Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment
Abstract
:1. Introduction
1.1. Life Cycle Assessment (LCA)
1.2. Life Cycle Costing (LCC)
1.3. Social Life Cycle Assessment (S-LCA)
1.4. Life Cycle Sustainability Assessment (LCSA)
2. Current Research Challenges in LCSA
2.1. The Integration of LCA and LCC
2.1.1. Temporality in LCA and LCC (Issue 1)
2.1.2. Consequential Perspective in LCA and LCC (Issue 2)
2.2. The Integration of LCC and S-LCA
2.2.1. Differences in Perspective when Using Both Methods (Issue 3)
2.2.2. Consequential Perspectives in LCC and S-LCA (Issue 4)
2.3. The Integration of S-LCA and LCA
2.3.1. Impacts and Benefits in S-LCA Compared with LCA (Issue 5)
2.3.2. Different Scales of Assessment Applied (Issue 6)
2.3.3. Defining What is “Positive, or Right” and “Negative, or Wrong” in S-LCA Indicators (Issue 7)
2.3.4. What is Missing from the S-LCA Consequential Approach (Issue 8)
3. Discussion
3.1. Filling the Gaps
3.2. Research Opportunities of Consequential Approaches in LCSA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/?menu=1300 (accessed on 6 November 2017).
- Costanza, R.; Fioramonti, L.; Kubiszewski, I. The UN Sustainable Development Goals and the Dynamics of Well-Being. Front. Ecol. Environ. 2016, 14, 59. [Google Scholar] [CrossRef]
- Weidema, B. SDG-LCA. Available online: https://lca-net.com/blog/2017/10/ (accessed on 7 November 2017).
- Johnston, P.; Everard, M.; Santillo, D.; Robèrt, K. Reclaiming the Definition of Sustainability. Environ. Sci. Pollut. Res. 2007, 14, 60–66. [Google Scholar] [CrossRef]
- Benoît, C.; Mazijn, B. Guideline for Social Life Cycle Assessment of Products; United Nations Environment Programme: Paris, France, 2009; ISBN 9789280730210. [Google Scholar]
- Onat, N.C.; Kucukvar, M.; Halog, A.; Cloutier, S. Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives. Sustainability 2017, 9, 706. [Google Scholar] [CrossRef]
- Kloepffer, W. Life Cycle Sustainability Assessment of Products (with Comments by Helias A. Udo de Haes, p. 95). Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards life cycle sustainability assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef]
- The International Standards Organisation. Environmental Management—Life Cycle Assessment—Principles and Framework, 2nd ed.; The International Standards Organisation: Geneva, Switzerland, 2006; ISBN ISO 14040:2006(E). [Google Scholar]
- The International Standards Organisation. Environmental Management—Life Cycle Assessment—Requirements and Guidelines, 1st ed.; The International Standards Organisation: Geneva, Switzerland, 2006; ISBN 5935522004. [Google Scholar]
- Bauman, H.; Tillman, A.-M. The Hitch Hiker’s Guide to LCA: An Orientation in Life Cycle Assessment Methodology and Applications, 1st ed.; Studentlitteratur AB: Lund, Sweden, 2004; ISBN1 9144023642. ISBN2 9789144023649. [Google Scholar]
- Consoli, F.; Allen, D.; Boustead, I.; Fava, J.; Franklin, W.; Jensen, A.A.; de Oude, N.; Parrish, R.; Perriman, R.; Postlethwaite, D.; et al. Guidelines for Life-Cycle Assessment: A Code of Practice, 1st ed.; Consoli, F., Ed.; Society of Environmental Toxicology and Chemistry (SETAC): Pensacola, FL, USA, 1993; ISBN1 9056070037. ISBN2 9789056070038. [Google Scholar]
- LCI Phase III (2012–2017): Winding down Phase 3 Flagships—Data, Methods and Product Sustainability Information. Available online: https://www.lifecycleinitiative.org/activities/phase-iii/ (accessed on 12 November 2017).
