Uncertainty Study and Parameter Optimization of Carbon Footprint Analysis for Fermentation Cylinder
Abstract
:1. Introduction
2. Carbon Footprint Analysis of Beer Fermentation Cylinder
2.1. The Calculating Process of Carbon Footprint
2.2. Analysis of Carbon Footprint Calculation Results
3. Uncertainty Analysis of LCA
3.1. Uncertainty Analysis of Data List
3.2. Sensitivity Analysis of Data Lists
4. Optimization Design of Fermentation Cylinder Design Parameters
4.1. Experiment Design of Fermentation Cylinder Parameter Optimization
4.2. Regression Model of Fermentation Cylinder Parameters
4.3. Response Surface Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, X.; Dong, D.; Zhang, X. Product carbon footprint and its development status at home and abroad. Econ. Res. Guide 2010, 19, 182–183. [Google Scholar]
- Bartocci, P.; Fantozzi, P.; Fantozzi, F. Environmental impact of Sagrantino and Grechetto grapes cultivation for wine and vinegar production in central ltaly. J. Clean. Prod. 2016, 15, 267–270. [Google Scholar]
- Jiang, C.; Zhang, L. Introduction to Life Cycle Assessment (ISO14040 series). Sichuan Lin Kan Des. 2002, 2, 54–59. [Google Scholar]
- Guo, M.; Liu, H.; Zhang, Q.; Guo, B. Life Cycle Assessment of Fruit Aggregation and Its Application. Comput. Integr. Manuf. Syst. 2014, 20, 661–665. [Google Scholar]
- Heijungs, R.; Tan, R. Rigorous proof of fuzzy error propagation with matrix-based LCI. Int. J. Life Cycle Assess. 2010, 15, 1014–1019. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, H.; Fukushima, Y.; Hirao, M.; Hellweg, S.; Hungerbühler, K. Using Standard Statistics to Consider Uncertainty in Industry-Based Life Cycle Databases. Int. J. Life Cycle Assess. 2015, 10, 399–405. [Google Scholar] [CrossRef]
- Zhu, L. Uncertainty Analysis in the List of Product Life Cycle Assessment; Hefei University of Technology: Hefei, China, 2012. [Google Scholar]
- Huang, N.; Wang, H.; Fan, C.; Zhou, S.; Hou, P.; Yang, J. LCA data quality assessment and control methods based on uncertainty and sensitivity analysis. J. Environ. Sci. 2012, 32, 1529–1536. [Google Scholar]
- Chen, S.; Li, F.; Cao, L.; Liu, Z.; Chen, Y. Data quality analysis combining uncertainty and sensitivity in product carbon footprint evaluation. China Environ. Sci. 2014, 34, 1067–1072. [Google Scholar]
- Cimini, A.; Moresi, M. Carbon footprint of a pale larger packed in different formats: Assessment and sensitivity analysis based on transparent. J. Clean. Prod. 2016, 5, 4196–4213. [Google Scholar] [CrossRef]
- Alistair, D.; Dimitrios, R.; Gerogiorgis, I. Mulit-objective process optimization of beer fermentation via dynamic simulation. Food Bioprod. Process. 2016, 100, 255–274. [Google Scholar]
- Yang, J.; Zhong, J.; Zhang, K.; Lu, J. Beer Carbon Footprint and Calculation Case. Beer Technol. 2013, 8, 6–14. [Google Scholar]
- Gao, F.; Guo, Z. Carbon footprint of beer production based on life cycle calculation. Beer Sci. Technol. 2013, 3, 7–10. [Google Scholar]
- Cao, H.; Li, H.; Song, S.; Du, Y.; Chen, P. Life Cycle Carbon Emission Assessment Method and Application of Machine Tools Based on Life Assessment. Comput. Integr. Manuf. Syst. 2011, 17, 2432–2437. [Google Scholar]
