Financial Resources for the Circular Economy: A Perspective from Businesses
Abstract
:1. Introduction
2. Background
2.1. Financial Resources and the Circular Economy
2.2. Circular Economy Measurement
2.3. Research Questions
3. Method and Sample
3.1. Sample and Data Collection
3.2. Measurement and Variables
3.3. Statistical Analysis
4. Main Results and Discussion
4.1. Assessment of the Structural Model
4.2. Discussion and Implications on CE
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pratt, K.; Lenaghan, M.; Mitchard, E.T.A. Material flows accounting for Scotland shows the merits of a circular economy and the folly of territorial carbon reporting. Carbon Balance Manag. 2016, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Pomponi, F.; Moncaster, A. Circular economy for the built environment: A research framework. J. Clean. Prod. 2017, 143, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Urbinati, A.; Chiaroni, D.; Chiesa, V. Towards a new taxonomy of circular economy business models. J. Clean. Prod. 2017, 168, 487–498. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Lewandowski, M. Designing the business models for circular economy-towards the conceptual framework. Sustainability 2016, 8, 43. [Google Scholar] [CrossRef]
- Linder, M.; Williander, M. Circular Business Model Innovation: Inherent Uncertainties. Bus. Strateg. Environ. 2017, 26, 182–196. [Google Scholar] [CrossRef]
- Stewart, R.; Niero, M. Circular economy in corporate sustainability strategies: A review of corporate sustainability reports in the fast-moving consumer goods sector. Bus. Strateg. Environ. 2018, 27, 1005–1022. [Google Scholar] [CrossRef]
- Del Río González, P. The empirical analysis of the determinants for environmental technological change: A research agenda. Ecol. Econ. 2009, 68, 861–878. [Google Scholar] [CrossRef]
- Den Hollander, M.C.; Bakker, C.A.; Hultink, E.J. Product Design in a Circular Economy: Development of a Typology of Key Concepts and Terms. J. Ind. Ecol. 2017, 21, 517–525. [Google Scholar] [CrossRef]
- Moreno, M.; De los Rios, C.; Rowe, Z.; Charnley, F. A conceptual framework for circular design. Sustainability 2016, 8, 937. [Google Scholar] [CrossRef]
- Zamfir, A.-M.; Mocanu, C.; Grigorescu, A. Circular Economy and Decision Models among European SMEs. Sustainability 2017, 9, 1507. [Google Scholar] [CrossRef]
- Petala, E.; Wever, R.; Dutilh, C.; Brezet, H. The role of new product development briefs in implementing sustainability: A case study. J. Eng. Technol. Manag. 2010, 27, 172–182. [Google Scholar] [CrossRef]
- Rizos, V.; Behrens, A.; van der Gaast, W.; Hofman, E.; Ioannou, A.; Kafyeke, T.; Flamos, A.; Rinaldi, R.; Papadelis, S.; Hirschnitz-Garbers, M.; et al. Implementation of circular economy business models by small and medium-sized enterprises (SMEs): Barriers and enablers. Sustainability 2016, 8, 1212. [Google Scholar] [CrossRef]
- Portillo-Tarragona, P.; Scarpellini, S.; Moneva, J.; Valero-Gil, J.; Aranda-Usón, A. Classification and Measurement of the Firms’ Resources and Capabilities Applied to Eco-Innovation Projects from a Resource-Based View Perspective. Sustainability 2018, 10, 3161. [Google Scholar] [CrossRef]
- Scarpellini, S.; Marín-Vinuesa, L.M.; Portillo-Tarragona, P.; Moneva, J.M. Defining and measuring different dimensions of financial resources for business eco-innovation and the influence of the firms’ capabilities. J. Clean. Prod. 2018, 204, 258–269. [Google Scholar] [CrossRef]
- Yuan, Z.; Bi, J.; Moriguichi, Y. The Circular Economy: A New Development Strategy in China. J. Ind. Ecol. 2006, 10, 4–8. [Google Scholar] [CrossRef]
- Tsai, K.H.; Liao, Y.C. Sustainability Strategy and Eco-Innovation: A Moderation Model. Bus. Strateg. Environ. 2017, 26, 426–437. [Google Scholar] [CrossRef]
- Garcés-Ayerbe, C.; Scarpellini, S.; Valero-Gil, J.; Rivera-Torres, P. Proactive environmental strategy development: From laggard to eco-innovative firms. J. Organ. Chang. Manag. 2016, 29, 1118–1134. [Google Scholar] [CrossRef]
- Demirel, P.; Kesidou, E. Stimulating different types of eco-innovation in the UK: Government policies and firm motivations. Ecol. Econ. 2011, 70, 1546–1557. [Google Scholar] [CrossRef]
- Del Río, P.; Carrillo-hermosilla, J.; Könnölä, T.; Bleda, M. Resources, capabilities and competences for eco- innovation. Technol. Econ. Dev. Econ. 2016, 22, 274–292. [Google Scholar] [CrossRef]
- Del Río, P.; Carrillo-Hermosilla, J.; Totti, K.; Bleda, M.; Carrillo, J.; Könnölä, T.; Bleda, M.; Carrillo-Hermosilla, J.; Könnölä, T.; Bleda, M.; et al. Business strategies and capacities for eco-innovation. In Proceedings of the XXIII ISPIM Conference—Action for Innovation: Innovating from Experience, Barcelona, Spain, 17–20 June 2012; pp. 1–12. [Google Scholar]
- He, F.; Miao, X.; Wong, C.W.Y.; Lee, S. Contemporary corporate eco-innovation research: A systematic review. J. Clean. Prod. 2018, 174, 502–526. [Google Scholar] [CrossRef]
- Barney, J.B. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Barney, J.B. Is the resource-based ‘view’ a useful perspective for strategic management research? Yes. Acad. Manag. Rev. 2001, 26, 41–56. [Google Scholar] [CrossRef]