- Zamagni, A.; Guinée, J.; Heijungs, R.; Masoni, P.; Raggi, A. Lights and shadows in consequential LCA. Int. J. Life Cycle Assess. 2012, 17, 904–918. [Google Scholar] [CrossRef]
- Earles, J.M.; Halog, A. Consequential life cycle assessment: A review. Int. J. Life Cycle Assess. 2011, 16, 445–453. [Google Scholar] [CrossRef]
- Curran, M.A. Life Cycle Assessment: A review of the methodology and its application to sustainability. Curr. Opin. Chem. Eng. 2013, 2, 273–277. [Google Scholar] [CrossRef]
- Bjørn, A.; Owsianiak, M.; Laurent, A.; Olsen, S.I.; Corona, A.; Hauschild, M.Z. Scope Definition. In Life Cycle Assessment: Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 75–116. ISBN 978-3-319-56474-6. [Google Scholar]
- Brandao, M.; Martin, M.; Cowie, A.; Hamelin, L.; Zamagni, A. Consequential Life Cycle Assessment: What, How, and Why? In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 277–284. ISBN 9780128046777. [Google Scholar]
- Swarr, T.E.; Hunkeler, D.; Klöpffer, W.; Pesonen, H.; Ciroth, A.; Brent, A.C.; Pagan, R. Environmental life-cycle costing: A code of practice. Int. J. Life Cycle Assess. 2011, 16, 389–391. [Google Scholar] [CrossRef]
- Jolliet, O.; Saade-Sbeih, M.; Shaked, S.; Jolliet, A.; Crettaz, P. Environmental Life Cycle Assessment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781439887660. [Google Scholar]
- Blanchard, B. Design and Manage to Life Cycle Cost; Dilithium Pr: Portland, ME, USA, 1978; ISBN1 978-0930206000. ISBN2 0930206002. [Google Scholar]
- Blanchard, B.; Fabrycky, W. Systems Engineering and Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998; ISBN1 013221735X. ISBN2 978-0132217354. [Google Scholar]
- Hunkeler, D.; Lichtenvort, K.; Rebitzer, G. Environmental Life Cycle Costing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN1 9781420054705. ISBN2 978-1420054705. [Google Scholar]
- Freudenburg, W.R. Social impact assessment. Annu. Rev. Sociol. 1986, 12, 451–478. [Google Scholar] [CrossRef]
- Benoît, C.; Mazijn, B. Guidelines for Social Life Cycle Assessment of Products—Social and Socio-Economic LCA Guidelines Complementing Environmental LCA and Life Cycle Costing, Contributing to the Full Assessment of Goods and Services within the Context of Sustainable Development; United Nations Environment Programme: Paris, France, 2009; ISBN 9789280730210. [Google Scholar]
- Neugebauer, S.; Traverso, M.; Blengini, G.A.; Mathieux, F. Social Life Cycle Assessment of Niobium Mining in Brazil in a Circular Economy context. In Pre-Proceeding 6th Social LCA Conference People and Places for Partnership; Loeillet, D., Sanchez, C., Eds.; CIRAID: Pescara, Italy, 2018. [Google Scholar]
- Carina, A.; Mendes, P.; Ribau, M. Social life cycle analysis as a tool for sustainable management of illegal waste dumping in municipal services. J. Clean. Prod. 2019, 210, 1141–1149. [Google Scholar] [CrossRef]
- Corona, B.; Bozhilova-Kisheva, K.P.; Olsen, S.I.; Guillermo, S.M. Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain. J. Ind. Ecol. 2017, 21, 1566–1577. [Google Scholar] [CrossRef]
- Tseng, Y.; Lee, Y. An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment. Sustainability 2017, 9, 1822. [Google Scholar] [CrossRef]
- Ra, P.; Kuppens, T.; Van Dael, M.; Azadi, H.; Lebailly, P.; Passel, S. Van Social sustainability assessments in the biobased economy: Towards a systemic approach. Renew. Sustain. Energy Rev. 2018, 82, 1839–1853. [Google Scholar] [CrossRef]
- Falcone, P.M. Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective. Sustainability 2018, 10, 1031. [Google Scholar] [CrossRef]
- Guinee, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life Cycle Assessment: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef]