- Wang, X.; Li, W.; Li, Y. Carbon Footprint Evaluation and implementation method of electromechanical products based on life cycle. Mech. Des. Manuf. 2016, 5, 1–4. [Google Scholar]
- International Organization for Standardization. ISO/DIS14040: 2006, Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Cai, Y.; Xing, Y.; Hu, D. Review of Sensitivity Analysis. J. Beijing Norm. Univ. 2008, 44, 9–16. [Google Scholar]
- Gao, X.; Wang, Z. Application of Multivariate Statistical Regression Model in the Distribution of Medical Fund. Stat. Decis. Mak. 2009, 9, 145–146. [Google Scholar]
- Xing, H.; Yao, X.; Xu, X.; Chen, Y.; Feng, H.; Yang, G.; Chen, Z. Global sensitivity analysis of AquaCrop model parameters based on EFAST method. China Agric. Sci. 2017, 50, 64–76. [Google Scholar]
- General Administration of Quality Supervision. GB/T 25198-2010, Pressure Vessel Head; General Administration of Quality Supervision: Beijing, China, 2010. [Google Scholar]
Tool | Power | Other | The Attachment | Power |
---|---|---|---|---|
Inverter welding machine | 4800 w | Suitable electrode φ1.6-φ3.2 | motor | 1.5 w |
The dryer | 4–6 kw | Control the temperature + 5 − 250 | Yeast pump motor | 2.2 kw |
Air compressor | 3300 w | Displacement 300 L/min | Feed pump motor | 18.5 w |
Polishing machine | 3 kw | Speed: 2800/min | Mechanical and electrical filter | 3 kw |
Cutting machine | 7 kw | No-load loss 40 w | Additive motor | 80 w |
Rolling machine | 5.5 kw | Auxiliary motor power 3 kw | Cold output pump | 22 w |
Vacuum pump | 190 | Frequency 50 Hz | CO2 filter press with motor | 7.5 w |
Life Cycle Stage | Raw Material Acquisition Stage | Manufacturing and Assembly Phases | Trans-Port Phase GT | Use Phase GU | Recovery and Processing Stage GR | Total Carbon Footprint per Unit Fermentation Cylinder Gsum |
---|---|---|---|---|---|---|
Carbon footprint calculation results/(kgCO2e) | 1999.156 | 793.203 | 723.996 | 10,329.696 | −1161.233 | 12,640.098 |
Data Quality Fraction | Comprehensive Data Quality Index Values | Shape Parameter | Range | ||
---|---|---|---|---|---|
a | b | α | β | ||
0 ≤ R ≤ 12.5 | 1 | 5 | 5 | −10 | +10 |
12.5 ≤ R ≤ 25 | 1.5 | 4 | 4 | −15 | +15 |
2 | 3 | 3 | −20 | +20 | |
2.5 | 2 | 2 | −25 | +25 | |
3 | 2 | 2 | −30 | +30 | |
3.5 | 2 | 2 | −35 | +35 | |
4 | 1 | 1 | −40 | +40 | |
4.5 | 1 | 1 | −45 | +45 | |
100 | 5 | 12 | 1 | −50 | +50 |
List Data | Variable | Data Quality Indicator Value | Composite Data Quality Indicator Value | (α,β) | R Value | Range | |
---|---|---|---|---|---|---|---|
Material consumption | Stainless steel | X1 | (2,1,2,3,3) | 2 | (3,3) | 30% | (−20%,+20%) |
Paint | X2 | (2,4,2,3,3) | 2.5 | (2,2) | 45% | (−25%,+25%) | |
Welding wire | X3 | (2,4,2,3,3) | 2.4 | (2,2) | 45% | (−25%,+25%) | |
The energy consumption | Electricity | X4 | (3,4,1,2,2) | 2 | (3,3) | 35% | (−20%,+20%) |
Water | X5 | (3,5,1,2,1) | 2 | (3,3) | 35% | (−20%,+25%) | |
Carbon equivalent emissions | Stainless steel | X6 | (2,1,3,5,2) | 2.5 | (2,2) | 40% | (−25%,+20%) |
Paint | X7 | (2,1,3,5,2) | 2.5 | (2,2) | 40% | (−25%,+20%) | |
Welding wire | X8 | (2,1,3,4,2) | 2 | (3,3) | 35% | (−20%,+20%) | |
Electricity | X9 | (1,2,2,2,1) | 1.5 | (4,4) | 15% | (−15%,+15%) | |