- Aragon-Correa, J.A.; Leyva-de la Hiz, D.I. The Influence of Technology Differences on Corporate Environmental Patents: A Resource-Based Versus an Institutional View of Green Innovations. Bus. Strateg. Environ. 2016, 25, 421–434. [Google Scholar] [CrossRef]
- Hart, S.L. A Natural-Resource-Based View of the Firm. Acad. Manag. Rev. 1995, 20, 986–1014. [Google Scholar] [CrossRef]
- Daddi, T.; Todaro, N.M.; De Giacomo, M.R.; Frey, M. A Systematic Review of the Use of Organization and Management Theories in Climate Change Studies. Bus. Strateg. Environ. 2018, 27, 456–474. [Google Scholar] [CrossRef] [Green Version]
- Ormazabal, M.; Prieto-Sandoval, V.; Puga-Leal, R.; Jaca, C. Circular Economy in Spanish SMEs: Challenges and opportunities. J. Clean. Prod. 2018, 185, 157–167. [Google Scholar] [CrossRef]
- Ormazabal, M.; Prieto-Sandoval, V.; Jaca, C.; Santos, J. An overview of the circular economy among SMEs in the Basque Country: A multiple case study. J. Ind. Eng. Manag. 2016, 9, 1047–1058. [Google Scholar] [CrossRef]
- Rizos, V.; Behrens, A.; Kafyeke, T.; Hirschnitz-Garbers, M.; Ioannou, A. The Circular Economy: Barriers and Opportunities for SMEs. Available online: https://www.ceps.eu/publications/circular-economy-barriers-and-opportunities-smes (accessed on 1 October 2018).
- EIO Bi-Annual Report 2016: Policies and Practices for Eco-Innovation Up-Take and Circular Economy Transition. Available online: https://ec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/eio_2016_report.pdf (accessed on 1 October 2018).
- Ellen MacArthur Foundation Growth within: A Circular Economy Vision for a Competitive Europe. Available online: File:///C:/Users/Sabina/Downloads/EllenMacArthurFoundation_Growth-Within_July15.pdf (accessed on 1 October 2018).
- Su, B.; Heshmati, A.; Geng, Y.; Yu, X. A review of the circular economy in China: Moving from rhetoric to implementation. J. Clean. Prod. 2013, 42, 215–227. [Google Scholar] [CrossRef]
- Shahbazi, S.; Wiktorsson, M.; Kurdve, M.; Jönsson, C.; Bjelkemyr, M. Material efficiency in manufacturing: Swedish evidence on potential, barriers and strategies. J. Clean. Prod. 2016, 127, 438–450. [Google Scholar] [CrossRef]
- EEA Circular Economy in Europe. Developing the Knowledge Base. Available online: https://ec.europa.eu/environment/ecoap/policies-and-practices-eco-innovation-uptake-and-circular-economy-transition_en (accessed on 1 October 2018).
- Chertow, M.R. Industrial symbiosis: Literature and taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef]
- Daddi, T.; Nucci, B.; Iraldo, F. Using Life Cycle Assessment (LCA) to measure the environmental benefits of industrial symbiosis in an industrial cluster of SMEs. J. Clean. Prod. 2017, 147, 157–164. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ji, X.; Liu, G.; Ulgiati, S. Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review. J. Clean. Prod. 2018, 195, 418–434. [Google Scholar] [CrossRef]
- Aid, G.; Eklund, M.; Anderberg, S.; Baas, L. Expanding roles for the Swedish waste management sector in inter-organizational resource management. Resour. Conserv. Recycl. 2017, 124, 85–97. [Google Scholar] [CrossRef]
- Velenturf, A.P.M. Resource Recovery from Waste: Restoring the Balance between Resource Scarcity and Waste Overload. Sustainability 2017, 9, 1603. [Google Scholar] [CrossRef]
- Masi, D.; Day, S.; Godsell, J. Supply Chain Configurations in the Circular Economy: A Systematic Literature Review. Sustainability 2017, 9, 1602. [Google Scholar] [CrossRef]
- Pan, S.Y.; Du, M.A.; Huang, I.T.; Liu, I.H.; Chang, E.E.; Chiang, P.C. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. J. Clean. Prod. 2014, 108, 409–421. [Google Scholar] [CrossRef]
- Pereiras, S.; Cdti, E.H.; Pereiras, M.S.; Huergo, E. La Financiación de Actividades de Investigación, Desarrollo e Innovación: Una revisión de la evidencia sobre el impacto de las ayudas públicas. Available online: https://www.cdti.es/recursos/publicaciones/archivos/7396_211121112006133850.pdf (accessed on 1 October 2018).
- Triguero, Á.; Cuerva, M.C.; Álvarez-Aledo, C. Environmental innovation and employment: Drivers and synergies. Sustainability 2017, 9, 2057. [Google Scholar] [CrossRef]
- Ghisetti, C.; Rennings, K. Environmental innovations and profitability: How does it pay to be green? An empirical analysis on the German innovation survey. J. Clean. Prod. 2014, 75, 106–117. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Rahman, T.; Rahman, M.H.; Ali, S.M.; Paul, S.K. Drivers to sustainable manufacturing practices and circular economy: A perspective of leather industries in Bangladesh. J. Clean. Prod. 2018, 174, 1366–1380. [Google Scholar] [CrossRef]
- EOI Eco-Innovation Observatory-Policies and Practices for Eco-Innovation Up-Take and Circular Economy Transition. Available online: https://ec.europa.eu/environment/ecoap/policies-and-practices-eco-innovation-uptake-and-circular-economy-transition_en (accessed on October 2018).