- Guinee, J. (CML) Life Cycle Sustainability Assessment—What is it and What is its challenges. In Taking Stock of Industrial Ecology; Springer International Publishing: Cham, Switzerland, 2016; pp. 45–68. ISBN 9783319205700. [Google Scholar]
- Cihat, N.; Kucukvar, M.; Tatari, O.; Phil, Q. Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U. S. the International Council on Clean Transportation. J. Clean. Prod. 2016, 112, 291–307. [Google Scholar] [CrossRef]
- Cihat, N.; Kucukvar, M.; Tatari, O. Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options. Energy 2016, 112, 715–728. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Egilmez, G. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: A case for electric vehicles. Int. J. Life Cycle Assess. 2016, 21, 1009–1034. [Google Scholar] [CrossRef]
- Gencturk, B.; Hossain, K.; Lahourpour, S. Life cycle sustainability assessment of RC buildings in seismic regions. Eng. Struct. 2016, 110, 347–362. [Google Scholar] [CrossRef]
- Hossaini, N.; Reza, B.; Akhtar, S.; Sadiq, R.; Hewage, K. AHP based life cycle sustainability assessment (LCSA) framework: A case study of six storey wood frame and concrete frame buildings in Vancouver. J. Environ. Plan. Manag. 2015, 58, 1217–1241. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings. Int. J. Life Cycle Assess. 2014, 19, 1488–1505. [Google Scholar] [CrossRef]
- Ren, J.; Manzardo, A.; Mazzi, A.; Zuliani, F.; Scipioni, A. Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. Int. J. Life Cycle Assess. 2015, 20, 842–853. [Google Scholar] [CrossRef]
- Manzardo, A.; Ren, J.; Mazzi, A.; Scipioni, A. A grey-based group decision-making methodology for the selection of hydrogen technologies in life cycle sustainability perspective. Int. J. Hydrogen Energy 2012, 37, 17663–17670. [Google Scholar] [CrossRef]
- Stamford, L.; Azapagic, A. Life cycle sustainability assessment of electricity options for the UK. Int. J. Energy Res. 2012, 1263–1290. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lehmann, A.; Muñoz, P.; Antón, A.; Traverso, M.; Rieradevall, J.; Finkbeiner, M. Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. J. Clean. Prod. 2014, 69, 34–48. [Google Scholar] [CrossRef]
- Aziz, R.; Chevakidagarn, P.; Danteravanich, S. Life Cycle Sustainability Assessment of Community Composting of Agricultural and Agro Industrial Wastes. J. Sustain. Sci. Manag. 2016, 11, 57–69. [Google Scholar]
- Peukert, B.; Benecke, S.; Clavell, J.; Neugebauer, S.; Nissen, N.F.; Uhlmann, E.; Lang, K.; Finkbeiner, M. Addressing sustainability and flexibility in manufacturing via smart modular machine tool frames to support sustainable value creation. Procedia CIRP 2015, 29, 514–519. [Google Scholar] [CrossRef]
- Huang, B.; Mauerhofer, V. Life cycle sustainability assessment of ground source heat pump in Shanghai, China. J. Clean. Prod. 2016, 119, 207–214. [Google Scholar] [CrossRef]
- Vinyes, E.; Oliver-Solà, J.; Ugaya, C.; Rieradevall, J.; Gasol, C.M. Application of LCSA to used cooking oil waste management. Int. J. Life Cycle Assess. 2013, 18, 445–455. [Google Scholar] [CrossRef]
- Menikpura, S.; Gheewala, S.H.; Bonnet, S. Framework for life cycle sustainability assessment of municipal solid waste management systems with an application to a case study in Thailand. Waste Manag. Res. 2012, 30, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Li, B.; Wang, L.; Yang, J.; Liu, J. Reusability based on Life Cycle Sustainability Assessment: Case study on WEEE. Procedia CIRP 2014, 15, 473–478. [Google Scholar] [CrossRef]
- Ciroth, A.; Finkbeier, M.; Hildenbrand, J.; Klöpffer, W.; Mazijn, B.; Prakash, S.; Sonnemann, G.; Traverso, M.; Ugaya, C.M.; Valdivia, S.; Vickery-Niederman, G. Towards a Life Cycle Sustainability Assessment: Making Informed Choices on Products, 1st ed.; Valdivia, S., Ugaya, C.M.L., Sonnemann, G., Hildenbrand, J., Eds.; United Nations Environment Programme: Paris, France, 2011; ISBN 9789280731750. [Google Scholar]