water | X10 | (1,2,2,2,1) | 1.5 | (4,4) | 15% | (−15%,+15%) |
Variable | Mean Standard Error | Kurtosis | Coefficient of Variation | Variance | Skewness | The Standard Deviation |
---|---|---|---|---|---|---|
0.01 | 4.67 | 0.0057 | 0 | −2.64 | 0.03 | |
0.01 | 1.57 | 0.0014 | 0 | −0.139 | 0.02 | |
0.01 | 1.63 | 0.0049 | 0 | 0.3244 | 0.06 | |
0.01 | 2.28 | 0.0039 | 0 | 0.0831 | 0.04 | |
0.01 | 2.61 | 0.0019 | 0 | 0.3129 | 0.05 | |
0.01 | 3.12 | 0.0005 | 0 | 0.4313 | 0.05 | |
0.01 | 3.27 | 0.0017 | 0 | 0.2617 | 0.03 | |
0.01 | 4.91 | 0.0006 | 0 | −0.3402 | 0.04 | |
0.01 | 3.06 | 0.0012 | 0 | 0.291 | 0.04 | |
0.01 | 2.51 | 0.0009 | 0 | 0.5421 | 0.03 |
Factors | Unstandardized Coefficients | Standardized Coefficient | t | p |
---|---|---|---|---|
constant | 132.17 | 2.255 | ||
95.036 | 0.639 | 56.711 | 0.891 | |
6.549 | 0.325 | 13.336 | 0.456 | |
87.17 | 0.216 | 10.118 | 0.370 | |
61.223 | 0.069 | 6.549 | 0.275 | |
35.059 | 0.015 | 1.124 | 0.042 | |
0.512 | 0.018 | 2.217 | 0.131 | |
0.013 | 0.042 | 4.649 | 0.275 |
0.9524 | 0.086 | 0.2297 | 0.7259 | 0.7122 | 0.5781 | 0.0570 | 0.6627 | 0.4769 | 0.1521 |
Standard Deviation | Mean Value | Coefficient of Variation/% | Correlation Coefficient | Correlation Coefficients for Calibration | Prediction Correlation Coefficient | SNR |
---|---|---|---|---|---|---|
83.28 | 1705.50 | 4.89 | 0.9290 | 0.8580 | −0.0371 | 5.882 |
Item | Sum of Squares | Freedom | Sum of Mean Squares | F Value | Pro > F |
---|---|---|---|---|---|
The regression model | 261,200 | 14 | 18,653.75 | 2.69 | <0.05 |
Ratio of diameter and height A | 1078.82 | 1 | 1078.82 | 0.16 | <0.05 |
Cone Angle B | 16,205.28 | 1 | 16,205.28 | 2.34 | 0.1486 |
Wall thickness C | 3827.76 | 1 | 3827.76 | 0.55 | 0.4698 |
Density D | 41,174.71 | 1 | 41,174.71 | 5.94 | <0.05 |
AB | 2907.91 | 1 | 2907.91 | 0.42 | 0.5278 |
AC | 6618.64 | 1 | 6618.64 | 0.95 | 0.3452 |
AD | 52.42 | 1 | 52.42 | 0.0076 | 0.1320 |
BC | 918.39 | 1 | 918.39 | 0.13 | 0.7214 |
BD | 30,464.21 | 1 | 30,464.21 | 4.39 | 0.0547 |
CD | 3365.16 | 1 | 3365.16 | 0.49 | 0.4975 |
9510.95 | 1 | 9510.95 | 1.37 | 0.2611 | |
88,565.10 | 1 | 88,565.10 | 12.77 | 0.3228 | |
72.28 | 1 | 72.28 | 0.010 | 0.9201 | |
81,740.21 | 1 | 81,740.21 | 11.79 | <0.05 | |
residual | 97,092.41 | 14 | 6935.17 | 2.69 | 0.0372 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Xing, M.; Cao, T.; Zhang, J. Uncertainty Study and Parameter Optimization of Carbon Footprint Analysis for Fermentation Cylinder. Sustainability 2019, 11, 661. https://doi.org/10.3390/su11030661
Zheng H, Xing M, Cao T, Zhang J. Uncertainty Study and Parameter Optimization of Carbon Footprint Analysis for Fermentation Cylinder. Sustainability. 2019; 11(3):661. https://doi.org/10.3390/su11030661
Chicago/Turabian StyleZheng, Hui, Meng Xing, Ting Cao, and Junxia Zhang. 2019. "Uncertainty Study and Parameter Optimization of Carbon Footprint Analysis for Fermentation Cylinder" Sustainability 11, no. 3: 661. https://doi.org/10.3390/su11030661
APA StyleZheng, H., Xing, M., Cao, T., & Zhang, J. (2019). Uncertainty Study and Parameter Optimization of Carbon Footprint Analysis for Fermentation Cylinder. Sustainability, 11(3), 661. https://doi.org/10.3390/su11030661