- Kieffer, C.; Carrillo-Hermosilla, J.; del Río, P. Drivers and barriers of eco-innovation types for sustainable transitions. A quantitative perspective. Bus. Strateg. Environ. 2018, 1–38. [Google Scholar] [CrossRef]
- Del Río, P.; Romero-Jordán, D.; Peñasco, C. Analysing firm-specific and type-specific determinants of eco-innovation. Technol. Econ. Dev. Econ. 2017, 23, 270–295. [Google Scholar] [CrossRef]
- Díaz López, F.J.; Montalvo, C. A comprehensive review of the evolving and cumulative nature of eco-innovation in the chemical industry. J. Clean. Prod. 2015, 102, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Aragón-Correa, J.A.; Sharma, S. A contingent resource-based view of proactive corporate environmental strategy. Acad. Manag. Rev. 2003, 28, 71–88. [Google Scholar] [CrossRef]
- Halila, F.; Rundquist, J. The development and market success of eco-innovations: A comparative study of eco-innovations and “other” innovations in Sweden. Eur. J. Innov. Manag. 2011, 14, 278–302. [Google Scholar] [CrossRef]
- Paraschiv, D.M.; Voicu-Dorobantu, R.; Langa Olaru, C.; Laura Nemoianu, E. New Models In Support of the Eco-Innovative Capacity of Companies—A Theoretical Approach. Available online: http://www.ecocyb.ase.ro/2012pdf/Paraschiv Dorel _T._.pdf (accessed on October 2018).
- Cruz-Cázares, C.; Bayona-Sáez, C.; García-Marco, T. You can’t manage right what you can’t measure well: Technological innovation efficiency. Res. Policy 2013, 42, 1239–1250. [Google Scholar] [CrossRef]
- Johnson, D.K.N.N.; Lybecker, K.M. Paying for green: An economics literature review on the constraints to financing environmental innovation. Electron. Green J. 2012, 1, 1–10. [Google Scholar] [CrossRef]
- Ociepa-Kubicka, A.; Pachura, P. Eco-innovations in the functioning of companies. Environ. Res. 2017, 156, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Parthasarthy, R.; Hammond, J. Product innovation input and outcome:moderating effects of the innovation process. J. Eng. Technol. Manag. 2002, 19, 75–91. [Google Scholar] [CrossRef]
- Ghisetti, C.; Mancinelli, S.; Mazzanti, M.; Zoli, M. Financial barriers and environmental innovations: Evidence from EU manufacturing firms. Clim. Policy 2017, 17, S131–S147. [Google Scholar] [CrossRef]
- Lee, K.-H.H.; Min, B. Green R&D for eco-innovation and its impact on carbon emissions and firm performance. J. Clean. Prod. 2015, 108, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, K.; Paton, D. The impact of environmental performance on firm performance: Static and dynamic panel data evidence. Struct. Chang. Econ. Dyn. 2005, 16, 395–412. [Google Scholar] [CrossRef]
- Wagner, M. How to reconcile environmental and economic performance to improve corporate sustainability: Corporate environmental strategies in the European paper industry. J. Environ. Manag. 2005, 76, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Przychodzen, J.; Przychodzen, W. Relationships between eco-innovation and financial performance—Evidence from publicly traded companies in Poland and Hungary. J. Clean. Prod. 2015, 90, 253–263. [Google Scholar] [CrossRef]
- Scarpellini, S.; Valero-Gil, J.; Portillo-Tarragona, P. The ‘economic-finance interface’ for eco-innovation projects. Int. J. Proj. Manag. 2016, 34, 1012–1025. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Kim, J. Divergent effects of external financing on technology innovation activity: Korean evidence. Technol. Forecast. Soc. Chang. 2016, 106, 22–30. [Google Scholar] [CrossRef]
- Cecere, G.; Corrocher, N.; Mancusi, M.L. Financial constraints and public funding of eco-innovation: Empirical evidence from European SMEs. Small Bus. Econ. 2018. [Google Scholar] [CrossRef]
- Polzin, F.; Sanders, M.; Täube, F. A diverse and resilient financial system for investments in the energy transition. Curr. Opin. Environ. Sustain. 2017, 28, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.R.; Fazzari, S.M.; Petersen, B.C. Financing innovation and growth: Cash flow, external equity, and the 1990s R&D Boom. J. Financ. 2009, 64, 151–185. [Google Scholar] [CrossRef]
- Lee, N.; Sameen, H.; Cowling, M. Access to finance for innovative SMEs since the financial crisis. Res. Policy 2015, 44, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Abolhosseini, S.; Heshmati, A. The main support mechanisms to finance renewable energy development. Renew. Sustain. Energy Rev. 2014, 40, 876–885. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.H.; Tao, J.Y. Bond financing for renewable energy in Asia. Energy Policy 2016, 95, 509–517. [Google Scholar] [CrossRef]