- Levasseur, A.; Lesage, P.; Margni, M.; Deschênes, L.; Samson, R. Considering Time in LCA: Dynamic LCA and Its Application to Global Warming Impact Assessments. Environ. Sci. Technol. 2010, 44, 3169–3174. [Google Scholar] [CrossRef] [PubMed]
- Mcmanus, M.C.; Taylor, C.M. The changing nature of life cycle assessment. Biomass Bioenergy 2015, 82, 13–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.; Wang, E.; Zhai, Q.; Yang, F. Temporal discounting in life cycle assessment: A critical review and theoretical framework. Environ. Impact Assess. Rev. 2015, 51, 23–31. [Google Scholar] [CrossRef]
- Zhai, Q.; Crowley, B.; Yuan, C. Temporal Discounting for Life Cycle Assessment: Differences between Environmental Discounting and Economic Discounting. In Proceedings of the 2011 IEEE International Symposium on Sustainable Systems and Technology, Chicago, IL, USA, 16–18 May 2011. [Google Scholar]
- Amor, B.; Gaudreault, C.; Pineau, P.; Samson, R. Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation. Renew. Energy 2014, 69, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Anand, C.K.; Amor, B. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Sustain. Energy Rev. 2017, 67, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Ostermeyer, Y.; Wallbaum, H.; Reuter, F. Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment. Int. J. Life Cycle Assess. 2013, 18, 1762–1779. [Google Scholar] [CrossRef] [Green Version]
- Beloin-saint-pierre, D.; Heijungs, R.; Blanc, I. The ESPA (Enhanced Structural Path Analysis) method: A solution to an implementation challenge for dynamic life cycle assessment studies. Int. J. Life Cycle Assess. 2014, 16, 861–871. [Google Scholar] [CrossRef]
- Field, F.; Kirchain, R.; Clark, J. Life-Cycle Assessment and Temporal Distributions of Emissions Developing a Fleet-Based Analysis. J. Ind. Ecol. 2000, 4, 71–91. [Google Scholar] [CrossRef]
- Shah, V.P.; Ries, R.J. A characterization model with spatial and temporal resolution for life cycle impact assessment of photochemical precursors in the United States. Int. J. Life Cycle Assess. 2009, 14, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Heijungs, R.; Huppes, G.; Guinée, J.B. Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polym. Degrad. Stab. 2010, 95, 422–428. [Google Scholar] [CrossRef]
- Amor, B.; Billette, E.; Villemeur, D.; Pellat, M.; Pineau, P. Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data. Energy 2014, 66, 458–469. [Google Scholar] [CrossRef]
- Wood, R.; Hertwich, E.G. Economic modelling and indicators in life cycle sustainability assessment of Products. Int. J. Life Cycle Assess. 2013, 18, 1710–1721. [Google Scholar] [CrossRef]
- Sala, S.; Farioli, F.; Zamagni, A. Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int. J. Life Cycle Assess. 2013, 18, 1686–1697. [Google Scholar] [CrossRef]
- Akhtar, S.; Reza, B.; Hewage, K. Life cycle sustainability assessment (LCSA) for selection of sewer pipe materials. Clean Technol. Environ. Policy 2015, 17, 973–992. [Google Scholar] [CrossRef]
- Valdivia, S.; Ugaya, C.M.L.; Sonnemann, G. Life Cycle Sustainability Assessment: From LCA to LCSA—A UNEP/SETAC approach towards a life cycle sustainability assessment—Our contribution to Rio + 20. Int. J. Life Cycle Assess. 2013, 18, 1673–1685. [Google Scholar] [CrossRef]
- Traverso, M.; Asdrubali, F.; Francia, A.; Finkbeiner, M. Towards life cycle sustainability assessment: An implementation to photovoltaic modules. Int. J. Life Cycle Assess. 2012, 17, 1068–1079. [Google Scholar] [CrossRef]
- Jørgensen, A.; Finkbeiner, M.; Jørgensen, M.S.; Hauschild, M.Z. Defining the baseline in social life cycle assessment. Int. J. Life Cycle Assess. 2010, 15, 376–384. [Google Scholar] [CrossRef]
