3 | 1.0 | −0.5 | 2.5 | |
Potokowa | IN | 50 | 5.1 | 4.7 | 1.6 | 6.6 | 2.1 | 0.6 | −1.3 | 1.9 | 0.4 | 1.2 | −0.4 | 3.6 |
OUT | 22 | 3.9 | 7.9 | 2.4 | 3.0 | 1.0 | 2.4 | 0.7 | 3.0 | 1.0 | 1.9 | 0.4 | 4.4 | |
Oliwski Stream | ||||||||||||||
Grunwaldzka | IN | 2.2 | 0.6 | 1.4 | −0.1 | 1.2 | −0.3 | 0.1 | −3.9 | 1.4 | −0.1 | 1.3 | −0.2 | 0.9 |
OUT | 3.0 | 1.0 | 2.0 | 0.4 | 2.1 | 0.5 | 0.5 | −1.5 | 1.6 | 0.1 | 1.8 | 0.3 | 1.6 | |
Chłopska | IN | 3.3 | 1.1 | 0.4 | −2.0 | 0.6 | −1.4 | 0.3 | −2.1 | 1.9 | 0.4 | 0.7 | −1.2 | 0.8 |
OUT | 3.8 | 1.4 | 0.9 | −0.8 | 0.9 | −0.7 | 0.1 | −3.7 | 2.8 | 0.9 | 0.8 | −1.0 | 1.0 | |
Orłowska | IN | 66 | 5.5 | 1.1 | −0.4 | 4.1 | 1.5 | 0.1 | −3.8 | 1.4 | −0.1 | 1.1 | −0.4 | 1.9 |
OUT | 2.4 | 0.7 | 0.7 | −1.1 | 0.7 | −1.0 | 0.2 | −2.7 | 1.6 | 0.1 | 1.2 | −0.3 | 0.9 |
Retention Tank | Point | Eji | RI | |||||
---|---|---|---|---|---|---|---|---|
Cu | Zn | Pb | Cd | Cr | Ni | |||
Strzyża Stream | ||||||||
Nowiec | IN | 4 | 0 | 2 | 21 | 2 | 4 | 32 |
OUT | 9 | 1 | 4 | 13 | 2 | 4 | 34 | |
Ogrodowa | IN | 22 | 2 | 33 | 42 | 2 | 13 | 115 |
OUT | 45 | 4 | 5 | 34 | 6 | 12 | 106 | |
Potokowa | IN | 252 | 5 | 13 | 18 | 5 | 9 | 302 |
OUT | 111 | 8 | 15 | 72 | 4 | 8 | 218 | |
Oliwski Stream | ||||||||
Grunwaldzka | IN | 11 | 1 | 6 | 3 | 2 | 11 | 34 |
OUT | 15 | 2 | 11 | 16 | 2 | 8 | 53 | |
Chłopska | IN | 16 | 0 | 3 | 10 | 3 | 4 | 37 |
OUT | 19 | 1 | 5 | 4 | 2 | 5 | 35 | |
Orłowska | IN | 330 | 1 | 21 | 3 | 2 | 7 | 363 |
OUT | 12 | 1 | 4 | 7 | 2 | 7 | 32 |
Metals | Cm | RfDderm | ADDderm | HQ |
---|---|---|---|---|
[mg/kg] | [mg/kg∙day] | [mg/kg∙day] | ||
Strzyża Stream | ||||
Cu | 61.9 | 1.20 × 10−2 | 2.70 × 10−6 | 2.25 × 10−4 |
Zn | 152 | 6.00 × 10−2 | 6.65 × 10−6 | 1.11 × 10−4 |
Pb | 39.6 | 5.25 × 10−4 | 1.72 × 10−6 | 3.28 × 10−3 |
Cd | 0.281 | 1.00 × 10−5 | 1.21 × 10−8 | 1.21 × 10−3 |
Cr | 7.91 | 6.00 × 10−5 | 3.44 × 10−7 | 5.74 × 10−3 |
Ni | 7.97 | 5.40 × 10−3 | 3.47 × 10−7 | 6.42 × 10−5 |
Oliwski Stream | ||||
Cu | 227 | 1.20 × 10−2 | 9.88 × 10−6 | 8.24 × 10−4 |
Zn | 130 | 6.00 × 10−2 | 5.70 × 10−6 | 9.50 × 10−5 |
Pb | 62.7 | 5.25 × 10−4 | 2.73 × 10−6 | 5.20 × 10−3 |
Cd | 0.210 | 1.00 × 10−5 | 9.09 × 10−9 | 9.09 × 10−4 |
Cr | 16.3 | 6.00 × 10−5 | 7.11 × 10−7 | 1.18 × 10−2 |
Ni | 6.40 | 5.40 × 10−3 | 2.78 × 10−7 | 5.16 × 10−5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowska, E.; Nawrot, N.; Walkusz-Miotk, J.; Matej-Łukowicz, K.; Pazdro, K. Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors. Sustainability 2019, 11, 563. https://doi.org/10.3390/su11030563
Wojciechowska E, Nawrot N, Walkusz-Miotk J, Matej-Łukowicz K, Pazdro K. Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors. Sustainability. 2019; 11(3):563. https://doi.org/10.3390/su11030563
Chicago/Turabian StyleWojciechowska, Ewa, Nicole Nawrot, Jolanta Walkusz-Miotk, Karolina Matej-Łukowicz, and Ksenia Pazdro. 2019. "Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors" Sustainability 11, no. 3: 563. https://doi.org/10.3390/su11030563
APA StyleWojciechowska, E., Nawrot, N., Walkusz-Miotk, J., Matej-Łukowicz, K., & Pazdro, K. (2019). Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors. Sustainability, 11(3), 563. https://doi.org/10.3390/su11030563