- Ekholm, T.; Ghoddusi, H.; Krey, V.; Riahi, K. The effect of financial constraints on energy-climate scenarios. Energy Policy 2013, 59, 562–572. [Google Scholar] [CrossRef]
- Gouldson, A.; Kerr, N.; Millward-Hopkins, J.; Freeman, M.C.; Topi, C.; Sullivan, R. Innovative financing models for low carbon transitions: Exploring the case for revolving funds for domestic energy efficiency programmes. Energy Policy 2015, 86, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Blyth, W.W.; McCarthy, R.; Gross, R. Financing the UK power sector: Is the money available? Energy Policy 2015, 87, 607–622. [Google Scholar] [CrossRef]
- Bobinaite, V.; Tarvydas, D. Financing instruments and channels for the increasing production and consumption of renewable energy: Lithuanian case. Renew. Sustain. Energy Rev. 2014, 38, 259–276. [Google Scholar] [CrossRef]
- Safarzyńska, K.; van den Bergh, J.C.J.M. Financial stability at risk due to investing rapidly in renewable energy. Energy Policy 2017, 108, 12–20. [Google Scholar] [CrossRef]
- Frisari, G.; Stadelmann, M. De-risking concentrated solar power in emerging markets: The role of policies and international finance institutions. Energy Policy 2015, 82, 12–22. [Google Scholar] [CrossRef]
- Gallo, P.J.; Antolin-Lopez, R.; Montiel, I. Associative Sustainable Business Models: Cases in the bean-to-bar chocolate industry. J. Clean. Prod. 2018, 174, 905–916. [Google Scholar] [CrossRef]
- Ciccozzi, E.; Checkenya, R.; Rodriguez, A.V. Recent experiences and challenges in promoting cleaner production investments in developing countries. J. Clean. Prod. 2003, 11, 629–638. [Google Scholar] [CrossRef]
- Schäfer, D.; Werwatz, A.; Zimmermann, V. The Determinants of Debt and (Private) Equity Financing: The Case of Young, Innovative SMEs from Germany. Ind. Innov. 2004, 11, 225–248. [Google Scholar] [CrossRef] [Green Version]
- Heyes, G.; Sharmina, M.; Mendoza, J.M.F.; Gallego-Schmid, A.; Azapagic, A. Developing and implementing circular economy business models in service-oriented technology companies. J. Clean. Prod. 2018, 177, 621–632. [Google Scholar] [CrossRef]
- Wiser, R.H. Renewable energy finance and project ownership. Energy Policy 1997, 25, 15–27. [Google Scholar] [CrossRef]
- De Massis, A.; Audretsch, D.; Uhlaner, L.; Kammerlander, N. Innovation with Limited Resources: Management Lessons from the German Mittelstand. J. Prod. Innov. Manag. 2018, 35, 125–146. [Google Scholar] [CrossRef]
- Magri, S. The financing of small innovative firms: The Italian case. Econ. Innov. New Technol. 2009, 18, 181–204. [Google Scholar] [CrossRef]
- Friend, I.; Lang, L.H.P. An empirical test of the impact of self interest on corporate capital structure. J. Financ. 1988, XLIII, 271–282. [Google Scholar] [CrossRef]
- Hall, B.H. Investment and Research and Development at the Firm Level: Does the Source of Financing Matter? Natl. Bur. Econ. Res. Work. Pap. Ser. 1992, 4096. [Google Scholar] [CrossRef]
- Hall, B.H. The Financing of Innovative Firms. Rev. Econ. Inst. 2010, 3880, 1–30. [Google Scholar] [CrossRef]
- O’Brien, J.P. The Capital Structure Implications of Pursuing a Strategy of Innovation. Strateg. Manag. J. 2003, 24, 415–431. [Google Scholar] [CrossRef]
- Aschhoff, B.; Sofka, W. Innovation on demand-Can public procurement drive market success of innovations? Res. Policy 2009, 38, 1235–1247. [Google Scholar] [CrossRef]
- De Marchi, V. Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms. Res. Policy 2012, 41, 614–623. [Google Scholar] [CrossRef]
- Doran, J.; Ryan, G. Regulation and firm perception, eco-innovation and firm performance. Eur. J. Innov. Manag. 2012, 15, 421–441. [Google Scholar] [CrossRef]
- Galia, F.; Ingham, M.; Pekovic, S. Incentives for green innovations in French manufacturing firms. Int. J. Technol. Manag. Sustain. Dev. 2015, 14, 3–16. [Google Scholar] [CrossRef]
- Hitaj, C. Wind power development in the United States. J. Environ. Econ. Manag. 2013, 65, 394–410. [Google Scholar] [CrossRef]
- Ketata, I.; Sofka, W.; Grimpe, C. The role of internal capabilities and firms’ environment for sustainable innovation: Evidence for Germany. R&D Manag. 2015, 45, 60–75. [Google Scholar] [CrossRef]
- May, G.; Taisch, M.; Kerga, E. Assessment of sustainable practices in new product development. In Advances in Production Management Systems. Value Networks: Innovation, Technologies, and Management; International Federation for Information Processing: Paris, France, 2012; pp. 437–447. ISBN 3642339794. [Google Scholar]
- Scarpellini, S.; Portillo -Tarragona, P.; Marín-Vinuesa, L.M.; Moneva, J.M. Green patents in the manufacturing sector: The influence of businesses’ resources and capabilities. Universia Bus. Rev. 2017, 18–35. [Google Scholar] [CrossRef]