- Sousa-zomer, T.T.; Miguel, P.A.C. The main challenges for social life cycle assessment (SLCA) to support the social impacts analysis of product-service systems. Int. J. Life Cycle Assess. 2015, 23, 607–616. [Google Scholar] [CrossRef]
- Clift, P.R. Social life cycle assessment: What are we trying to do? In Pre-Proceedings of the 4th International Seminar on Social LCA; CIRAD: Montpellier, France, 2014; pp. 11–16. [Google Scholar]
- Schaubroeck, T. A Revision of What Life Cycle Sustainability Assessment Should Entail Towards Modeling the Net Impact on Human Well-Being. J. Ind. Ecol. 2017, 21, 1–14. [Google Scholar] [CrossRef]
- Dreyer, L.C.; Hauschild, M.Z.; Schierbeck, J. A Framework for Social Life Cycle Impact Assessment. Int. J. Life Cycle Assess. 2006, 11, 88–97. [Google Scholar] [CrossRef]
- Hacking, T.; Guthrie, P. A framework for clarifying the meaning of Triple Bottom-Line, Integrated, and Sustainability Assessment. Environ. Impact Assess. Rev. 2008, 28, 73–89. [Google Scholar] [CrossRef]
- Sala, S.; Farioli, F.; Zamagni, A. Progress in sustainability science: Lessons learnt from current methodologies for sustainability assessment: Part 1. Int. J. Life Cycle Assess. 2013, 18, 1653–1672. [Google Scholar] [CrossRef]
- Quyen, L.; Halog, A. Rice husk based bioelectricity vs. Coal-fired electricity: Life cycle sustainability assessment case study in Vietnam. Procedia CIRP 2016, 40, 73–78. [Google Scholar] [CrossRef]
- Cihat, N.; Gumus, S.; Kucukvar, M.; Tatari, O. Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustain. Prod. Consum. 2016, 6, 12–25. [Google Scholar] [CrossRef]
- Zamagni, A.; Pesonen, H.; Swarr, T. From LCA to Life Cycle Sustainability Assessment: Concept, practice and future directions. Int. J. Life Cycle Assess. 2013, 18, 1637–1641. [Google Scholar] [CrossRef]
- Norris, G.A. Doing More Good than Harm: Footprints, Handprints, and Beneficience. Available online: http://www.fusbp.com/wp-content/uploads/2010/09/Basic-Beneficience-Primer-Handprint-accounting.pdf (accessed on 6 November 2017).
- Steen, B.; Palander, S. Life Cycle Sustainability Assessment A selection of safeguard subjects and state indicators for sustainability assessments. Int. J. Life Cycle Assess. 2016, 21, 861–874. [Google Scholar] [CrossRef]
- Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F. Techniques Matériaux towards prospective life cycle sustainability analysis: Exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg’s energy system. Matér. Tech. 2015, 102, 605. [Google Scholar] [CrossRef]
- Ekener, E.; Hansson, J.; Larsson, A.; Peck, P. Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting—Tested on biomass based and fossil transportation fuels. J. Clean. Prod. 2018, 181, 337–351. [Google Scholar] [CrossRef]
- Traverso, M.; Finkbeiner, M.; Jørgensen, A.; Schneider, L. Life Cycle Sustainability Dashboard. J. Ind. Ecol. 2012, 16, 680–688. [Google Scholar] [CrossRef]
- Heijungs, R.; Sangwon, S. The Computational Structure of Life Cycle Assessment; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Heijungs, R.; Settanni, E.; Guinée, J. Toward a computational structure for life cycle sustainability analysis: Unifying LCA and LCC. Int. J. Life Cycle Assess. 2013, 18, 1722–1733. [Google Scholar] [CrossRef]
- Neugebauer, S.; Finkbeiner, M.; Emara, Y.; Hellerstr, C. Calculation of Fair wage potentials along products’ life cycle e Introduction of a new midpoint impact category for social life cycle assessment. J. Clean. Prod. 2017, 143. [Google Scholar] [CrossRef]
- Weidema, B.P. The Integration of Economic and Social Aspects in Life Cycle Impact Assessment. Int. J. Life Cycle Assess. 2006, 11, 89–96. [Google Scholar] [CrossRef]
- Waldekker, B.; Molnar, S. Social LCA at SP—Challenges and Opportunities; SP Sveriges Tekniska Forskningsinstitut: Boras, Sweden, 2014. [Google Scholar]
- Grießhammer, R.; Buchert, M.; Hochfeld, C. PROSA—Product Sustainability Assessment; Öko-Institut e.V.: Freiburg, Germany, 2007; Volume 49. [Google Scholar]
- Halog, A.; Manik, Y. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment. Sustainability 2011, 3, 469–499. [Google Scholar] [CrossRef] [Green Version]
- Traverso, M. Is social life cycle assessment really struggling in development or is it on a normal path towards harmonization/standardization? Int. J. Life Cycle Assess. 2018, 23, 199–200. [Google Scholar] [CrossRef]
- Iofrida, N. Why social life cycle assessment is struggling in development? Int. J. Life Cycle Assess. 2017, 23, 201–203. [Google Scholar] [CrossRef]
- Arcese, G.; Lucchetti, M.C.; Massa, I.; Valente, C. State of the art in S-LCA: Integrating literature review and automatic text analysis. Int. J. Life Cycle Assess. 2016, 23, 394–405. [Google Scholar] [CrossRef]
- Wu, R.; Yang, D.; Chen, J. Social Life Cycle Assessment Revisited. Sustainability 2014, 6, 4200–4226. [Google Scholar] [CrossRef] [Green Version]
- Macombe, C.; Leskinen, P.; Feschet, P.; Antikainen, R. Social life cycle assessment of biodiesel production at three levels: A literature review and development needs. J. Clean. Prod. 2013, 52, 205–216. [Google Scholar] [CrossRef]
- Parent, J.; Cucuzzella, C.; Revéret, J. Revisiting the role of LCA and SLCA in the transition towards sustainable production and consumption. Int. J. Life Cycle Assess. 2013, 18, 1642–1652. [Google Scholar] [CrossRef]
- Kono, J.; Ostermeyer, Y.; Wallbaum, H. The trends of hourly carbon emission factors in Germany and investigation on relevant consumption patterns for its application. Int. J. Life Cycle Assess. 2017, 2015, 1493–1501. [Google Scholar] [CrossRef]
- Su, S.; Li, X.; Zhu, Y.; Lin, B. Dynamic LCA framework for environmental impact assessment of buildings. Energy Build. 2017, 149, 310–320. [Google Scholar] [CrossRef]
- Cardellini, G.; Mutel, C.L.; Vial, E.; Muys, B. Science of the Total Environment Temporalis, a generic method and tool for dynamic Life Cycle Assessment. Sci. Total Environ. 2018, 645, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Shimako, A.H.; Tiruta-barna, L.; Barbara, A.; De Faria, A.B.B.; Ahmadi, A.; Spérandio, M. Science of the Total Environment Sensitivity analysis of temporal parameters in a dynamic LCA framework. Sci. Total Environ. 2018, 624, 1250–1262. [Google Scholar] [CrossRef] [PubMed]
- Moreau, V.; Weidema, B.P. The computational structure of environmental life cycle costing. Int. J. Life Cycle Assess. 2015, 20, 1359–1363. [Google Scholar] [CrossRef]
- Indrane, D.; Goedkoop, M.; de Beer, I. Consistent Assessment of Positive Impacts. In Pre-Proceeding 6th Social LCA Conference People and Places for Partnership; Loeillet, D., Catherine Sanchez, Eds.; CIRAD: Pescara, Italy, 2018; pp. 18–21. [Google Scholar]
- Ekener, E.; Mokeeva-Hansson, E.; Macombe, C. To assess use phase impacts in S-LCA. In Pre-Proceeding 6th Social LCA Conference People and Places for Partnership; Loeillet, D., Sanchez, C., Eds.; CIRAD: Pescara, Italy, 2018; pp. 13–17. [Google Scholar]
- Benoit-Norris, C.; Norris, G.A.; Azuero, L. Structure of a Net Positive analysis for supply chain social impacts. In Pre-Proceeding 6th Social LCA Conference People and Places for Partnership; Loeillet, D., Sanchez, C., Eds.; CIRAD: Pescara, Italy, 2018; p. 12. [Google Scholar]
- Yang, Y. Toward a more accurate regionalized life cycle inventory. J. Clean. Prod. 2016, 112, 308–315. [Google Scholar] [CrossRef]
- Loiseau, E.; Aissani, L.; Le Féon, S.; Laurent, F.; Cerceau, J.; Sala, S.; Roux, P. Territorial Life Cycle Assessment (LCA): What exactly is it about? A proposal towards using a common terminology and a research agenda. J. Clean. Prod. 2018, 176, 474–485. [Google Scholar] [CrossRef]