- Segarra-Onã, M.; Peiró-Signes, A.; Payá-Martínez, A. Factors influencing automobile firms’ eco-innovation orientation. Eng. Manag. J. 2014, 26, 31–38. [Google Scholar] [CrossRef]
- Smol, M.; Kulczycka, J.; Avdiushchenko, A. Circular economy indicators in relation to eco-innovation in European regions. Clean Technol. Environ. Policy 2017, 19, 669–678. [Google Scholar] [CrossRef] [Green Version]
- European Commision. Communication form the Commission to the European Parliament, the Council, the European Economic and Social Committee of the Regions—Cloosing the Loop—An EU Action Plan for the Circular Economy; COM/2015/0614 Final; European Commision: Brussels, Belgium, 2015; Volume 614, p. 21. [Google Scholar]
- Singh, J.; Ordóñez, I. Resource recovery from post-consumer waste: Important lessons for the upcoming circular economy. J. Clean. Prod. 2016, 134, 342–353. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Franco, M.A. Circular economy at the micro level: A dynamic view of incumbents’ struggles and challenges in the textile industry. J. Clean. Prod. 2017, 168, 833–845. [Google Scholar] [CrossRef]
- Aboelmaged, M. The drivers of sustainable manufacturing practices in Egyptian SMEs and their impact on competitive capabilities: A PLS-SEM model. J. Clean. Prod. 2018, 175, 207–221. [Google Scholar] [CrossRef]
- Triguero, A.; Moreno-Mondajar, L.; Davia, M.A. Eco-innovation by small and medium-sized firms in Europe: From end-of-pipe to cleaner technologies. Innov. Policy Pract. 2015, 17, 24–40. [Google Scholar] [CrossRef]
- Wagner, M. On the relationship between environmental management, environmental innovation and patenting: Evidence from German manufacturing firms. Res. Policy 2007, 36, 1587–1602. [Google Scholar] [CrossRef]
- Zhang, J.A.; Walton, S. Eco-innovation and business performance: The moderating effects of environmental orientation and resource commitment in green-oriented SMEs. R&D Manag. 2017, 47, 26–39. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Implementation of the Circular Economy Action Plan; COM(2017) 33 Final; European Commission: Brussel, Belgium, 2017; pp. 1–14. [Google Scholar]
- Segarra-Oña, M.d.V.; Peiró-Signes, Á.; Mondéjar-Jiménez, J.; Vargas-Vargas, M. Service vs. manufacturing: How to address more effectively eco-innovation public policies by disentangling the different characteristics of industries. Innovation 2014, 27, 134–151. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Ringle, C.M.; Thiele, K.O.; Gudergan, S.P. Estimation issues with PLS and CBSEM: Where the bias lies! J. Bus. Res. 2016, 69, 3998–4010. [Google Scholar] [CrossRef] [Green Version]
- Shmueli, G.; Ray, S.; Velasquez Estrada, J.M.; Chatla, S.B. The elephant in the room: Predictive performance of PLS models. J. Bus. Res. 2016, 69, 4552–4564. [Google Scholar] [CrossRef]
- Albort-Morant, G.; Leal-Millán, A.; Cepeda-Carrión, G. The antecedents of green innovation performance: A model of learning and capabilities. J. Bus. Res. 2016, 69, 4912–4917. [Google Scholar] [CrossRef]
- Cepeda Carrión, G.; Henseler, J.; Ringle, C.M.; Roldán, J.L. Prediction-oriented modeling in business research by means of PLS path modeling: Introduction to a JBR special section. J. Bus. Res. 2016, 69, 4545–4551. [Google Scholar] [CrossRef]
- Henseler, J. Partial least squares path modeling: Quo vadis? Qual. Quant. 2018, 52, 1–8. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M.; Vinzi, E. Editorial Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2018, 31, 1–39. [Google Scholar] [CrossRef]
- Rönkkö, M.; Evermann, J. A Critical Examination of Common Beliefs About Partial Least Squares Path Modeling. Organ. Res. Methods 2013, 16, 425–488. [Google Scholar] [CrossRef]
- Rönkkö, M.; McIntosh, C.N.; Antonakis, J.; Edwards, J.R. Partial least squares path modeling: Time for some serious second thoughts. J. Oper. Manag. 2016, 47, 9–27. [Google Scholar] [CrossRef]
- Henseler, J.; Dijkstra, T.K.; Sarstedt, M.; Ringle, C.M.; Diamantopoulos, A.; Straub, D.W.; Ketchen, D.J.; Hair, J.F.; Hult, G.T.M.; Calantone, R.J. Common Beliefs and Reality About PLS: Comments on Rönkkö and Evermann (2013). Organ. Res. Methods 2014, 17, 182–209. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares StructuralEquation Modeling (PLS-SEM); SAGE Publications, Inc.: USA, 2014. [Google Scholar] [CrossRef]
- Petter, S. ‘Haters Gonna Hate’: PLS and Information Systems Research. ACM SIGMIS Database DATABASE Adv. Inf. Syst. 2018, 49, 10–13. [Google Scholar] [CrossRef]