- Siebert, A.; Bezama, A.; Keeffe, S.O.; Thrän, D. Social life cycle assessment: In pursuit of a framework for assessing wood-based products from bioeconomy regions in Germany. Int. J. Life Cycle Assess. 2018, 23, 651–662. [Google Scholar] [CrossRef]
- Martin, M.; Røyne, F.; Ekvall, T.; Moberg, Å. Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective. Sustainability 2018, 10, 547. [Google Scholar] [CrossRef]
- Margni, M.; Mutel, C.; Reinhard, J.; Stolz, P.; Van Zelm, R.; Vieira, M. Regionalization in LCA: Current status in concepts, software and databases—69th LCA forum, Swiss Federal Institute of Technology, Zurich, 13 September, 2018. Int. J. Life Cycle Assess. 2018. [Google Scholar] [CrossRef]
Focus Area | Research Challenges (Issues) | Research Opportunities |
---|---|---|
Integration of LCA and LCC | Issue 1: Temporality issue that is still missing in LCA | Capturing temporality in the environmental (resource- and emission-) flow for comparison purposes, and integrating it with discounted monetary value |
Issue 2: Consequential perspective in LCA and LCC | Identification of consequences and indirect impacts in the intersection of LCA and LCC | |
Integration of LCC and S-LCA | Issue 3: Difference in perspective when using both methods | Proposal to exemplify economic and social assessment by incorporating perspectives from different stakeholders |
Issue 4: Consequential perspective in LCC and S-LCA | Proposal to define and draw step-wise procedures for capturing consequential approaches in LCC | |
Formulation of economic indicators (i.e. value-adding) that are more suitable for a consequential methodology in LCC | ||
Integration of S-LCA and LCA | Issue 5: The presence of impact and benefit in S-LCA, as compared to LCA | Developing more positive assessment criteria (benefits) as a way to positively promote sustainability |
Formulation of “area of promotion” for positive indicators, as opposed to “area of protection”, for both LCA and S-LCA | ||
Issue 6: The scales of assessment applied in each method differs | Proposal to develop procedures to conduct LCSA in different layers of analysis, from product, sector, and country | |
Mapping of social impacts that can be matched and turned into a functional unit of S-LCA | ||
Issue 7: Unclear definition on what is good or bad, in certain S-LCA indicators | Developing guidelines to make social indicators more applicable | |
Proposal for a new consensus or agreement on unclear social goals (or targets) in the regional or international context | ||
Issue 8: Absence of a consequential approach in S-LCA | Incorporating the environmental and social consequences of the unit processes | |
Proposal to include a scheme of coherent system boundaries into S-LCA and LCA, by capturing not just physical flow, for the product/service, but also the corresponding interdependencies and flows of social impacts, in the product chain |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauzi, R.T.; Lavoie, P.; Sorelli, L.; Heidari, M.D.; Amor, B. Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment. Sustainability 2019, 11, 636. https://doi.org/10.3390/su11030636
Fauzi RT, Lavoie P, Sorelli L, Heidari MD, Amor B. Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment. Sustainability. 2019; 11(3):636. https://doi.org/10.3390/su11030636
Chicago/Turabian StyleFauzi, Rizal Taufiq, Patrick Lavoie, Luca Sorelli, Mohammad Davoud Heidari, and Ben Amor. 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment" Sustainability 11, no. 3: 636. https://doi.org/10.3390/su11030636
APA StyleFauzi, R. T., Lavoie, P., Sorelli, L., Heidari, M. D., & Amor, B. (2019). Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment. Sustainability, 11(3), 636. https://doi.org/10.3390/su11030636