- Aboelmaged, M. Direct and indirect effects of eco-innovation, environmental orientation and supplier collaboration on hotel performance: An empirical study. J. Clean. Prod. 2018, 184, 537–549. [Google Scholar] [CrossRef]
- Peiró-Signes, Á.; Segarra-Oña, M. How past decisions affect future behavior on eco-innovation: An empirical study. Bus. Strateg. Environ. 2018, 1233–1244. [Google Scholar] [CrossRef]
- Fernando, Y.; Chiappetta Jabbour, C.J.; Wah, W.X. Pursuing green growth in technology firms through the connections between environmental innovation and sustainable business performance: Does service capability matter? Resour. Conserv. Recycl. 2019, 141, 8–20. [Google Scholar] [CrossRef]
- Rigdon, E.E. Choosing PLS path modeling as analytical method in European management research: A realist perspective. Eur. Manag. J. 2016, 34, 598–605. [Google Scholar] [CrossRef]
- Kock, N.; Hadaya, P. Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Inf. Syst. J. 2018, 28, 227–261. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Jacob Cohen A Power Primer. Psychol. Bull. 1992, 112, 155–159. [CrossRef]
- Chin, W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar] [CrossRef]
- Ram, J.; Corkindale, D.; Wu, M.L. ERP adoption and the value creation: Examining the contributions of antecedents. J. Eng. Technol. Manag. 2014, 33, 113–133. [Google Scholar] [CrossRef]
- Bagozzi, R.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Decker, J.M. Smart PLS 3; SmartPLS GmbH: Boenningstedt, Germany, 2015. [Google Scholar]
- Horbach, J.; Rammer, C.; Rennings, K. Determinants of eco-innovations by type of environmental impact—The role of regulatory push/pull, technology push and market pull. Ecol. Econ. 2012, 78, 112–122. [Google Scholar] [CrossRef]
- Iacovidou, E.; Millward-Hopkins, J.; Busch, J.; Purnell, P.; Velis, C.A.; Hahladakis, J.N.; Zwirner, O.; Brown, A. A pathway to circular economy: Developing a conceptual framework for complex value assessment of resources recovered from waste. J. Clean. Prod. 2017, 168, 1279–1288. [Google Scholar] [CrossRef] [Green Version]
- Horbach, J. Determinants of environmental innovation-New evidence from German panel data sources. Res. Policy 2008, 37, 163–173. [Google Scholar] [CrossRef]
- Belin, J.; Horbach, J.; Oltra, V. Determinants and specificities of eco-innovations: An econometric analysis for the French and German industry based on the Community Innovation Survey. Cahiers du GREThA 2011, 1, 1–22. [Google Scholar]
- Luiten, E.E.M.; Blok, K. Stimulating R&D of industrial energy-efficient technology; the effect of government intervention on the development of strip casting technology. Energy Policy 2003, 31, 1339–1356. [Google Scholar] [CrossRef]
- Luiten, E.; van Lente, H.; Blok, K. Slow technologies and government intervention: Energy efficiency in industrial process technologies. Technovation 2006, 26, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
FINANCIAL RESOURCES | Authors |
---|---|
“Quality” of financial resources for the Circular Economy (CE) | |
Collateral (guarantees) required for the CE | [18,67,69,73,81] |
Costs of the external funds for the CE | [18,65,71,74,76,82,83,84] |
“Availability” of financial resources for the CE | |
Capital availability as a restriction | [31,37] |
Uncertainty about the cash flows derived from investments in the CE | [42,83] |
Source of financial resources for the CE | |
Investments financed with the company’s own funds. (“equity funds”) | [77,85,86,87,88,89,90] |
Incentives and public funds, etc. | [17,18,47,48,77,79,91,92,93,94,95,96,97] |
Investments in energy valorisation and renewables | |
Financial aspects of investments in energy valorisation and renewables | [35,73,74,76,77] |
Investments in eco-innovation | |
Investments in innovative solutions to reduce the company’s environmental impact. | [17,18,98] |
Investments in environmental R&D (internal or external) for eco-innovation. | [17,47,50,59,60,61,62,99,100] |
Total Assets (thousand euros) | Total Turnover (thousand euros) | Number of Employees | Return on Assets | |
---|---|---|---|---|
Means Deviation | 903,181.3 5,426,286 | 298,140.3 1,084,284 | 558.1 1700.53 | 0.063 0.125 |
Minimum Maximum | 1362.613 48,300,000 | 3952.4 8,597,300 | 50 14,106 | −0.39 0.56 |
Construct/Items | Description |
---|---|
Measurement of Investment in Activities Related to the CE | |
Construct: FR | Financial Resources |
FR-Q | Construct “FR-Q”: Financial Resources – Quality |
FR1 | Level of collateral (guarantees) required for the company to finance eco-design/eco-innovation/environmental improvements compared to that required for other investments |
FR2 | Level of costs of external funds for eco-design/eco-innovation/environmental improvements higher than those necessary for the company’s other investments |
FR-A | Construct “FR-A”: Financial Resources – Availability |
FR3 | Level to which the capital availability of the company’s financial resources determines the investments |
FR4 | Level to which uncertainty about the cash flows derived from the investments in eco-design/eco-innovation/environmental improvements hamper the decision-making process |
Construct: SF | Source of Financing |
SF1 | % of investments in environmental R&D, eco-design or similar that are financed with the company’s own funds (“equity funds”) |
SF2 | % of environmental R&D investments, eco-design or similar that are financed through public funds (“public grants”— subsidies, tax deductions, incentives, bonuses, etc.) |
SF3 | % of environmental R&D investments that are financed through foreign funds (“foreign funds”) |
Construct: ICA | Investment in Activities Related to the CE |
CER | Construct “CER”: Energy Valorisation and Renewables (Circular Investments) |
ICA1 | % of total revenues invested in energy valorisation of waste |
ICA2 | % of total revenues invested in renewables |
CECOi | Construct “CECOi”: Eco-Innovation |
ICA3 | % of the company’s total revenues invested in innovative equipment/machines to reduce the company’s environmental impact |
ICA4 | % of the company’s total revenues invested in environmental R&D (internal or external) for eco-innovating |
Construct: S | Size of Companies |
S1 | Total assets (thousand euros) |
S2 | Total turnover (thousand euros) |
S3 | Total employees (number of employees) |
Construct/Items | Description |
---|---|
Measurement of Circular Scope | |
Construct CS | Circular Scope |
CW | Construct “CW”: Waste Recovery |
CW1 | % of recycling waste within the company itself (treatment to be recycled) |
CW2 | % of waste recovery within the company and reuse |
DR | Construct “DR”: Dematerialization and Recycled Materials |
DR1 | % of resource that has been replaced by other fully recycled materials to manufacture products or to provide services |
DR2 | % of the products’ design or services that have been modified to reduce the resource intensity |
CSE | Construct “CSE”: Circular Eco-Design |
CSE1 | % of the products’ design or services that has been modified to increase their functions (multifunction) |
CSE2 | % of the products’ design or services that has been modified to extend their durability |
CSE3 | % of the products’ design or services that has been modified to increase their recyclability (waste prevention) |
SR | Construct “SR”: Resource Saving and Efficiency |
SR1 | % of equipment or facilities that has been replaced and/or improved to reduce energy consumption |
SR2 | % of processes or operating procedures that has been replaced and/or improved to reduce energy consumption or to exploit renewables |
SR3 | % of components of the product or service that has been replaced by innovative components to comply with environmental regulations |
|
|
CER | CECOi | FR-Q | FR-A | SF | CW | DR | CSE | SR | S | |
---|---|---|---|---|---|---|---|---|---|---|
ICA1 | 0.814 | 0.214 | 0.129 | 0.166 | 0.169 | 0.134 | 0.175 | −0.075 | 0.284 | 0.185 |
ICA2 | 0.78 | 0.174 | 0.289 | −0.002 | 0.104 | −0.088 | 0.168 | 0.032 | 0.262 | 0.332 |
ICA3 | 0.178 | 0.81 | 0.084 | −0.138 | 0.184 | 0.104 | 0.491 | 0.244 | 0.545 | −0.041 |
ICA4 | 0.223 | 0.839 | 0.187 | −0.017 | 0.499 | 0.164 | 0.353 | 0.072 | 0.379 | 0.058 |
FR1 | 0.223 | 0.152 | 0.906 | 0.317 | −0.23 | −0.147 | 0.179 | 0.06 | 0.025 | 0.043 |
FR2 | 0.245 | 0.149 | 0.906 | 0.319 | 0.064 | −0.09 | 0.121 | 0.025 | 0.067 | 0.104 |
FR3 | 0.033 | −0.046 | 0.367 | 0.903 | 0.037 | 0.004 | 0.286 | 0.102 | 0.062 | 0.13 |
FR4 | 0.182 | −0.123 | 0.119 | 0.605 | −0.084 | −0.071 | −0.042 | −0.29 | −0.115 | 0.193 |
SF1 | −0.01 | 0.356 | −0.162 | −0.059 | 0.643 | 0.175 | 0.145 | 0.051 | 0.208 | −0.167 |
SF2 | 0.215 | 0.33 | −0.065 | 0.006 | 0.878 | 0.244 | 0.238 | 0.063 | 0.41 | 0.061 |
SF3 | 0.127 | 0.186 | 0.051 | 0.042 | 0.742 | 0.15 | 0.107 | 0.145 | 0.417 | 0.037 |
CW1 | 0.082 | 0.158 | −0.14 | −0.041 | 0.28 | 0.921 | 0.142 | 0.073 | 0.211 | −0.059 |
CW2 | −0.061 | 0.109 | −0.064 | 0.006 | 0.166 | 0.745 | 0.133 | −0.078 | 0.104 | −0.107 |
DR1 | 0.245 | 0.519 | 0.046 | 0.181 | 0.243 | 0.1 | 0.801 | 0.047 | 0.675 | 0.332 |
DR2 | 0.069 | 0.232 | 0.22 | 0.142 | 0.123 | 0.15 | 0.713 | 0.544 | 0.242 | −0.08 |
CSE1 | −0.08 | 0.131 | −0.03 | −0.02 | 0.07 | 0.093 | 0.372 | 0.876 | 0.237 | −0.172 |
CSE2 | −0.066 | 0.052 | 0.083 | 0.025 | −0.036 | −0.08 | 0.192 | 0.787 | 0.108 | −0.092 |
CSE3 | 0.079 | 0.239 | 0.08 | −0.1 | 0.207 | −0.001 | 0.244 | 0.655 | 0.291 | −0.021 |
SR1 | 0.048 | 0.319 | −0.026 | −0.118 | 0.446 | 0.188 | 0.21 | 0.399 | 0.724 | −0.197 |
SR2 | 0.46 | 0.407 | 0.087 | −0.076 | 0.422 | 0.169 | 0.371 | 0.214 | 0.856 | 0.122 |
SR3 | 0.245 | 0.519 | 0.046 | 0.181 | 0.243 | 0.1 | 0.801 | 0.047 | 0.675 | 0.332 |
S1 | 0.278 | −0.049 | −0.046 | −0.04 | −0.031 | −0.058 | 0.028 | −0.061 | 0.12 | 0.612 |
S2 | 0.2 | 0.008 | 0.114 | 0.176 | −0.037 | −0.075 | 0.282 | −0.083 | 0.174 | 0.846 |
S3 | 0.273 | 0.049 | 0.104 | 0.258 | 0.005 | −0.076 | 0.142 | −0.141 | 0.044 | 0.876 |
CER | CECOi | FR-Q | FR-A | SF | CW | DR | CSE | SR | S | Composite Reliability | AVE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CER | 0.797 | 0.777 | 0.635 | |||||||||
CECOi | 0.244 | 0.825 | 0.809 | 0.680 | ||||||||
FR-Q | 0.258 | 0.167 | 0.906 | 0.902 | 0.821 | |||||||
FR-A | 0.107 | −0.091 | 0.351 | 0.768 | 0.735 | 0.590 | ||||||
SF | 0.173 | 0.421 | 0.091 | 0.007 | 0.715 | 0.748 | 0.512 | |||||
CW | 0.034 | 0.164 | 0.131 | 0.028 | 0.278 | 0.838 | 0.823 | 0.702 | ||||
DR | 0.215 | 0.508 | 0.166 | 0.214 | 0.247 | 0.162 | 0.759 | 0.730 | 0.576 | |||
CSE | −0.03 | 0.188 | 0.047 | 0.044 | 0.112 | 0.021 | 0.362 | 0.778 | 0.819 | 0.605 | ||
SR | 0.343 | 0.556 | 0.05 | 0.001 | 0.488 | 0.201 | 0.625 | 0.283 | 0.755 | 0.798 | 0.571 | |
S | 0.321 | 0.013 | 0.081 | 0.19 | 0.021 | 0.089 | 0.187 | 0.129 | 0.128 | 0.787 | 0.827 | 0.619 |
Relations | Path Coefficients | t-value | Percentile Bootstrap 95% Confidence Level | |
---|---|---|---|---|
Lower | Upper | |||
CW => CS | 0.152 ** | 2.043 | 0.027 | 0.310 |
DR => CS | 0.360 *** | 9.420 | 0.302 | 0.460 |
CSE => CS | 0.331 *** | 3.227 | 0.109 | 0.476 |
SR => CS | 0.515 *** | 9.696 | 0.430 | 0.620 |
ICA => CS | 0.538 *** | 7.789 | 0.383 | 0.658 |
CER => ICA | 0.547 *** | 6.002 | 0.363 | 0.727 |
CECOi => ICA | 0.712 *** | 8.487 | 0.579 | 0.918 |
SF => ICA | 0.414 *** | 4.202 | 0.196 | 0.591 |
FR => ICA | 0.205 ** | 2.081 | 0.004 | 0.362 |
FR-Q => FR | 0.744 *** | 12.347 | 0.654 | 0.906 |
FR-A => FR | 0.456 *** | 8.097 | 0.353 | 0.548 |
S => ICA | 0.165 * | 1.796 | 0.019 | 0.342 |
Variances explained R2 | R2ICA = 23.3%, R2CS = 28.9% | |||
Stone-Geisser’s Q2 | Q2ICA = 0.168, Q2CS = 0.269 |
Relations | Direct Effects | Correlation | Variance Explained |
---|---|---|---|
SF => ICA | 0.414 | 0.397 | 0.16 |
FR => ICA | 0.205 | 0.192 | 0.04 |
S => ICA | 0.165 | 0.186 | 0.03 |
FR-Q => FR | 0.744 | 0.904 | 0.67 |
FR-A => FR | 0.456 | 0.717 | 0.33 |
CW => CS | 0.152 | 0.321 | 0.05 |
DR => CS | 0.360 | 0.829 | 0.30 |
CSE => CS | 0.331 | 0.612 | 0.20 |
SR => CS | 0.515 | 0.868 | 0.45 |
ICA => CS | 0.538 | 0.538 | 0.29 |
CER => ICA | 0.547 | 0.722 | 0.39 |
CECOi => ICA | 0.712 | 0.825 | 0.59 |
Variances explained R2 | R2ICA = 23.3%, R2CS = 28.9% |
Indicator Prediction Summary | |||||||||
---|---|---|---|---|---|---|---|---|---|
PLS | LM | Differences PLS-LM | |||||||
RMSE | MAE | Q2 | RMSE | MAE | Q2 | RMSE | MAE | Q2 | |
CW | 1.006 | 0.609 | 0.01 | 1.03 | 0.618 | 0.037 | −0.024 | −0.009 | −0.027 |
DR | 0.956 | 0.713 | 0.107 | 0.975 | 0.725 | 0.073 | −0.019 | −0.012 | 0.034 |
CSE | 1.015 | 0.757 | 0.004 | 1.041 | 0.783 | 0.054 | −0.026 | −0.026 | −0.050 |
SR | 0.918 | 0.699 | 0.182 | 0.913 | 0.690 | 0.19 | 0.005 | 0.009 | −0.008 |
CER | 0.972 | 0.685 | 0.076 | 0.966 | 0.682 | 0.086 | 0.006 | 0.003 | 0.001 |
CECOi | 0.952 | 0.687 | 0.116 | 0.947 | 0.677 | 0.125 | 0.005 | 0.01 | −0.009 |
Construct prediction summary | |||||||||
CS | Q2 CS = 0.145 | ||||||||
ICA | Q2 ICA = 0.184 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Usón, A.; Portillo-Tarragona, P.; Marín-Vinuesa, L.M.; Scarpellini, S. Financial Resources for the Circular Economy: A Perspective from Businesses. Sustainability 2019, 11, 888. https://doi.org/10.3390/su11030888
Aranda-Usón A, Portillo-Tarragona P, Marín-Vinuesa LM, Scarpellini S. Financial Resources for the Circular Economy: A Perspective from Businesses. Sustainability. 2019; 11(3):888. https://doi.org/10.3390/su11030888
Chicago/Turabian StyleAranda-Usón, Alfonso, Pilar Portillo-Tarragona, Luz María Marín-Vinuesa, and Sabina Scarpellini. 2019. "Financial Resources for the Circular Economy: A Perspective from Businesses" Sustainability 11, no. 3: 888. https://doi.org/10.3390/su11030888
APA StyleAranda-Usón, A., Portillo-Tarragona, P., Marín-Vinuesa, L. M., & Scarpellini, S. (2019). Financial Resources for the Circular Economy: A Perspective from Businesses. Sustainability, 11(3), 888. https://doi.org/10.3390/su11030888